
第⼗章：交互式程序设计

基本概念
基本/复合的交互操作

两个游戏（Hangman, Nim)

1

Adapted from Graham’s Lecture slides.

2

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at
the start and give all their outputs at the end.

batch
program

inputs outputs

交互式编程

3

However, we would also like to use Haskell to write
interactive programs that read from the keyboard
and write to the screen, as they are running.

interactive
program

inputs outputs

keyboard

screen

4

Haskell programs are pure mathematical functions:

However, reading from the keyboard and writing
to the screen are side effects:

! Haskell programs have no side effects.

! Interactive programs have side effects.

用Haskell进⾏交互式编程的难点

5

An interactive program can be viewed as a pure
function that takes the current state of the world
as its argument, and produces a modified world
as its result.

type IO = World -> World

type IO a = World -> (a, World)

To represent a returning result in addition to
performing side effects, we generalize the type to:

解决⽅法

6

So, interactove programs are written in Haskell by
using types to distinguish pure expressions from
impure actions that may involve side effects.

IO a

The type of actions that return a
value of type a.

7

For example:

IO Char

IO ()

The type of actions that return
a character.

The type of purely side
effecting actions that return

no result value.

! () is the type of tuples with no components.

Note:

8

The standard library provides a number of actions,
including the following three primitives:

getChar :: IO Char

! The action getChar reads a character from the keyboard,
echoes it to the screen, and returns the character as its
result value:

基本的交互操作

9

! The action putChar c writes the character c to the
screen, and returns no result value:

putChar :: Char ® IO ()

! The action return v simply returns the value v, without
performing any interaction:

return :: a ® IO a

10

A sequence of actions can be combined as a single
composite action using the keyword do.

For example:

act :: IO (Char,Char)
act = do x ¬ getChar

getChar
y ¬ getChar
return (x,y)

⼀组交互操作的组合：sequence

11

getLine :: IO String
getLine = do x ¬ getChar

if x == '\n' then
return []

else
do xs ¬ getLine

return (x:xs)

! Reading a string from the keyboard:

12

putStr :: String ® IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x

putStr xs

! Writing a string to the screen:

! Writing a string and moving to a new line:

putStrLn :: String ® IO ()
putStrLn xs = do putStr xs

putChar '\n'

13

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr "Enter a string: "

xs ¬ getLine

putStr "The string has "

putStr (show (length xs))

putStrLn " characters"

例⼦

14

For example:

> strlen

Enter a string: Haskell

The string has 7 characters

! Evaluating an action executes its side effects, with the final
result value being discarded.

Note:

15

Consider the following version of hangman:
! One player secretly types in a word.

! The other player tries to deduce the word, by entering a
sequence of guesses.

! For each guess, the computer indicates which letters in the
secret word occur in the guess.

! The game ends when the guess is correct.

应用1: Hangman游戏

16

hangman :: IO ()

hangman = do putStrLn "Think of a word: "

word ¬ sgetLine

putStrLn "Try to guess it:"

play word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

17

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x ¬ getCh

if x == '\n' then

do putChar x

return []

else

do putChar '-'

xs ¬ sgetLine

return (x:xs)

18

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

x ¬ getChar

hSetEcho stdin True

return x

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

19

The function play is the main loop, which requests
and processes guesses until the game ends.

play :: String ® IO ()
play word =

do putStr "? "

guess ¬ getLine

if guess == word then

putStrLn "You got it!"

else

do putStrLn (match word guess)

play word

20

The function match indicates which characters in
one string occur in a second string:

For example:

> match "haskell" "pascal"

"-as--ll"

match :: String ® String ® String

match xs ys =

[if elem x ys then x else '-' | x ¬ xs]

21

Nim的游戏规则：

! The board comprises five rows of stars:

1: * * * * *
2: * * * *
3: * * *
4: * *
5: *

应用2: Nim游戏

! Two players take it turn about to remove one or more
stars from the end of a single row.

! The winner is the player who removes the last star or
stars from the board.

Board的表示和显示

22

type Board = [Int]

initial :: Board
initial = [5,4,3,2,1]

finished :: Board -> Bool
finished = all (== 0)

23

putBoard :: Board -> IO ()
putBoard [a,b,c,d,e] = do putRow 1 a

putRow 2 b
putRow 3 c
putRow 4 d
putRow 5 e

> putBoard initial
1: * * * * *
2: * * * *
3: * * *
4: * *
5: *

练习：给出 putRow的类型和定义。

游戏的⼀步（move）

24

move :: Board -> Int -> Int -> Board
move board row num = [update r n

| (r,n) <- zip [1..] board]
where

update r n = if r == row then n-num else n

valid :: Board -> Int -> Int -> Bool
valid board row num = board !! (row-1) >= num

游戏的整体

25 nim :: Board -> IO ()
nim = play initial 1

作业

26

Define an action adder :: IO () that reads a given
number of integers from the keyboard, one per line,
and displays their sum. For example:
> adder
How many numbers? 5
1
3
5
7
9
The total is 25
Hint: start by defining an auxiliary function that takes the current total
and how many numbers remain to be read as arguments. You will also
likely need to use the library functions read and show.

10-1

27

Download the source codes of the two games
(hangman and nim) from the following website:

http://www.cs.nott.ac.uk/~pszgmh/pih.html

read the codes carefully, and run them using ghci.

10-2

