
第⼗⼆章：Monads and More

Functors
Applicatives

Monads

1

Genericity/通用性

• Level 1: Polymorphic Functions (over types)

length1 :: List a -> Int

• Level 2: Generic Functions (over type constructors)

length2 :: t a -> Int

2

FUNCTORS（函⼦）

3

计算的抽象

4

inc :: [Int] -> [Int]
inc [] = []
inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]
sqr [] = []
sqr (n:ns) = n^2 : sqr ns

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

抽象

inc = map (+1)
sqr = map (^2)

Abstraction over Parameterized Types

5

class Functor f where
fmap :: (a -> b) -> f a -> f b

fmap takes a function of type a -> b and a structure
of type f a whose elements have type a, and applies
the function to each such element to give a structure
of type f b whose elements now have type b.

6

instance Functor [] where
-- fmap :: (a -> b) -> [a] -> [b]
fmap = map

Prelude> fmap (+1) [1,2,3]
[2,3,4]

Prelude> fmap (^2) [1,2,3]
[1,4,9]

7

data Maybe a = Nothing | Just a

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap g (Just x) = Just (g x)

Prelude> fmap (+1) (Just 3)
Just 4

Prelude> fmap (+1) Nothing
Nothing

Prelude> fmap not (Just False)
Just True

8

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Show

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b
fmap g (Leaf x) = Leaf (g x)
fmap g (Node l r) = Node (fmap g l) (fmap g r）

Prelude> fmap length (Leaf "abc")
Leaf 3

Prelude> fmap even (Node (Leaf 1) (Leaf 2))
Node (Leaf False) (Leaf True)

9

instance Functor IO where
-- fmap :: (a -> b) -> IO a -> IO b
fmap g mx = do x <- mx

return (g x)

Prelude> fmap show (return True)
"True”

Generic Function Definition

10

inc :: Functor f => f Int -> f Int
inc = fmap (+1)

> inc (Just 1)
Just 2

> inc [1,2,3,4,5]
[2,3,4,5,6]

> inc (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)

Functor Laws

fmap id = id
fmap (f . g) = fmap f . fmap g

They ensure that fmap does indeed perform a mapping operation.

v For any parameterized type in Haskell, there is at most one function fmap that
satisfies the required laws.
• That is, if it is possible to make a given parameterized type into a functor,

there is only one way to achieve this.
• Hence, the instances that we defined for lists, Maybe, Tree and IO were all

uniquely determined.

APPLICATIVES

Applicative Functors

12

如何定义⼀个⼀般性的fmap?

13

fmap0 :: a -> f a

fmap1 :: (a -> b) -> f a -> f b

fmap2 :: (a -> b -> c) -> f a -> f b -> f c

fmap3 :: (a -> b -> c -> d) -> f a -> f b -> f c -> f d

.

.

.

• Idea: 准备两个基本函数

14

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

15

fmap0 :: a -> f a
fmap0 = pure

fmap1 :: (a -> b) -> f a -> f b
fmap1 g x = pure g <*> x

fmap2 :: (a -> b -> c) -> f a -> f b -> f c
fmap2 g x y = pure g <*> x <*> y

fmap3 :: (a -> b -> c -> d) -> f a -> f b -> f c -> f d
fmap3 g x y z = pure g <*> x <*> y <*> z

Applicative Functor

16

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where
-- pure :: a -> Maybe a
pure = Just

-- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
Nothing <*> _ = Nothing
(Just g) <*> mx = fmap g mx

> pure (+1) <*> Just 1
Just 2

> pure (+) <*> Just 1 <*> Just 2
> Just 3

> pure (+) <*> Nothing <*> Just 2
Nothing

17

instance Applicative [] where
-- pure :: a -> [a]
pure x = [x]

-- (<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [g x | g <- gs, x <- xs]

> pure (+1) <*> [1,2,3]
[2,3,4]

> pure (+) <*> [1] <*> [2]
[3]

> pure (*) <*> [1,2] <*> [3,4]
[3,4,6,8]

the applicative style for lists
supports a form of
non-deterministic programming

18

instance Applicative IO where
-- pure :: a -> IO a
pure = return

-- (<*>) :: IO (a -> b) -> IO a -> IO b
mg <*> mx = do {g <- mg; x <- mx; return (g x)}

getChars :: Int -> IO String
getChars 0 = return []
getChars n = pure (:) <*> getChar <*> getChars (n-1)

Effectful Programming/Generic Programming

19

Effectful Programming
Applicative functors can also be viewed as abstracting the
idea of applying pure functions to effectful arguments,
with the precise form of effects that are permitted
depending on the nature of the underlying functor.

Generic Programming

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (x:xs) = pure (:) <*> x <*> sequenceA xs

Effectful Programming/Generic Programming

20

Effectful Programming
Applicative functors can also be viewed as abstracting the
idea of applying pure functions to effectful arguments,
with the precise form of effects that are permitted
depending on the nature of the underlying functor.

Generic Programming

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (x:xs) = pure (:) <*> x <*> sequenceA xs

Applicative Law

pure id <*> x = x
pure (g x) = pure g <*> pure x
x <*> pure y = pure (\g -> g y) <*> x

x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

21

MONADS

22

异常处理

23

data Expr = Val Int | Div Expr Expr

eval :: Expr -> Int
eval (Val n) = n
eval (Div x y) = eval x ‘div‘ eval y

> eval (Div (Val 1) (Val 0))
*** Exception: divide by zero

24

safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv n m = Just (n ‘div‘ m)

解决⽅法1

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = case eval x of

Nothing -> Nothing
Just n -> case eval y of

Nothing -> Nothing
Just m -> safediv n m

繁杂

25

解决⽅法2

eval :: Expr -> Maybe Int
eval (Val n) = pure n
eval (Div x y) = pure safediv <*> eval x <*> eval y

类型不正确

问题：applicative functor 只允许纯函数作用在有副作用的参数上

safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv n m = Just (n ‘div‘ m)

• 引⼊新的操作 bind

26

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing
Just x -> f x

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = eval x >>= \n ->

eval y >>= \m ->
safediv n m

• 引⼊ do语法糖

27

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = do n <- eval x

m <- eval y
safediv n m

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing
Just x -> f x

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = eval x >>= \n ->

eval y >>= \m ->
safediv n m

Monads

28

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

return = pure

instance Monad Maybe where
-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing
(Just x) >>= f = f x

Monads

29

instance Monad [] where
-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = [y | x <- xs, y <- f x]

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

return = pure

例：The State Monad

• 问题：如何用函数描述状态的变换？

– 状态：⼀个数据结构
type State = Int –-仅仅是⼀个示例；需要根据具体问题确定状态的类型

– 状态变换器
type ST = State -> State

– 带有结果的状态变换器
type ST a = State -> (a, State)

例：The State Monad

• 用 newtype定义 ST:
newtype ST a = S (State -> (a, State))

• 定义 functor

instance Functor ST where
-- fmap :: (a -> b) -> ST a -> ST b
fmap g st = S (\s -> let (x,s’) = app st s in (g x, s’))

app :: ST a -> State -> (a,State)
app (S st) x = st x

例：The State Monad

• 用 newtype定义 ST:
newtype ST a = S (State -> (a, State))

• 定义 functor

instance Functor ST where
-- fmap :: (a -> b) -> ST a -> ST b
fmap g st = S (\s -> let (x,s’) = app st s in (g x, s’))

app :: ST a -> State -> (a,State)
app (S st) x = st x

例：The State Monad

• Applicative

33

instance Applicative ST where
-- pure :: a -> ST a
pure x = S (\s -> (x,s))

-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> stx = S (\s -> let (f,s’) = app stf s

(x,s’’) = app stx s’
in (f x, s’’))

例：The State Monad

• Applicative

34

instance Applicative ST where
-- pure :: a -> ST a
pure x = S (\s -> (x,s))

-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> stx = S (\s -> let (f,s’) = app stf s

(x,s’’) = app stx s’
in (f x, s’’))

例：The State Monad

• Applicative

instance Applicative ST where
-- pure :: a -> ST a
pure x = S (\s -> (x,s))

-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> stx = S (\s -> let (f,s’) = app stf s

(x,s’’) = app stx s’
in (f x, s’’))

例：The State Monad

• Monad

36

instance Monad ST where
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = S (\s -> let (x,s’) = app st s

in app (f x) s’)

例：The State Monad

• Monad

37

instance Monad ST where
-- (>>=) :: ST a -> (a -> ST b) -> ST b
st >>= f = S (\s -> let (x,s’) = app st s

in app (f x) s’)

应用：树的重新标注

38

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Show

tree :: Tree Char
tree = Node (Node (Leaf ’a’) (Leaf ’b’)) (Leaf ’c’)

> relabel tree
Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)

Consider the problem of defining a function that relabels
each leaf in such a tree with a unique or fresh integer.

解法1

39

rlabel :: Tree a -> Int -> (Tree Int, Int)
rlabel (Leaf _) n = (Leaf n, n+1)
rlabel (Node l r) n = (Node l’ r’, n’’)

where (l’,n’) = rlabel l n
(r’,n’’) = rlabel r n’

relabel t = fst (rlabel t 0)

Note: This definition for rlabel is complicated by the need to explicitly thread
an integer state through the computation.

解法2: 用Applicative

fresh :: ST Int
fresh = S (\n -> (n, n+1))

alabel :: Tree a -> ST (Tree Int)
alabel (Leaf _) = Leaf <$> fresh
alabel (Node l r) = Node <$> alabel l <*> alabel r

relabel t = fst (app (alabel tree) 0)

<$> = `fmap`
or

g <$> x = pure g <*> x

解法3: 用Monad
mlabel :: Tree a -> ST (Tree Int)
mlabel (Leaf _) = do n <- fresh

return (Leaf n)
mlabel (Node l r) = do l’ <- mlabel l

r’ <- mlabel r
return (Node l’ r’)

relabel t = fst (app (mlabel t) 0)

mlabel :: Tree a -> ST (Tree Int)
mlabel (Leaf _) = fresh >>= \n -> return (Leaf n)
mlabel (Node l r) = mlabel l >>= \l’ ->

mlabel r >>= \r’ -> return (Node l’ r’)

relabel t = fst (app (mlabel t) 0)

Monad Laws

return x >>= f = f x
mx >>= return = mx

(mx >>= f) >>= g = mx >>= (\x -> (f x >>= g))

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

return = pure

课堂练习

43

1.Define an instance of the Functor class for the following type
of binary trees that have data in their nodes:

data Tree a = Leaf | Node (Tree a) a (Tree a)
deriving Show

2.Complete the following instance declaration to make the
partially-applied function type (a ->) into a functor:

instance Functor ((->) a) where
...

3.Define an instance of the Applicative class for the type (a ->).

作业

Define an instance of the Monad class for the type (a ->).

Given the following type of expressions
data Expr a = Var a | Val Int | Add (Expr a) (Expr a)

deriving Show
that contain variables of some type a, show how to
make this type into instances of the Functor, Applicative
and Monad classes. With the aid of an example, explain
what the >>= operator for this type does.

44

12-1

12-2

