%+

=~ ,

T HE A . Lazy Evaluation

T, TTHE R
P RE E N i Y
MR BEHEFITE

%y, uwp&"; e } \g
S 5 X\J‘d
759%

PEKING UNIVERSITY

& : function application

INc (2%3) INC (2*%3)

= {applying *} = {applyinginc}
inc 6 (2%3) +1

= {applyinginc} = {applying *}
6+1 6+1

= {applying +} = {applying +}
7 7

Any two different ways of evaluating the same expression will always
produce the same final value, provided that they both terminate.

R

e Reducible expression (redex)

— —A*function application”

— #Rix Ak ik Xisreducible, B 2+ XL A~ “function application” %=
P A % a2 S
e 5. —/~redex P AL B A F ks E — /K %/ redex

inc (2x3)

e Reduce®y F B&

— 1 A % ¥ (innermost)
— 4 F 84 (outermost)

mult :: (Int,Int) -> Int

& A R mult (x,y) = x *y N LS

mult (1+2, 2+3) mult (1+2, 2+3)

{ applying the first + } — { applying mult }
mult (3, 2+3) (1+2) * (2+3)

{ applying + } = { applying the first + }
mult (3, 5) 3 * (2+3)

{ applying mult } = { applying + }
3 *x 5 3 ¥ b

{ applying * } = { applying * }
15 15

E&: 4k % built-in functions (#]4m *, +) Z R TN A KL E Lk KAL

shre MMSOSUE re

mult (1+2) (2+3)

{ applying the first + }
mult 3 (2+3)

{ applying mult }
(\y => 3 x y) (2+3)

{ applying + }
(\y => 3 xvy) 5

{ applying the lambda }
3 x5

{ applying * }
15

mult (1+2) (2+3)
{ applying the mult}
(\y — (1+42) *x y) (2+43)
{ applying the lambda }
(1+2) * (2+3)
{ applying the first + }
3 x (2+3)
{ applying + }
3 % 5
{ applying * }
15

e Note: the only operation that can be performed on a
function is that of applying it to an argument.

(\x => 1 +2) 0

{ applying the lambda }
1 + 2

{ applying + }
3

The function\x ->1 + 2 is deemed to be black box, even
though its body contains the redex 1 + 2.

:: atx.J’

PEKING UNIVERSITY

Using innermost and outermost evaluation, but not within

ambda expressions, is normally referred to as call-by-value
and call-by-name evaluation, respectively.

Termination (Z& k)

inf

applying inf }

1 + inf

applying inf }

1 + (1 + inf)
applying inf }

1+ (1 + (1 + inf))
applying inf }

[
~

[
~

[
~

[
~

ST P

PEKING UNIVERSITY

Call by value Call by name
fst (@, inf) fst (@, inf)

= { applying inf } = { applying fst }
fst (0, 1 + inf) 0

= { applying inf }
fst (0, 1 + (1 + inf)) If there exists any evaluation

{ applying inf } sequence that terminates for a given
. expression, then call-by-name
fst (@.’ 1 .+ (1 + (1 + 1inf))) evaluation will also terminate for this
1 applying inf } expression, and produce the same
: final result.

Number of reductions (F Z#t45 % 'V Jkreduction, F 48 7 KAL)

Call by value - Call by name
square (1+2) square (1+2)

= { applying + } = { applying square }
square 3 (142) *x (1+2)

= { applying square } = { applying the first + }
3 x 3 3 x (1+2)

= { applying x } = { applying + }
9 3 % 3

= { applying * }
Arguments are evaluated precisely once using 9

call-by-value evaluation, but may be evaluated
many times using call-by-name.

Lazy Evaluation

ne use of call-by-name evaluation in conjunction with sharing

square (1+2)

{ applying square }

fad

1+2

{ applying + }

//\

® kX o

{ applying * }

Infinite structutres (IR Z5#))

ones head ones
{ applying ones } { applying ones }
1 : ones head (1 : ones)
{ applying ones } { applying head }
1 : (1 : ones) 1

{ applying ones }
1 : (1 : (1 : ones))
{ applying ones }

Modular Programming o JEIEFndH 45T

repeat

6

7
7
7

@

e

e ©

11
11
11
11

13
13
13
13

[
ot

|

Strict application of functions

« Haskell uses lazy evaluation by default, but also provides a special strict
version of function application, written as $!
* An expression of the form ¥ $! X is only a redex once evaluation of the

argument x, using lazy evaluation as normal, has reached the point where it is
known that the result is not an undefined value, at which point the expression

can be reduced to the normal application f X

Strict application of functions

* An expression of the form ¥ $! X is only a redex once evaluation of the
argument x, using lazy evaluation as normal, has reached the point where it is
known that the result is not an undefined value, at which point the expression
can be reduced to the normal application f X

square $! (1+2)

{ applying + }
square $! 3

{ applying $! }
square 3

{ applying square }
3 *x 3

{ applying * }

|

Strict application of functions

« If T isa curried function with two arguments, an application of the
form f x y can be modified to have three different behaviours:

(f $! x) y forces top-level evaluation of x
(f x) $! y forces top-level evaluation of y

(f $! x) $! y forces top-level evaluation of x and y

Strict application of functions

* In Haskell, strict application is mainly used to
improve the space performance of programs

Int -> [Int] -> Int
sumwith v [] = v

sumwith ::

sumwith v (x:xs) = sumwith (v+x) xs

sumwith 0 [1,2,3]

{ applying sumwith }
sumwith (0+1) [2,3]

{ applying sumwith }
sumwith ((0+1)+2) [3]

{ applying sumwith }
sumwith (((0+1)+2)+3) []

{ applying sumwith }
((0+1)+2)+3

{ applying the first + }
(1+2)+3

{ applying the first + }
3+3

{ applying + }

sumwith :: Int -> [Int] -> Int sumwith v [] = v

sumwith v [] =V sumwith v (x:xs) = (sumwith $! (v+x)) xs
sumwith v (x:xs) = sumwith (v+x) xs sumwith 0 [1.2.3]

{ applying sumwith }
(sumwith $! (0+1)) [2,3]

sumwith 0 [1,2,3]

= { applying sumwith } _ { applying + }
sumwith (0+1) [2,3] (sumwith $! 1) [2,3]
= { applying sumwith } B { applying $! }

sumwith 1 [2,3]

sumwith ((O"‘l) +2) [3] — { applying sumwith }
= { applying sumwith } (sumwith $! (1+2)) [3]
sumwith (((0+1)+2)+3) [] = { applying + }

(sumwith $! 3) [3]

= { applying sumwith } .
= { applying $! }

((0+1)+2)+3 e 5 ()
= { applying the first + } = { applying sumwith }
(1+2)+3 (sumwith $! (3+3)) []
= applying the first + = { applying + }
3+3{ PPLyIns } (sumwith $! 6) []

_ = { applying $! }
= { applying + } sumwith 6 []
{ applying sumwith }

(0))
[

6

Strict application of functions

Generalising from the above example, the library Data.Foldable provides a
strict version of the higher-order library function foldl that forces evaluation of
its accumulator prior to processing the tail of the list:

foldl’ :: (a -=> b ->a) -> a -> [b] -> a
foldl’ f v [] = v
foldl’ f v (x:xs8) = ((foldl’ f) $! (f v x)) xs

sumwith = foldl’ (+)

* However, strict application is not a silver bullet that automatically improves the
space behaviour of Haskell programs.

* Even for relatively simple examples, the use of strict application is a specialist
topic that requires careful consideration of the behaviour of lazy evaluation.

VE Ak

21

15-1

Using a list comprehension, define an expression fibs ::
[Integer] that generates the infinite sequence of
Fibonacci numbers

0,1,1,2,3,5, 8,13, 21, 34, ...
using the following simple procedure:
e the first two numbers are o and 1;
e the nextisthe sum of the previous two;

e returnto the second step.

Hint: make use of the library functions zip and tail. Note that
numbers in the Fibonacci sequence quickly become large, hence
the use of the type Integer of arbitrary-precision integers above.

e g > ¥

PEKING UNIVERSITY

VE Ak

15-2 Newton’s method for computing the square root of a (non-
negative) floating-point number n can be expressed as follows:

e start with aninitial approximation to the result;

e giventhe current approximation a, the next approximation is
defined by the function nexta =(a + nfa) [2;

e repeatthe second step until the two most recent
approximations are within some desired distance of one
another, at which point the most recent value is returned as the
result.

Define a function sqroot :: Double -> Double that implements this
procedure. Hint: first produce an infinite list of approximations
using the library function iterate. For simplicity, take the number
1.0 as the initial approximation, and 0.00001 as the distance value.

22 ae‘é*g

PEKING UNIVERSITY

