第十二章：Monads and More

Functors
Applicatives
Monads

Genericity／通用性

－Level 1：Polymorphic Functions（over types）
length1 ：：List a－＞Int
－Level 2：Generic Functions（over type constructors）
length2 :: t a -> Int

FUNCTORS（函子）

计算的抽象

inc ：：［Int］\rightarrow［Int］
inc［］$\quad=[]$
inc（ $\mathrm{n}: \mathrm{ns}$ ）$=\mathrm{n}+1$ ：inc ns
sqr :: [Int] -> [Int]
sqr [] = []
sqr ($n: n s$) $=n \wedge 2$: sqr ns
－抽象

$$
\begin{aligned}
& \operatorname{map}::(a \rightarrow b) \rightarrow[a] \rightarrow[b] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(x: x s)=f x: \operatorname{map} f \times s
\end{aligned}
$$

$$
\begin{aligned}
& \text { inc }=\operatorname{map}(+1) \\
& \text { sqr }=\operatorname{map}(\wedge 2)
\end{aligned}
$$

Abstraction over Parameterized Types

class Functor f where

```
fmap :: (a -> b) -> f a -> f b
```

> fmap takes a function of type a -> b and a structure of type f a whose elements have type a, and applies the function to each such element to give a structure of type f b whose elements now have type b.

instance Functor［］where

$$
\begin{aligned}
& \text {-- fmap :: (a -> b) -> [a] -> [b] } \\
& \text { fmap = map }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prelude> fmap }(+1)[1,2,3] \\
& {[2,3,4]} \\
& \text { Prelude> fmap (^2) }[1,2,3] \\
& {[1,4,9]}
\end{aligned}
$$

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
    -- fmap :: (a -> b) -> Maybe a -> Maybe b
    fmap _ Nothing = Nothing
    fmap g (Just x) = Just (g x)
    Prelude> fmap (+1) (Just 3)
    Just 4
    Prelude> fmap (+1) Nothing
    Nothing
```

 Prelude> fmap not (Just False)
 Just True
 北京大学

data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show

instance Functor Tree where

```
-- fmap :: (a -> b) -> Tree a -> Tree b
fmap g (Leaf x) = Leaf ( g x)
fmap g (Node l r) \(=\) Node (fmap g l) (fmap g r)
```

Prelude> fmap length (Leaf "abc")
Leaf 3
Prelude> fmap even (Node (Leaf 1) (Leaf 2)) Node (Leaf False) (Leaf True)

```
instance Functor IO where
-- fmap :: (a -> b) -> IO a -> IO b
fmap g mx = do x <- mx
                                    return (g x)
```

Prelude＞fmap show（return True） ＂True＂

Generic Function Definition

```
inc :: Functor f => f Int -> f Int
inc = fmap (+1)
```

> inc (Just 1)
Just 2
> inc $[1,2,3,4,5]$
[2,3,4,5,6]
> inc (Node (Leaf 1) (Leaf 2))
Node (Leaf 2) (Leaf 3)

Functor Laws

$$
\begin{array}{ll}
\text { fmap id } & =\text { id } \\
\text { fmap }(f, g) & =\text { fmap } f . f m a p ~
\end{array}
$$

They ensure that fmap does indeed perform a mapping operation.

* For any parameterized type in Haskell, there is at most one function fmap that satisfies the required laws.
- That is, if it is possible to make a given parameterized type into a functor, there is only one way to achieve this.
- Hence, the instances that we defined for lists, Maybe, Tree and IO were all uniquely determined.

Applicative Functors

APPLICATIVES

PEKING UNIVERSITY

如何定义一个一般性的fmap？
fmap0 ：：a－＞f a
fmap1 ：：（a \rightarrow b）\rightarrow f $a \rightarrow f$ b

－Idea：准备两个基本函数

$$
\begin{aligned}
& \text { pure : : } a \rightarrow>f a \\
& (<*>):: f(a \rightarrow b) \rightarrow f a \rightarrow f b
\end{aligned}
$$

> fmap0 : : a -> f a
> fmap0 $=$ pure
fmap1 ：：（a $->$ b）$->$ f $a \rightarrow>b$
fmap1 g x＝pure $\mathrm{g}<*>\mathrm{x}$
fmap2 ：：（ $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}$ ）$\rightarrow \mathrm{f} \mathrm{a} \rightarrow \mathrm{f} \mathrm{b} \rightarrow \mathrm{f} \mathrm{c}$
fmap2 g x $\mathrm{y}=$ pure $\mathrm{g}<*>\mathrm{x}<*>\mathrm{y}$

fmap3 g x y $\mathrm{z}=$ pure $\mathrm{g}<*>\mathrm{x}<*>\mathrm{y}<*>\mathrm{z}$

PEKING UNIVERSITY

Applicative Functor

```
class Functor f => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b
```

instance Applicative Maybe where
-- pure :: a -> Maybe a
pure $=$ Just
-- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
Nothing <*> _ = Nothing
(Just g) <*> mx = fmap g mx

```
> pure (+1) <*> Just 1
Just 2
> pure (+) <*> Just 1 <*> Just 2
> Just 3
> pure (+) <*> Nothing <*> Just 2
Nothing
```

```
instance Applicative [] where
    -- pure :: a -> [a]
    pure \(\mathrm{x}=[\mathrm{x}]\)
    -- (<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = \([g \times \mid g<-g s, x<-x s]\)
```

```
> pure (+1) <*> [1,2,3]
[2,3,4]
> pure (+) <*> [1] <*> [2]
[3]
> pure (*) <*> [1,2] <*> [3,4]
[3,4,6,8]
\[
[3,4,6,8]
\]
```

the applicative style for lists supports a form of non-deterministic programming
instance Applicative IO where

$$
\begin{aligned}
& \text {-- pure :: a -> I0 a } \\
& \text { pure = return } \\
& --(<*>): \text { : I0 (a -> b) -> IO a -> IO b } \\
& m g<*>m x=\text { do }\{g<-m g ; x<-m x \text {; return }(g \text { x })\}
\end{aligned}
$$

getChars ：：Int－＞IO String
getChars 0 ＝return［］
getChars $\mathrm{n}=$ pure（：）＜＊＞getChar＜＊＞getChars（n－1）

Effectful Programming/Generic Programming

Effectful Programming

Applicative functors can also be viewed as abstracting the idea of applying pure functions to effectful arguments, with the precise form of effects that are permitted depending on the nature of the underlying functor.

Generic Programming

$$
\begin{aligned}
& \text { sequence } A:: \text { Applicative } \mathrm{f}=>[\mathrm{f} \text { a] -> } \mathrm{f}[\mathrm{a}] \\
& \text { sequence }[]= \\
& \text { sequence } \mathrm{A}(\mathrm{x}: \mathrm{xs})=
\end{aligned}
$$

Effectful Programming/Generic Programming

Effectful Programming

Applicative functors can also be viewed as abstracting the idea of applying pure functions to effectful arguments, with the precise form of effects that are permitted depending on the nature of the underlying functor.

Generic Programming

```
sequenceA :: Applicative f => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (x:xs) = pure (:) <*> x <*> sequenceA xs
```

Applicative Law

$$
\begin{aligned}
& \text { pure id }<*>x=x \\
& \text { pure }(\mathrm{g} \mathrm{x}) \\
& \mathrm{x}<*>\text { pure } \mathrm{y} \\
& \mathrm{x}=\text { pure } \mathrm{g}<*>\text { pure } \mathrm{x} \\
& \mathrm{x}<*>(\mathrm{y}<* \mathrm{~g} \mathrm{y})<*>\mathrm{x}) \\
& =(\operatorname{pure}(.)<*>\mathrm{x}<*>\mathrm{y})<*>\mathrm{z}
\end{aligned}
$$

MONADS

```
data Expr = Val Int | Div Expr Expr
eval :: Expr -> Int
eval (Val n)= n
eval (Div x y) = eval x 'div' eval y
    > eval (Div (Val 1) (Val 0))
*** Exception: divide by zero
```


解决方法1

$$
\begin{aligned}
& \text { safediv :: Int -> Int }->\text { Maybe Int } \\
& \text { safediv }-0=\text { Nothing } \\
& \text { safediv } \mathrm{n} \text { m }=\text { Just (n 'div‘ m) }
\end{aligned}
$$

```
eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = case eval x of
    Nothing -> Nothing
    Just n -> case eval y of
        Nothing -> Nothing
        Just m -> safediv n m
```

解决方法2

$$
\begin{aligned}
& \text { safediv :: Int -> Int -> Maybe Int } \\
& \text { safediv }-0=\text { Nothing } \\
& \text { safediv } \bar{n} \text { m }=\text { Just (n ‘div‘ m) }
\end{aligned}
$$

```
eval :: Expr -> Maybe Int
eval (Val n) = pure n
eval (Div x y) = pure safediv <*> eval x <*> eval y
```

问题：applicative functor 只允许纯函数作用在有副作用的参数上
－引入新的操作 bind

$$
\begin{aligned}
(\gg=): & : \text { Maybe a } \rightarrow>\text { (a } \rightarrow>\text { Maybe b) } \rightarrow \text { Maybe b } \\
m x \gg=f= & \text { case } m x \text { of } \\
& \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just } x \quad \rightarrow f
\end{aligned}
$$

```
eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = eval x >>= \n ->
    eval y >>= \m ->
    safediv n m
```

－引入 do 语法糖

$$
\begin{aligned}
& \text { (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b } \\
& \text { mx >>= f = case mx of } \\
& \text { Nothing -> Nothing } \\
& \text { Just x -> f x }
\end{aligned}
$$

```
eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = do n <- eval x
    m <- eval y
    safediv n m
```

PEKING UNIVERSITY

Monads

$$
\begin{aligned}
& \text { class Applicative } m=>\text { Monad } m \text { where } \\
& \text { return :: a } \rightarrow \mathrm{m} \text { a } \\
& \text { (>>=) :: m a } \rightarrow \text { (a } \rightarrow \mathrm{m} \text { b) } \rightarrow \mathrm{m} \text { b } \\
& \text { return }=\text { pure }
\end{aligned}
$$

instance Monad Maybe where
-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing
(Just x) >>= $f=f x$

Monads
class Applicative m => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
return = pure

$$
\begin{aligned}
& \text { instance Monad [] where } \\
& \quad--(\gg=)::[a] \rightarrow(a->[b])->[b] \\
& \text { xs >>= f }=[y \mid x<-x s, y<-f x]
\end{aligned}
$$

例：The State Monad

- 问题：如何用函数描述状态的变换？
- 状态：一个数据结构 type State＝Int－－仅仅是一个示例；需要根据具体问题确定状态的类型
－状态变换器
type ST = State -> State
－带有结果的状态变换器
type ST a = State -> (a, State)

例：The State Monad

－用 newtype 定义ST：
newtype ST a＝S（State－＞（a，State））

$$
\begin{aligned}
& \text { app :: ST a -> State -> (a,State) } \\
& \text { app (S st) x = st x }
\end{aligned}
$$

－定义functor
instance Functor ST where

－－fmap ：：（a－＞b）－＞ST a－＞ST b
fmap g st＝S

例：The State Monad
－用 newtype 定义ST：
newtype ST a＝S（State－＞（a，State））

```
app :: ST a -> State -> (a,State)
app (S st) x = st x
```

－定义functor
instance Functor ST where

－－fmap ：：（a－＞b）－＞ST a－＞ST b
fmap g st $=$ S（\s \rightarrow let $\left(x, s^{\prime}\right)=$ app st s in（ g x，s＇））

例: The State Monad

- Applicative
instance Applicative ST where
-- pure :: a -> ST a

pure $\mathrm{x}=$

-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> stx =

例: The State Monad

- Applicative
instance Applicative ST where
-- pure :: a -> ST a
 pure $x=S(\backslash s \rightarrow(x, s))$
-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> stx =

例: The State Monad

- Applicative
instance Applicative ST where
-- pure :: a -> ST a
 pure $x=S(\backslash s \rightarrow(x, s))$
-- (<*>) :: ST (a -> b) -> ST a -> ST b
stf <*> sty = S (\s -> let (fo') = app str s

$\left(x, s^{\prime \prime}\right)=a p p$ sty s^{\prime} in (f $\left.x, s^{\prime \prime}\right)$)

例: The State Monad

- Monad

```
instance Monad ST where
\[
\begin{aligned}
& \text {-- (>>=) :: ST a -> (a -> ST b) -> ST b } \\
& \text { st >>= f = }
\end{aligned}
\]
```


例: The State Monad

- Monad
instance Monad ST where

$$
\begin{aligned}
& \text {-- (>>=) :: ST a -> (a -> ST b) -> ST b } \\
& \text { st >>= f = S (\s -> let (x,s') = app st s } \\
& \text { in app (f x) s') }
\end{aligned}
$$

Consider the problem of defining a function that relabels each leaf in such a tree with a unique or fresh integer．

```
data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show
tree :: Tree Char
tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')
> relabel tree
Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)
```

```
rlabel :: Tree a -> Int -> (Tree Int, Int)
rlabel (Leaf _) n = (Leaf n, n+1)
rlabel (Node l r) n = (Node l' r', n'')
                                    where (l',n') = rlabel l n
                                    (r',n'') = rlabel r n'
relabel t = fst (rlabel t 0)
```

Note:This definition for rlabel is complicated by the need to explicitly thread an integer state through the computation.

解法2：用Applicative

```
fresh :: ST Int
fresh = S (\n -> (n, n+1))
alabel :: Tree a -> ST (Tree Int)
```

<\$> = ‘fmap`
or

$$
g<\$>x=\text { pure } g<*>x
$$

```
alabel（Leaf＿）＝Leaf＜\＄＞fresh
alabel（Node l r）＝Node＜\＄＞alabel l＜＊＞alabel r
relabel t＝fst（app（alabel tree）0）
```


解法3：用Monad

```
mlabel :: Tree a -> ST (Tree Int)
mlabel (Leaf _) = do n <- fresh
                                    return (Leaf n)
mlabel (Node l r) = do l' <- mlabel l
                                    r' <- mlabel r
                                    return (Node l' r')
relabel t = fst (app (mlabel t) 0)
```



```
mlabel :: Tree a -> ST (Tree Int)
mlabel (Leaf _) = fresh >>= \n -> return (Leaf n)
mlabel (Node l r) = mlabel l >>= \l' ->
                        mlabel r >>= \r' >> return (Node l' r')
```

relabel $t=$ fst (app (mlabel t) 0)

Monad Laws

$$
\begin{aligned}
\text { return } x \gg=f & =f x \\
m x \gg=\text { return } & =m x \\
(m x \gg=f) \gg=g & =m x \gg=(\backslash x \rightarrow>(f x \gg=g))
\end{aligned}
$$

class Applicative m＝＞Monad m where
return :: a -> m a
(>>=) : : m a -> (a -> m b) -> m b
return = pure

1．Define an instance of the Functor class for the following type of binary trees that have data in their nodes：

$$
\begin{gathered}
\text { data Tree a }=\underset{\text { Leaf } \mid \text { Node (Tree a) a (Tree a) }}{ } \begin{array}{c}
\text { deriving Show }
\end{array}
\end{gathered}
$$

2．Complete the following instance declaration to make the partially－applied function type（a－＞）into a functor：
instance Functor（（－＞）a）where

3．Define an instance of the Applicative class for the type（a－＞）．

12－1 Define an instance of the Monad class for the type（a－＞）．

12－2 Given the following type of expressions

$$
\begin{aligned}
\text { data Expr } a= & \text { Var a } \mid \text { Val Int } \mid \text { Add }(\text { Expr a) (Expr a) } \\
& \text { deriving Show }
\end{aligned}
$$

that contain variables of some type a，show how to make this type into instances of the Functor，Applicative and Monad classes．With the aid of an example，explain what the＞＞＝operator for this type does．

