Adapted from Graham'’s Lecture slides.
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What is a Parser?

A parser is a program that analyses a piece of text to determine
Its syntactic structure.
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Where Are They Used?

Almost every real life program uses some form of parser to
pre-process its input.

ghci Haskell programs
Unix - Shell scripts
Explorer HTML documents
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Parsers as Functions

In a functional language such as Haskell, parsers can naturally be
viewed as functions.
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A parser is a function that takes a string and
returns some form of tree.
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However, a parser might not require all of its input string, so we
also return any unused input:

A string might be parsable in many ways, including none, so we
generalize to a list of results:

‘type Parser = String - [(Tree,String)]
; o et S
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Finally, a parser might not always produce a tree, so we
generalize to a value of any type:

Note:

i For simplicity, we will only consider parsers that either
fail and return the empty list of results, or succeed and
return a singleton list.

6 ez A

PEKING UNIVERSITY




Jez X

PEKING UNIVERSITY



I The parser item fails if the input is empty, and consumes
the first character otherwise:

> parse item

[]

> parse item "abc"
[(a’,"be")]
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Sequencing Parsers

> parse (fmap toUpper item) "abc"
[CA’,"bc™)]

> parse (fmap toUpper item) ""

[]
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> parse (pure 1) "abc"
[(2,"abc™)]

> parse three "abcdef"
(2", '), "def")]

three = pure g <*> item <*> item <*> item
where g xy z = (x,2)
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> parse (return 1) "abc"
[(1,"abc™)]

> parse three "abcdef"
(2", '), "def")]

three :: Parser (Char,Char)
three = do x <- item

item
Z <-item
return (X,z)
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Making Choices
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empty <[> x
X <[> empty

X<|>(y<|>z) =(x<|>y)<|>z
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Making Choices
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> parse empty "abc"

[]

> parse (item <|> return 'd’) "abc"
[(a’,"bc™)]

> parse (empty <|> return ’d’) "abc"
[(d’,"abc")]
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Derived Primitives

i Parsing a character that satisfies a predicate:
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B Parsers for single digits, lower-case letters, upper-case
letters, arbitrary letters, alphanumeric characters, and
specific characters
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4.3 . & X —-parser:
string :: String -> Parser String
AHTIN AT A — AN W LF 75 o

> parse (string "abc") "abcdef"
[(Ilabcllllldefll)]

> parse (string "abc") "ab1234"

L]
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> parse ident "abc def"
[("abC"I" defll)]
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® nat
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> parse nat "123 abc"
[(223," abc")]
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® space
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> parse space " abc"

[(0,"abc™)]
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Int

> parse int "-123 abc"
[(-123," abc")]
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Handling Spacing: token
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® nats
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> parse nats " [z, 2, 3]"

[([1,2,3],"")]

> parse nats "[1,2,]"

[]
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Consider a simple form of expressions built up from single digits
using the operations of addition + and multiplication *, together
with parentheses.

We also assume that:

I * and + associate to the right;

I * has higher priority than +.
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Formally, the syntax of such expressions is defined by the
following context free grammar:
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However, for reasons of efficiency, it is important to factorise the
rules for expr and term:

Note:

i The symbol ¢ denotes the empty string.
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It is now easy to translate the grammar into a parser that evaluates
expressions, by simply rewriting the grammar rules using the
parsing primitives.

That is, we have:

expr » term ('+' expr | £)
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term — factor ('*' term | &)

Factor ::= digit | '(' expr ")°



Finally, if we define

then we try out some examples:
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13-1 Why does factorising the expression grammar make the
resulting parser more efficient?

13-2 Extend the expression parser to allow the use of subtraction
and division, based upon the following extensions to the
grammar:
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