
第⼗四章：Foldables and Friends

Monoids, Foldables, Traversals 

1



2

• 教材《Programming in Haskell》中关于Moniods

的内容与GHC的实现并不完全⼀致
• 我们按照GHC的实现进⾏讲解



3

Semigroup (半群) Defined in Data.Semigroup



Monoid (⼳半群) Defined in Data.Monoid



instance Monoid [a] where
-- mempty :: [a]
mempty = []

List Monoid

Defined in Data.Semigroup
instance Semigroup [a] where

-- (<>) :: [a] -> [a] -> [a]
(<>) = (++)

Defined in Data.Monoid

> [1,2,3] <> [4,5,6] 
[1,2,3,4,5,6]

> [1,2,3] <> mempty
[1,2,3]



instance Semigroup a => Monoid (Maybe a) where
-- mempty :: Maybe a
mempty = Nothing

Maybe Monoid

instance Semigroup a => Semigroup (Maybe a) where
--(<>) :: Maybe a -> Maybe a -> Maybe a
Nothing <> b       = b
a       <> Nothing = a
Just a  <> Just b  = Just (a <> b)

Defined in
Data.Semigroup

Defined inData
.Monoid



instance Semigroup Int where
-- (<>) :: Int -> Int -> Int
(<>) = (+)

instance Monoid Int where
-- mempty :: Int
mempty = 0

Int Monoid
A particular type may give rise to a monoid in a number of different ways. 

instance Semigroup Int where
-- (<>) :: Int -> Int -> Int
(<>) = (*)

instance Monoid Int where
-- mempty :: Int
mempty = 1

But, multiple instance declarations of the same type for the same class are not permitted in Haskell!



newtype Sum a = Sum a
deriving (Eq, Ord, Show, Read)

getSum :: Sum a -> a
getSum (Sum x) = x

instance Num a => Semigroup (Sum a) where
-- (<>) :: Sum a -> Sum a -> Sum a
Sum x <> Sum y = Sum (x+y)

instance Num a => Monoid (Sum a) where
-- mempty :: Sum a
mempty = Sum 0

> mconcat [Sum 2, Sum 3, Sum 4]
Sum 9

Defined in Data.Semigroup, Data.Monoid



newtype Product a = Product a
deriving (Eq, Ord, Show, Read)

getProduct :: Product a -> a
getProduct (Product x) = x

instance Num a => Semigroup (Product a) where
-- (<>) :: Product a -> Product a -> Product a
Product x <> Product y = Product (x * y)

instance Num a => Monoid (Product a) where
-- mempty :: Sum a
mempty = Product 1

Defined in Data.Semigroup, Data.Monoid

> mconcat [Product 2, Product 3, Product 4]
Product 24



Defined in Data.Semigroup, Data.Monoid

newtype All = All Bool
deriving (Eq, Ord, Show, Read)

getAll :: All a -> a
getAll (All x) = x

instance Semigroup (All) where
-- (<>) :: All -> All -> All
All x <> All y = All (x && y)

instance Monoid (All) where
-- mempty :: All
mempty = All True



Defined in Data.Semigroup, Data.Monoid

newtype Any = Any Bool
deriving (Eq, Ord, Show, Read)

getAny :: Any a -> a
getAny (Any x) = x

instance Semigroup (Any) where
-- (<>) :: Any -> Any -> Any
Any x <> Any y = Any (x || y)

instance Monoid (Any) where
-- mempty :: Any
mempty = Any False



Foldables

12

fold :: Monoid a => [a] -> a
fold [] = mempty
fold (x:xs) = x <> fold xs

Fold provides a simple means of “folding up” a list using a 
monoid:  combine all the values in a list to give a single value.



13

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Show

fold :: Monoid a => Tree a -> a
fold (Leaf x) = x
fold (Node l r) = fold l <> fold r

Fold can also ‘folding up’ a tree using a monoid.



Foldable Class

14

class Foldable t where
fold :: Monoid a => t a -> a
foldMap :: Monoid b => (a -> b) -> t a -> b
foldr :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b

Defined in Data.Foldable



instance Foldable [] where
-- fold :: Monoid a => [a] -> a
fold [] = mempty
fold (x:xs) = x ‘mappend‘ fold xs

-- foldMap :: Monoid b => (a -> b) -> [a] -> b
foldMap _ [] = mempty
foldMap f (x:xs) = f x ‘mappend‘ foldMap f xs

-- foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

-- foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

> foldMap Sum [1..10]
Sum 55

> foldMap Product 
[1..10]
Product 3628800



instance Foldable Tree where
-- fold :: Monoid a => Tree a -> a
fold (Leaf x) = x
fold (Node l r) = fold l ‘mappend‘ fold r

-- foldMap :: Monoid b => (a -> b) -> Tree a -> b
foldMap f (Leaf x) = f x
foldMap f (Node l r) = foldMap f l ‘mappend‘ foldMap f r

-- foldr :: (a -> b -> b) -> b -> Tree a -> b
foldr f v (Leaf x) = f x v
foldr f v (Node l r) = foldr f (foldr f v r) l

-- foldl :: (a -> b -> a) -> a -> Tree b -> a
foldl f v (Leaf x) = f v x
foldl f v (Node l r) = foldl f (foldl f v l) r



Other Primitives and Defaults 

foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a

toList :: t a -> [a]



Foldable Class
class Foldable t where

fold :: Monoid a => t a -> a
foldMap :: Monoid b => (a -> b) -> t a -> b
foldr :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b

Defined in Data.Foldable



Generic Functions

• The Foldable class helps us to define generic functions.

19

average :: [Int] -> Int
average ns = sum ns ‘div‘ length ns

average :: Foldable t => t Int -> Int
average ns = sum ns ‘div‘ length ns

> average [1..10]
5

> average (Node (Leaf 1) (Leaf 3))
2



and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All

or :: Foldable t => t Bool -> Bool
or = getAny . foldMap Any

> and [True,False,True]
False

> or (Node (Leaf True) (Leaf False))
True



Traversals
• 动机：generalizing map to deal with effects

map :: (a -> b) -> [a] -> [b]
map g [] = []
map g (x:xs) = g x : map g xs

traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
traverse g [] = pure []
traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs



22

dec :: Int -> Maybe Int
dec n = if n > 0 then Just (n-1) 

else Nothing

> traverse dec [1,2,3]
Just [0,1,2]

> traverse dec [2,1,0]
Nothing



23

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

instance Traversable [] where
-- traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse g [] = pure []
traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs

Defined in Data.Traversable



24

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b)
traverse g (Leaf x)   = Leaf <$> g x
traverse g (Node l r) = Node <$> traverse g l <*> traverse g r

> traverse dec (Node (Leaf 1) (Leaf 2))
Just (Node (Leaf 0) (Leaf 1))

> traverse dec (Node (Leaf 0) (Leaf 1))
Nothing



Other Primitives and Defaults 



Other Primitives and Defaults 



Other Primitives and Defaults 



Other Primitives and Defaults 



作业

Show how the Maybe type can be made foldable and 
traversable, by giving explicit definitions for fold, 
foldMap, foldr, foldl and traverse.

In a similar manner, show how the following type of 
binary trees with data in their nodes can be made into a 
foldable and traversable type:

data Tree a = Leaf | Node (Tree a) a (Tree a)
deriving Show

29

14-1

14-2


