
第⼀章：概论

函数，函数式程序设计，

历史回顾，Haskell的特点和例⼦

1

Adapted from Graham’s lecture slides.

函数

• In Haskell, a function is a mapping that takes
one or more arguments and produces a single
result.

2

double x = x + x

• Computation by function application

3

double 3
= { applying double }

3 + 3
= { applying + }

6

• Computation by function application

4

double (double 2)
= { applying the inner double }

double (2 + 2)
= { applying + }

double 4
= { applying double }

4 + 4
= { applying + }

8

• Computation by function application

5

double (double 2)
= { applying the outer double }

double 2 + double 2
= { applying the first double }

(2 + 2) + double 2
= { applying the first + }

4 + double 2
= { applying double }

4 + (2 + 2)
= { applying the second + }

4 + 4
= { applying + }

8

6

• Functional programming is style of programming
in which the basic method of computation is the
application of functions to arguments;

• A functional language is one that supports and
encourages the functional style.

函数式程序设计

Summing the integers 1 to 10 in Java:

int total = 0;

for (int i = 1; i £ 10; i++)

total = total + i;

The computation method is variable assignment.

7

例⼦

Summing the integers 1 to 10 in Haskell:

sum [] = 0
sum (x:xs) = x + sum xs

sum [1..10]

The computation method is function application.

8

1930s:

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions.

9

历史回顾

1950s:

John McCarthy develops Lisp, the first functional
language, with some influences from the lambda
calculus, but retaining variable assignments.

10

历史回顾

1960s:

Peter Landin develops ISWIM, the first pure
functional language, based strongly on the lambda
calculus, with no assignments.

11

历史回顾

1970s:

John Backus develops FP, a functional language
that emphasizes higher-order functions and
reasoning about programs.

12

历史回顾

1970s:

Robin Milner and others develop ML, the first
modern functional language, which introduced type
inference and polymorphic types.

13

历史回顾

1970s - 1980s:

David Turner develops a number of lazy functional
languages, culminating in the Miranda system.

14

历史回顾

1987:

An international committee starts the development
of Haskell, a standard lazy functional language.

15

历史回顾

1990s:

Phil Wadler and others develop type classes and
monads, two of the main innovations of Haskell.

16

历史回顾

2003:

The committee publishes the Haskell Report,
defining a stable version of the language; an
updated version was published in 2010.

17

历史回顾

2010-date:

Standard distribution, library support, new
language features, development tools, use in
industry, influence on other languages, etc.

18

历史回顾

Haskell的特点

• 简洁（声明式）：第2章，第4章
• 强有⼒的类型系统：第3章，第8章
• List comprehensions: 第5章
• 递归函数：第6章
• ⾼阶函数：第7章
• 表达副作用的函数：第10章，第12章
• Generic函数：第12章，第14章
• 惰性计算：第15章
• 程序推理：第16章，第17章

19

例1: 序列求和

20

sum [] = 0
sum (n:ns) = n + sum ns

sum [1,2,3]
= { applying sum }”

1 + sum [2,3]
= { applying sum }

1 + (2 + sum [3])
= { applying sum }

1 + (2 + (3 + sum []))
= { applying sum }

1 + (2 + (3 + 0))
= { applying + }

6

例2: 快速排序

21

f [] = []

f (x:xs) = f ys ++ [x] ++ f zs

where

ys = [a | a ¬ xs, a £ x]

zs = [b | b ¬ xs, b > x]

作业：

【1-1】Define a function product that produces
the product of a list of numbers, and show using
your definition that product [2,3,4] = 24.
【1-2】How should the definition of the function
qsort be modified so that it produces a reverse
sorted version of a list?

22

