
第⼗五章：计算模型：Lazy Evaluation

计算，计算策略
⽆限数据，模块化程序设计

应用：素数序列计算
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计算：function application

inc :: Int -> Int
inc n = n + 1

inc (2*3)
= { applying * }

inc 6
= { applying inc }

6 + 1
= { applying + }

7

inc (2*3)
= { applying inc }

(2*3) + 1
= { applying * }

6 + 1
= { applying + }
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Any two different ways of evaluating the same expression will always 
produce the same final value, provided that they both terminate. 



计算策略

• Reducible expression  (redex)
– ⼀个“function application”
– 称这个表达式 is reducible，因为可以将这个 “function application”替
换为对应的定义

• 注意：⼀个 redex 中可能包含更细粒度⼀个或多个 redex

• Reduce的策略
– 最内策略 (innermost)
– 最外策略 (outermost)

inc (2*3)



最内策略 最外策略

注意：很多 built-in functions（例如 *, +）要求它们的参数必须首先被求值



mult :: Int -> Int -> Int
mult x = \y -> x * y

mult (1+2) (2+3)
= { applying the first + }

mult 3 (2+3)
= { applying mult }

(\y -> 3 * y) (2+3)
= { applying + }

(\y -> 3 * y) 5
= { applying the lambda }

3 * 5
= { applying * }

15

最内策略

mult (1+2) (2+3)
= { applying the mult}

(\y -> (1+2) * y) (2+3)
= { applying the lambda }

(1+2) * (2+3)
= { applying the first + }

3 * (2+3)
= { applying + }

3 * 5
= { applying * }

15

最外策略



• Note: the only operation that can be performed on a 
function is that of applying it to an argument.
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(\x -> 1 + 2) 0
= { applying the lambda }

1 + 2
= { applying + }

3

The function \x -> 1 + 2 is deemed to be black box, even 
though its body contains the redex 1 + 2.
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Using innermost and outermost evaluation, but not within
lambda expressions, is normally referred to as call-by-value
and call-by-name evaluation, respectively.



Termination (终⽌性)
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inf :: Int
inf = 1 + inf

inf
= { applying inf }

1 + inf
= { applying inf }

1 + (1 + inf)
= { applying inf }

1 + (1 + (1 + inf))
= { applying inf }

…



终⽌性

fst (0, inf)
= { applying inf }

fst (0, 1 + inf)
= { applying inf }

fst (0, 1 + (1 + inf))
= { applying inf }

fst (0, 1 + (1 + (1 + inf)))
= { applying inf }

⋮

fst (0, inf)
= { applying fst }

0

Call by value Call by name

If there exists any evaluation 
sequence that terminates for a given 
expression, then call-by-name 
evaluation will also terminate for this 
expression, and produce the same 
final result.

inf :: Int
inf = 1 + inf



Number of reductions (需要进⾏多少次reduction，才能完成求值) 

square :: Int -> Int
square n = n * nsquare (1+2)

= { applying + }
square 3

= { applying square }
3 * 3

= { applying * }
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square (1+2)
= { applying square }

(1+2) * (1+2)
= { applying the first + }

3 * (1+2)
= { applying + }

3 * 3
= { applying * }
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Call by value Call by name

Arguments are evaluated precisely once using 
call-by-value evaluation, but may be evaluated 
many times using call-by-name.



Lazy Evaluation

• The use of call-by-name evaluation in conjunction with sharing



Infinite structures (⽆限结构)

ones :: [Int]
ones = 1 : ones

ones
= { applying ones }

1 : ones
= { applying ones }

1 : (1 : ones)
= { applying ones }

1 : (1 : (1 : ones))
= { applying ones }

..

head ones
= { applying ones }

head (1 : ones)
= { applying head }
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Modular Programming • 将数据和控制分开

replicate :: Int -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x

replicate :: Int -> a -> [a]
replicate n = take n . repeat

repeat :: a -> [a]
repeat x = x : repeat x



应用例：素数序列计算

primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p /= 0]



Strict application of functions

• Haskell uses lazy evaluation by default, but also provides a special strict
version of function application, written as $!

• An expression of the form f $! x is only a redex once evaluation of the 
argument x, using lazy evaluation as normal, has reached the point where it is 
known that the result is not an undefined value, at which point the expression 
can be reduced to the normal application f x 



• An expression of the form f $! x is only a redex once evaluation of the 
argument x, using lazy evaluation as normal, has reached the point where it is 
known that the result is not an undefined value, at which point the expression 
can be reduced to the normal application f x 

Strict application of functions



Strict application of functions

• If f is a curried function with two arguments, an application of the 
form f x y can be modified to have three different behaviours:



Strict application of functions

• In Haskell, strict application is mainly used to 
improve the space performance of programs





Strict application of functions

• However, strict application is not a silver bullet that automatically improves the 
space behaviour of Haskell programs. 

• Even for relatively simple examples, the use of strict application is a specialist 
topic that requires careful consideration of the behaviour of lazy evaluation.



作业

Using a list comprehension, define an expression fibs :: 
[Integer] that generates the infinite sequence of 
Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
using the following simple procedure:
• the first two numbers are 0 and 1;
• the next is the sum of the previous two;
• return to the second step.
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Hint: make use of the library functions zip and tail. Note that 
numbers in the Fibonacci sequence quickly become large, hence 
the use of the type Integer of arbitrary-precision integers above.



作业

Newton’s method for computing the square root of a (non-
negative) floating-point number n can be expressed as follows:
• start with an initial approximation to the result;
• given the current approximation a, the next approximation is 

defined by the function next a = (a + n/a) / 2;
• repeat the second step until the two most recent 

approximations are within some desired distance of one 
another, at which point the most recent value is returned as the 
result.

Define a function sqroot :: Double -> Double that implements this 
procedure. Hint: first produce an infinite list of approximations 
using the library function iterate. For simplicity, take the number 
1.0 as the initial approximation, and 0.00001 as the distance value.
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