Adapted from Graham'’s Lecture slides.

A R LA R B SUAT R 3K
FHARBEA, BARER
Lambdak ik &X,, Sectioni? 5

1 25 Jei Xk

PEKING UNIVERSITY

AR @A kB ST R 2K

7] AR A R — AN R R AR H

even :: Int =2 Bool
evenn=...

PIAL R AN RS B S

recip :: Float = Float
recip x =

5] A4 47*-/\ 75 A En gy IF

splitAt :: Int = [a] =2 ([a], [a])
splitAtnxs = ...

Z -
:Ji -l
390

atx.«)’w

PEKING UNIVERSITY

AR @A kB ST R 2K

7] AR A R — AN R R AR H

even :: Int =2 Bool
evenn=n'‘mod 2==0

PIAL R AN RS B S

recip :: Float = Float
recip X = 1/x

P AN AL By T

splitAt :: Int = [a] =2 ([a], [a])
splitAt n xs = (take n xs, drop n xs)

Z -
:ai -l
390

atx«)’w

PEKING UNIVERSITY

R AR IA X

As in most programming languages, functions can be defined
using conditional expressions.

N

abs takes an integer n and returns n if it is non-
negative and -n otherwise.

A »: at‘ﬁJ

PEKING UNIVERSI'[Y

Conditional expressions can be nested:

Note:

B In Haskell, conditional expressions must always have an else
branch, which avoids any possible ambiguity problems with
nested conditionals.

5 4y Jei kY

5% PEKING UNIVERSITY

Guarded Equations

As an alternative to conditionals, functions can also be defined
using guarded equations.

P50 enerwise 2 T
N

[As previously, but using guarded equations.]

6 :: atx‘J’

PEKING UNIVERSITY

Guarded equations can be used to make definitions involving
multiple conditions easier to read:

Note:

§ The catch all condition otherwise is defined in the prelude by
otherwise =True.

4 ~: akﬁJ

PEKING UNIVERSI’IY

Pattern Matching

Many functions have a particularly clear definition using pattern
matching on their arguments.

/T

[not maps False to True, and True to False.]

8 :: at$J’

PEKING UNIVERSITY

Functions can often be defined in many different ways using
pattern matching. For example

can be defined more compactly by

’ 7y Jes kY

PEKING UNIVERSITY

However, the following definition is more efficient, because it
avoids evaluating the second argument if the first argument is
False:

Note:

B The underscore symbol _is a wildcard pattern that matches
any argument value.

10 :: atx\J’)7

PEKING UNIVERSITY

B Patterns are matched in order. For example, the following
definition always returns False:

§ Patterns may not repeat variables. For example, the
following definition gives an error:

11 »: at‘ﬁJ

PEKING UNIVERSI'[Y

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[Veﬁs\l:(z:e:(zf:[]»).]

PELIE >
1 oy Jei XS

PEKING UNIVERSITY

Functions on lists can be defined using x:xs patterns.

T

head and tail map any non-empty list to its first and
remaining elements.

13 2y Jei i

PEKING UNIVERSITY

Note:

B Xx:xs patterns only match non-empty lists:

B x:xs patterns must be parenthesised, because application has
priority over (:). For example, the following definition gives
an error:

head xi_ = x
14 »: at‘ﬁJ

PEKING UNIVERSI'[Y

Tuple Patterns

A tuple of patterns is itself a pattern, which
matches any tuple of the same arity whose

components all match the corresponding patterns
in order.

15

So“N"’ew » w
7Y i 2

PEKING UNIVERSITY

Lambda = i X

Functions can be constructed without naming the functions by
using lambda expressions.

the nameless function that takes a number x and
returns the result x + x.

1 :: akx\)

PEKING UNIVERSITY

Note:

B The symbol X is the Greek letter lambda, and is typed at the
keyboard as a backslash\.

§ In mathematics, nameless functions are usually denoted
using the — symbol, as in x+— x + x.

§ In Haskell, the use of the A symbol for nameless functions
comes from the lambda calculus, the theory of functions on
which Haskell is based.

17

7§ ez i
LA 5795

PEKING UNIVERSITY

Why Are Lambda’s Useful?

Lambda expressions can be used to give a formal meaning to
functions defined using currying.

For example:

means
8 AL

PEKING UNIVERSITY

Lambda expressions can be used to avoid naming functions
that are only referenced once.

For example:

can be simplified to

19 2y Jei i

5e PEKING UNIVERSITY

Operator Sections

An operator written between its two arguments can be
converted into a curried function written before its two
arguments by using parentheses.

For example:

20 :: at$J

PEKING UNIVERSI’[Y

This convention also allows one of the arguments of the
operator to be included in the parentheses.

For example:

21 »: ;)\:g;J'

PEKING UNIVERSI'[Y

In general, if @ is an operator then functions of the form (@), (x®)
and (®y) are called sections.

(@) =\x->(y->x®D vy)

xX@)=\y->xDPy

(By)=\Xx->xDBy

VE R
e ST RFfra2>b>c, f 7 4 operator k& JH:

fxy=x'fly
22 akx‘) >4

PEKING UNIVERSITY

Why Are Sections Useful?

Useful functions can sometimes be constructed in a simple way
using sections. For example:

- successor function
- reciprocation function
- doubling function

- halving function

o ::)ﬁx«)’

PEKING UNIVERSITY

VE Ak

4-1

24

Consider a function safetail that behaves in the same way as
tail, except that safetail maps the empty list to the empty
list, whereas tail gives an error in this case. Define safetail
using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function null :: [a] » Bool can be used to
testif a list is empty.

WD) ¥ 57 o
7508

PEKING UNIVERSITY

26

The Luhn algorithm is used to check bank card numbers for simple errors

such as mistyping a digit, and proceeds as follows:

* consider each digit as a separate number;

* moving left, double every other number from the second last (A4 &
o, ABBAL G H T R2)

* subtract g from each number that is now greater than g; add all the
resulting numbers together;

 ifthe totalis divisible by 10, the card number is valid.

Define a function luhn :: Int -> Int -> Int -> Int -> Bool that decides if a four-
digit bank card number is valid. For example:

>luhn 17 8 4
True

>luhn 4 7 8 3
False”

NEES

PEKING UNIVERSITY

