Adapted from Graham'’s Lecture slides.

JSe

% 1+ =3 : Monadic Parser

Parser &9 L4, VE 4 3% F a9 Parser
#) 2% Parser #5DSL

R E K XY &) =047
Jei) ¥

PEKING UNIVERSITY

What is a Parser?

A parser is a program that analyses a piece of text to determine
Its syntactic structure.

+
7N\
* 4

/" N\

e

oS Jei)P

s PEKING UNIVERSITY

Where Are They Used?

Almost every real life program uses some form of parser to
pre-process its input.

ghci Haskell programs
Unix - Shell scripts
Explorer HTML documents

? i: atx.J'

PEKING UNIVERSITY

Parsers as Functions

In a functional language such as Haskell, parsers can naturally be
viewed as functions.

/\

A parser is a function that takes a string and
returns some form of tree.

4 :: b7t

PEKING UNIVERSITY

However, a parser might not require all of its input string, so we
also return any unused input:

A string might be parsable in many ways, including none, so we
generalize to a list of results:

‘type Parser = String - [(Tree,String)]
; o et S

PEKING UNIVERSITY

Finally, a parser might not always produce a tree, so we
generalize to a value of any type:

Note:

i For simplicity, we will only consider parsers that either
fail and return the empty list of results, or succeed and
return a singleton list.

6 ez A

PEKING UNIVERSITY

Jez X

PEKING UNIVERSITY

I The parser item fails if the input is empty, and consumes
the first character otherwise:

> parse item

[]

> parse item "abc"
[(a’,"be")]

c,\)N',, ‘
| % JeiXd
" - >

PEKING UNIVERSITY

Sequencing Parsers

> parse (fmap toUpper item) "abc"
[CA’,"bc™)]

> parse (fmap toUpper item) ""

[]

9 7y Jes kY

PEKING UNIVERSITY

10

> parse (pure 1) "abc"
[(2,"abc™)]

> parse three "abcdef"
(2", '), "def")]

three = pure g <*> item <*> item <*> item
where g xy z = (x,2)

SOUNJ,,Q” t } ;
A !‘J\
1598

PEKING UNIVERSITY

11

> parse (return 1) "abc"
[(1,"abc™)]

> parse three "abcdef"
(2", '), "def")]

three :: Parser (Char,Char)
three = do x <- item

item
Z <-item
return (X,z)

AFTEL,
> ~ >

58 PEKING UNIVERSITY

Making Choices

12

empty <[> x
X <[> empty

X<|>(y<|>z) =(x<|>y)<|>z

=X
=X

TN
< &
& &
| =
= =
(5! ~
7598

Jez X

PEKING UNIVERSITY

Making Choices

13

TN
< &
S v
| =
ol -
(5! ~
1898

Jez X

PEKING UNIVERSITY

14

Jez X

PEKING UNIVERSITY

15

> parse empty "abc"

[]

> parse (item <|> return 'd’) "abc"
[(a’,"bc™)]

> parse (empty <|> return ’d’) "abc"
[(d’,"abc")]

UNT P
G,
4 *
»)
Gl =)
5! '~
iy’

Jez X

PEKING UNIVERSITY

Derived Primitives

i Parsing a character that satisfies a predicate:

" ART O

PEKING UNIVERSITY

B Parsers for single digits, lower-case letters, upper-case
letters, arbitrary letters, alphanumeric characters, and
specific characters

17 Jﬁi*g

PEKING UNIVERSITY

4.3 . & X —-parser:
string :: String -> Parser String
AHTIN AT A — AN W LF 75 o

> parse (string "abc") "abcdef"
[(Ilabcllllldefll)]

> parse (string "abc") "ab1234"

L]

8 f: at‘f\) w

PEKING UNIVERSITY

e |dent

19

> parse ident "abc def"
[("abC"I" defll)]

UNT P
G,
4 *
» \2)
o -
5! '~
1508

Jez X

PEKING UNIVERSITY

® nat

20

> parse nat "123 abc"
[(223," abc")]

TN
< &
& &
| =
= =
(5! ~
7598

Jez X

PEKING UNIVERSITY

® space

21

> parse space " abc"

[(0,"abc™)]

TN
< &
& &
| =
= =
(5! ~
7598

Jez X

PEKING UNIVERSITY

23

Int

> parse int "-123 abc"
[(-123," abc")]

UNT P
G,
4 *
»)
Gl =)
5! '~
iy’

Jez X

PEKING UNIVERSITY

Handling Spacing: token

23

UNT P
G,
4 *
»)
o =
a '~
1508

Jez X

PEKING UNIVERSITY

® nats

24

> parse nats " [z, 2, 3]"

[([1,2,3],"")]

> parse nats "[1,2,]"

[]

UNT P
G,
4 *
»)
o =
a '~
1508

Jez X

PEKING UNIVERSITY

B A R 4 AR

Consider a simple form of expressions built up from single digits
using the operations of addition + and multiplication *, together
with parentheses.

We also assume that:

I * and + associate to the right;

I * has higher priority than +.

s oy deg L Z

PEKING UNIVERSITY

Formally, the syntax of such expressions is defined by the
following context free grammar:

. AR ER

PEKING UNIVERSITY

However, for reasons of efficiency, it is important to factorise the
rules for expr and term:

Note:

i The symbol ¢ denotes the empty string.

(N »
0 AR ER

PEKING UNIVERSITY

It is now easy to translate the grammar into a parser that evaluates
expressions, by simply rewriting the grammar rules using the
parsing primitives.

That is, we have:

expr » term ('+' expr | £)

s AR ER

PEKING UNIVERSITY

term — factor ('*' term | &)

Factor ::= digit | '(' expr ")°

Finally, if we define

then we try out some examples:

g ¥ e KT

PEKING UNIVERSITY

VE Ak

13-1 Why does factorising the expression grammar make the
resulting parser more efficient?

13-2 Extend the expression parser to allow the use of subtraction
and division, based upon the following extensions to the
grammar:

(N »
. ARLTER

PEKING UNIVERSITY

