第十四章：Foldables and Friends

Monoids，Foldables，Traversals

－教材《Programming in Haskell》中关于Moniods的内容与GHC的实现并不完全一致
－我们按照 GHC 的实现进行讲解

Semigroup (半群)

Defined in Data.Semigroup

class Semigroup a where \# Source

The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:

Associativity

$$
x<>(y<>z)=(x<>y)<>z
$$

Since: base-4.9.0.0
Minimal complete definition

```
(<>)
```

Methods

Monoid（幺半群）

Defined in Data．Monoid

The class of monoids（types with an associative binary operation that has an identity）．Instances should satisfy the following：

Right identity

x ＜＞mempty $=\mathrm{x}$
Left identity
mempty <> x = x

Associativity

$\mathrm{x}<>(\mathrm{y}<>\mathrm{z})=(\mathrm{x}<>\mathrm{y})<>\mathrm{z}$（Semigroup law）

Concatenation

```
mconcat = foldr (<>) mempty
```

The method names refer to the monoid of lists under concatenation，but there are many other instances．

Some types can be viewed as a monoid in more than one way，e．g．both addition and multiplication on numbers．In such cases we often define newtypes and make those instances of Monoid，e．g．Sum and Product．

NOTE：Semigroup is a superclass of Monoid since base－4．11．0．0．
Minimal complete definition

Methods

```
mempty :: a
\＃Source
```


Identity of mappend

```
mappend :: a -> a -> a # Source
```


An associative operation

NOTE：This method is redundant and has the default implementation mappend $=(<>)$ since base－4．11．0．0．Should it be implemented manually，since mappend is a synonym for（＜＞），it is expected that the two functions are defined the same way．In a future GHC release mappend will be removed from Monoid．

```
mconcat : : [a] -> a
Source
```

Fold a list using the monoid．
For most types，the default definition for mconcat will be used，but the function is included in the class definition so that an optimized version can be provided for specific types．

List Monoid

$$
\begin{aligned}
& \text { instance Semigroup [a] where } \\
& -(<>)::[a] \rightarrow-\quad[\mathrm{a}] \rightarrow \text { [a] } \\
& (<>)=(++)
\end{aligned}
$$

Defined in Data.Semigroup

```
instance Monoid [a] where
    mempty :: [a]
    mempty = []
```

$$
\begin{aligned}
& >[1,2,3]<>[4,5,6] \\
& {[1,2,3,4,5,6]} \\
& >[1,2,3]<>\text { mempty } \\
& {[1,2,3]}
\end{aligned}
$$

Maybe Monoid

instance Semigroup a => Semigroup (Maybe a) where --(<>) :: Maybe a -> Maybe a -> Maybe a
Nothing $<>$ b $=b$
a $<>$ Nothing $=$ a
Just $a<>$ Just $b=$ Just ($a<>b)$
instance Semigroup a => Monoid (Maybe a) where -- mempty :: Maybe a mempty $=$ Nothing

Int Monoid

A particular type may give rise to a monoid in a number of different ways.

```
instance Semigroup Int where
    -- (<>) :: Int -> Int -> Int
    (<>) = (+)
instance Monoid Int where
    -- mempty :: Int
    mempty = 0
instance Semigroup Int where
-- (<>) :: Int -> Int -> Int
(<>) = (*)
instance Monoid Int where
-- mempty :: Int
mempty = 1
```

But, multiple instance declarations of the same type for the same class are not permitted in Haskell!

```
newtype Sum a = Sum a
        deriving (Eq, Ord, Show, Read)
getSum :: Sum a -> a
getSum (Sum \(x\) ) \(=x\)
instance Num a => Semigroup (Sum a) where
    -- (<>) :: Sum a -> Sum a -> Sum a
    Sum \(x\) <> Sum \(y=\operatorname{Sum}(x+y)\)
instance Num a => Monoid (Sum a) where
    -- mempty :: Sum a
    mempty = Sum 0
```

> mconcat [Sum 2, Sum 3, Sum 4]
Sum 9

```
newtype Product a = Product a
        deriving (Eq, Ord, Show, Read)
getProduct :: Product a -> a
getProduct (Product x) = x
instance Num a => Semigroup (Product a) where
    -- (<>) :: Product a -> Product a -> Product a
    Product x <> Product y = Product (x * y)
instance Num a => Monoid (Product a) where
    -- mempty :: Sum a
    mempty = Product 1
```

> mconcat [Product 2, Product 3, Product 4]
Product 24

```
newtype All = All Bool
        deriving (Eq, Ord, Show, Read)
getAll :: All a -> a
getAll (All x) = x
instance Semigroup (All) where
    -- (<>) :: All -> All -> All
    All x <> All y = All (x && y)
instance Monoid (All) where
    -- mempty :: All
    mempty = All True
```

[^0]```
newtype Any = Any Bool
 deriving (Eq, Ord, Show, Read)
getAny :: Any a -> a
getAny (Any x) = x
instance Semigroup (Any) where
 -- (<>) :: Any -> Any -> Any
 Any x <> Any y = Any (x || y)
instance Monoid (Any) where
 -- mempty :: Any
 mempty = Any False
```

> mconcat [Any False, Any False, Any False] Any False

Foldables

Fold provides a simple means of＂folding up＂a list using a monoid：combine all the values in a list to give a single value．

```
fold :: Monoid a => [a] -> a
fold [] = mempty
fold (x:xs) = x <> fold xs
```

Fold can also＇folding up＇a tree using a monoid．

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
 deriving Show
fold :: Monoid a => Tree a -> a
fold (Leaf x) = x
fold (Node l r) = fold l <> fold r
```

PEKING UNIVERSITY

```
class Foldable t where
 fold :: Monoid a => t a -> a
 foldMap :: Monoid b => (a -> b) -> t a -> b
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (b -> a ->> b) -> b ->> t a >> b
```

```
instance Foldable [] where
 -- fold :: Monoid a => [a] -> a
 fold [] = mempty
 fold (x:xs) = x 'mappend' fold xs
```

    -- foldMap :: Monoid b => (a -> b) -> [a] -> b
    foldMap _ [] = mempty
foldMap $f(x: x s)=f x$ 'mappend' foldMap f xs
-- foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ v [] = v
foldr $f v(x: x s)=f \times(f o l d r f v x s)$
> foldMap Sum [1..10] Sum 55
> foldMap Product
[1..10]
Product 3628800
-- foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ v [] = v
foldl $f v(x: x s)=$ foldl $f(f \vee x) x s$
-. (b $\rightarrow$ a $->$ b) $\rightarrow$ b $->$ [a] $\rightarrow b$
foldl _ v [] = v
foldl $f v(x: x s)=$ foldl $f(f v x) x s$
instance Foldable Tree where
-- fold :: Monoid a => Tree a -> a
fold (Leaf $x$ ) $=x$
fold (Node l r) = fold l 'mappend' fold r
-- foldMap :: Monoid b => (a -> b) -> Tree a -> b
foldMap $f($ Leaf $x)=f x$
foldMap $f$ (Node $l r$ ) $=$ foldMap $f(l$ 'mappend' foldMap $f r$
-- foldr :: ( a -> b $->$ b) -> b $\rightarrow$ Tree a $->$ b
foldr f $v($ Leaf $x)=f \times v$
foldr $f \vee($ Node $l r)=$ foldr $f(f o l d r f \vee r) l$
-- foldl :: (a -> b -> a) -> a -> Tree b -> a
foldl f $v($ Leaf $x)=f$ v
foldl $f v($ Node $l r)=f o l d l f(f o l d l f(l) r$

## Other Primitives and Defaults


foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
toList :: t a -> [a]

```
> null []
True
```

```
> null (Leaf 1)
```

False
> length [1..10]
10
> length (Node (Leaf 'a') (Leaf 'b'))
2

```
> foldr1 (+) [1..10]
```

55
> foldl1 (+) (Node (Leaf 1) (Leaf 2))
3

Foldable Class

## class Foldable $t$ where

$$
\begin{aligned}
& \text { fold :: Monoid a => t a } \rightarrow \text { a } \\
& \text { foldMap :: Monoid b => (a } \rightarrow \text { b) } \rightarrow \mathrm{t} \text { a } \rightarrow \mathrm{b} \\
& \text { foldr :: (a } \rightarrow \mathrm{b} \rightarrow \mathrm{~b}) \rightarrow \mathrm{b} \rightarrow \mathrm{t} \text { a } \rightarrow \mathrm{b} \\
& \text { foldl :: (b } \rightarrow \mathrm{a} \rightarrow \mathrm{~b}) \rightarrow \mathrm{b} \rightarrow \mathrm{t} \text { a } \rightarrow \mathrm{b}
\end{aligned}
$$

| Minimal complete definition | fold <br> foldMap f |
| :--- | :--- |
| foldMap \| foldmap id |  |
| foldr (mappend . f) mempty |  |
| toList | $=$ foldMap (Xx -> [x]) |

## Generic Functions

- The Foldable class helps us to define generic functions.

```
average :: [Int] -> Int
average ns = sum ns 'div` length ns
```

```
average :: Foldable t => t Int -> Int
average ns = sum ns 'div' length ns
```

```
> average [1..10]
5
> average (Node (Leaf 1) (Leaf 3))
```

and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All
or :: Foldable t => t Bool -> Bool
or = getAny . foldMap Any

```
> and [True,False,True]
False
> or (Node (Leaf True) (Leaf False))
True

\section*{Traversals}
－动机：generalizing map to deal with effects
\[
\begin{aligned}
& \operatorname{map}::(a->b)->[a] \rightarrow[b] \\
& \operatorname{map} g[]=[] \\
& \operatorname{map} g(x: x s)=g \times: \operatorname{map} g \times s
\end{aligned}
\]
traverse ：：（a－＞Maybe b）－＞［a］－＞Maybe［b］ traverse g［］＝pure［］
traverse \(\mathrm{g}(\mathrm{x}: \mathrm{xs})=\) pure（：）＜＊＞g x＜＊＞traverse g xs
```

dec :: Int -> Maybe Int
dec n = if n > 0 then Just ( }\textrm{n}-1
else Nothing

```
```

> traverse dec [1,2,3]
Just [0,1,2]

```
＞traverse dec \([2,1,0]\)
Nothing

\title{
class (Functor t, Foldable t) => Traversable t where traverse :: Applicative f => (a \(\rightarrow\) f b) -> t a \(\rightarrow\) f (t b)
}
instance Traversable [] where
-- traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse g [] = pure []
traverse \(g(x: x s)=\) pure (:) <*> g x <*> traverse g xs
```

> traverse dec (Node (Leaf 1) (Leaf 2))
Just (Node (Leaf 0) (Leaf 1))
> traverse dec (Node (Leaf 0) (Leaf 1))
Nothing

```

\section*{Other Primitives and Defaults}

In addition to the traverse primitive, the Traversable class also includes the following extra function and default definition:
```

sequenceA :: Applicative f => t (f a) -> f (t a)
sequenceA =
> sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]
> sequenceA [Just 1, Nothing, Just 3]
Nothing
> sequenceA (Node (Leaf (Just 1)) (Leaf (Just 2)))
Just (Node (Leaf 1) (Leaf 2))
> sequenceA (Node (Leaf (Just 1)) (Leaf Nothing))
Nothing

```

\section*{Other Primitives and Defaults}

In addition to the traverse primitive, the Traversable class also includes the following extra function and default definition:
```

sequenceA :: Applicative f => t (f a) -> f (t a)
sequenceA = traverse id

```
```

> sequenceA [Just 1, Just 2, Just 3]
Just [1, 2,3]
> sequenceA [Just 1, Nothing, Just 3]
Nothing
> sequenceA (Node (Leaf (Just 1)) (Leaf (Just 2)))
Just (Node (Leaf 1) (Leaf 2))
> sequenceA (Node (Leaf (Just 1)) (Leaf Nothing))
Nothing

```

\section*{Other Primitives and Defaults}

Conversely, the class declaration also includes a default definition for traverse in terms of sequenceA, which expresses that to traverse a data structure using an effectful function we can first apply the function to each element using fmap, and then combine all the effects using sequenceA:
```

-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse g =

```

\section*{Other Primitives and Defaults}

Conversely, the class declaration also includes a default definition for traverse in terms of sequenceA, which expresses that to traverse a data structure using an effectful function we can first apply the function to each element using fmap, and then combine all the effects using sequenceA:
```

-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse g = sequenceA . fmap g

```

14-1 Show how the Maybe type can be made foldable and traversable, by giving explicit definitions for fold, foldMap, foldr, foldl and traverse.

14-2 In a similar manner, show how the following type of binary trees with data in their nodes can be made into a foldable and traversable type:
\[
\begin{gathered}
\text { data Tree } a=\text { Leaf } \left\lvert\, \begin{array}{c}
\text { Node (Tree a) a (Tree a) } \\
\text { deriving Show }
\end{array}\right.
\end{gathered}
\]

PEKING UNIVERSITY```

[^0]: mconcat [All True, All True, All True] All True

