Adapted from Graham'’s Lecture slides.

X it

EUMEJE/@}
) /]\‘/ﬁ% X, (Hangman, Nim)

%y, ux,vé“; e ; \g
S 5 X~4L«:
7509%

PEKING UNIVERSITY

XA X ImAE

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at
the start and give all their outputs at the end.

— -

outputs

—

uw.,%:: aex}‘*g

PEKING UNIVERSITY

However, we would also like to use Haskell to write
interactive programs that read from the keyboard
and write to the screen, as they are running.

keyboard

.

/nputi

4

screerl

SEIT L

PEKING UNIVERSITY

JflHaskell 3t I NBALTHE &

Haskell programs are pure mathematical functions:

B Haskell programs have no side effects.

However, reading from the keyboard and writing
to the screen are side effects:

§ Interactive programs have side effects.

:: atx.J’

PEKING UNIVERSITY

R T i

An interactive program can be viewed as a pure
function that takes the current state of the world

as its argument, and produces a modified world
as its result.

To represent a returning result in addition to
performing side effects, we generalize the type to:

ST P

PEKING UNIVERSITY

So, interactove programs are written in Haskell by
using types to distinguish pure expressions from
impure actions that may involve side effects.

The type of actions that return a
value of type a.

PEKING UNIVERSITY

For example:

- The type of actions that return
a character.

~
The type of purely side
- effecting actions that return

no result value. y

Note:

B ()isthe type of tuples with no components.

7 ES Jez K ¥

PEKING UNIVERSITY

FORA) X B RAE
The standard library provides a number of actions,
including the following three primitives:

B Theaction getChar reads a character from the keyboard,
echoes it to the screen, and returns the character as its
result value:

8 :: an;)

PEKING UNIVERSITY

I Theaction putChar c writesthe character ctothe
screen, and returns no result value:

B Theaction return v simplyreturnsthe value v, without
performing any interaction:

ez F ¥

PEKING UNIVERSITY

— 0 X A FEAE A 404 sequence

A sequence of actions can be combined as a single
composite action using the keyword do.

For example:

' AEITEE]

PEKING UNIVERSITY

11

§ Reading astring from the keyboard:

ez ¥

PEKING UNIVERSITY

§ Writing a string to the screen:

§ Writing a string and moving to a new line:

12 Jgi*g

PEKING UNIVERSITY

(7hsn

13

We can now define an action that prompts for a
string to be entered and displays its length:

SEIT S

PEKING UNIVERSITY

14

For example:

Note:

B Evaluating an action executes its side effects, with the final
result value being discarded.

ez K F

PEKING UNIVERSITY

&2 1: Hangman i 2%,

Consider the following version of hangman:

§ One playersecretly types in a word.

B The other player tries to deduce the word, by entering a
sequence of guesses.

B Foreach guess, the computerindicates which letters in the
secret word occur in the guess.

I The game ends when the guess is correct.

15 :: th.J’

PEKING UNIVERSITY

16

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

SEIT P

PEKING UNIVERSITY

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

~°u~-.,¢‘; e } N
- 2 ‘J\
9 B

PEKING UNIVERSITY

17

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

50”“’&'3 k } N
= = ‘J\
9 B

PEKING UNIVERSITY

18

The function play is the main loop, which requests
and processes guesses until the game ends.

-:~°“N'p"¢ »
1 NIEITES

PEKING UNIVERSITY

The function match indicates which characters in
one string occur in a second string:

For example:

2 de kK F

PEKING UNIVERSITY

M JE 2: Nim 3% %%

Nim BRI -

The board comprises five rows of stars:

B Two players take it turn about to remove one or more
stars from the end of a single row.

B The winneris the player who removes the last star or

stars from the board.
21 at%*g

PEKING UNIVERSITY

Board#g &% ~H2 B

-:-°“N'."’¢ »
% Y ez K F

PEKING UNIVERSITY

23

> putBoard initial
1:**** %

2k k k%
3:***

5: %

2 5] . Z54 putRow &9 KA Fu & L

ez ¥

PEKING UNIVERSITY

3% %%, 09— (move)

~°u~-.,¢‘; e } N
3 B ‘J\
9 S

PEKING UNIVERSITY

24

play :: Board -> Int -> I0 ()
- . play board player =
‘/Zilf: ﬂk é@ _%é}’lei do newline
putBoard board
if finished board then
do newline
putStr "Player "
putStr (show (next player))
putStrLn " wins!!"
else
do newline
putStr "Player "
putStrLn (show player)
row <- getDigit "Enter a row number: "
num <- getDigit "Stars to remove : "
if valid board row num then
play (move board row num) (next player)
else
do newline
putStrLn "ERROR: Invalid move"
play board player

nim :: Board —> IO ()
nim = play initial 1

25 i’ﬁtj%neilig?

PEKING UNIVERSITY

VE Ak

10-1 Define an action adder :: 10 () that reads a given
number of integers from the keyboard, one per line,
and displays their sum. For example:
> adder
How many numbers? 5

N oW R

9
The total is 25

Hint: start by defining an auxiliary function that takes the current total
and how many numbers remain to be read as arguments. You will also
likely need to use the library functions read and show.

4

-7

26

27

10-2 Download the source codes of the two games
(hangman and nim) from the following website:

http://www.cs.nott.ac.uk/~pszgmh/pih.html

read the codes carefully, and run them using ghci.

$ ez K

PEKING UNIVERSITY

