Adapted from Graham＇s Lecture slides．

第四章：函数定义

利用现有函数定义新函数条件表达式，模式匹配 Lambda表达式，Section记号

利用已有函数定义新函数

－问题：判定一个整数是不是偶数。 even ：：Int \rightarrow Bool even $\mathrm{n}=\ldots$
－问题：求一个浮点数的倒数 recip ：：Float \rightarrow Float recip $x=\ldots$
－问题：将一个序列在位置 n 分开 splitAt ：：Int \rightarrow［a］\rightarrow（［a］，［a］） splitAt n xs＝．．．

利用已有函数定义新函数

－问题：判定一个整数是不是偶数。
even ：：Int \rightarrow Bool
even $n=n ' m o d ` 2=0$
－问题：求一个浮点数的倒数 recip ：Float \rightarrow Float recip $x=1 / x$
－问题：将一个序列在位置n分开 splitAt ：：Int \rightarrow［a］\rightarrow（［a］，［a］）
splitAt $\mathrm{nxs}=($ take $\mathrm{n} x$ s，drop $\mathrm{n} \times \mathrm{s}$ ）

条件表达式

As in most programming languages，functions can be defined using conditional expressions．

```
abs :: Int }->\mathrm{ Int
abs n = if n \geq 0 then n else - n
```

abs takes an integer n and returns n if it is non－ negative and－n otherwise．

Conditional expressions can be nested:

$$
\begin{aligned}
& \text { signum }: \text { Int } \rightarrow \text { Int } \\
& \text { signum } n=\text { if } n<0 \text { then }-1 \text { else } \\
& \text { if } n==0 \text { then } 0 \text { else } 1
\end{aligned}
$$

Note:

- In Haskell, conditional expressions must always have an else branch, which avoids any possible ambiguity problems with nested conditionals.

Guarded Equations

As an alternative to conditionals, functions can also be defined using guarded equations.

$$
\begin{array}{l|l}
\text { abs } n & n \geq 0 \quad=n \\
& \text { otherwise }=-n
\end{array}
$$

As previously, but using guarded equations.

Guarded equations can be used to make definitions involving multiple conditions easier to read:

$$
\begin{array}{l|ll}
\text { signum } n & n<0 & =-1 \\
& n=0 & =0 \\
& \text { otherwise } & =1
\end{array}
$$

Note:

- The catch all condition otherwise is defined in the prelude by otherwise = True.

Pattern Matching

Many functions have a particularly clear definition using pattern matching on their arguments.

> not $::$ Bool \rightarrow Bool
> not False $=$ True
> not True $=$ False

Functions can often be defined in many different ways using pattern matching．For example

$$
\begin{aligned}
& \text { (\&\&) :: Bool } \rightarrow \text { Bool } \rightarrow \text { Bool } \\
& \text { True \&\& True }=\text { True } \\
& \text { True \&\& False }=\text { False } \\
& \text { False \&\& True }=\text { False } \\
& \text { False \&\& False }=\text { False }
\end{aligned}
$$

can be defined more compactly by

$$
\begin{aligned}
\text { True \&\& True } & =\text { True } \\
\text { _ \&\& _ } & =\text { False }
\end{aligned}
$$

However, the following definition is more efficient, because it avoids evaluating the second argument if the first argument is False:

> True $\& \& b=b$ False $\& \& \quad=$ False

Note:

- The underscore symbol _ is a wildcard pattern that matches any argument value.
- Patterns are matched in order. For example, the following definition always returns False:

$$
\begin{array}{ll}
-\quad \& \& & =\text { False } \\
\text { True } \& \& & \text { True }
\end{array}=\text { True }
$$

- Patterns may not repeat variables. For example, the following definition gives an error:

$$
\begin{aligned}
& b \& \& b=b \\
& -\& \&-=F a l s e
\end{aligned}
$$

List Patterns

Internally, every non-empty list is constructed by repeated use of an operator (:) called "cons" that adds an element to the start of a list.

$$
[1,2,3,4]
$$

Means 1:(2:(3:(4:[]))).

Functions on lists can be defined using $x: x s$ patterns.

$$
\begin{aligned}
& \text { head : : [a] } \rightarrow \text { a } \\
& \text { head }(x:-)=x \\
& \operatorname{tai} 1::[a] \rightarrow[a] \\
& \operatorname{tai} 1(-x s)=x s
\end{aligned}
$$

head and tail map any non-empty list to its first and remaining elements.

Note:

- $\mathrm{x}: \mathrm{xs}$ patterns only match non-empty lists:

```
> head []
*** Exception: empty list
```

- x:xs patterns must be parenthesised, because application has priority over (:). For example, the following definition gives an error:
head $x:-=x$

Tuple Patterns

A tuple of patterns is itself a pattern, which matches any tuple of the same arity whose components all match the corresponding patterns in order.

$$
\begin{aligned}
& \text { fst :: (a,b) -> a } \\
& \text { fst }(x,-)=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { snd :: }(a, b)->b \\
& \text { snd }(-, y)=y
\end{aligned}
$$

Lambda 表达式

Functions can be constructed without naming the functions by using lambda expressions．

$$
\lambda x \rightarrow x+x
$$

the nameless function that takes a number x and returns the result $\mathrm{x}+\mathrm{x}$ ．

Note:

- The symbol λ is the Greek letter lambda, and is typed at the keyboard as a backslash \.

I In mathematics, nameless functions are usually denoted using the \mapsto symbol, as in $\mathrm{x} \mapsto \mathrm{x}+\mathrm{x}$.

- In Haskell, the use of the λ symbol for nameless functions comes from the lambda calculus, the theory of functions on which Haskell is based.

Why Are Lambda＇s Useful？

Lambda expressions can be used to give a formal meaning to functions defined using currying．

For example：

$$
\text { add } x y=x+y
$$

means

$$
\text { add }=\lambda x \rightarrow(\lambda y \rightarrow x+y)
$$

Lambda expressions can be used to avoid naming functions that are only referenced once.

For example:

$$
\begin{aligned}
& \text { odds } n=\operatorname{map}^{\text {where }}[0 . . n-1] \\
& \\
& \qquad \mathrm{f} x=x^{* 2}+1
\end{aligned}
$$

can be simplified to

$$
\text { odds } n=\operatorname{map}(\lambda x \rightarrow x * 2+1)[0 . . n-1]
$$

Operator Sections

An operator written between its two arguments can be converted into a curried function written before its two arguments by using parentheses.

For example:

$$
\begin{array}{ll}
> & 1+2 \\
3 & \\
> & (+) \\
3 &
\end{array}
$$

This convention also allows one of the arguments of the operator to be included in the parentheses.

For example:

In general，if \oplus is an operator then functions of the form (\oplus) ，$(x \oplus)$ and $(\oplus y)$ are called sections．

$$
\begin{aligned}
& (\oplus)=\mid x->(\backslash y->x \oplus y) \\
& (x \oplus)=\mid y->x \oplus y \\
& (\oplus y)=\mid x->x \oplus y
\end{aligned}
$$

注：
－对于函数 $f:: a \rightarrow b \rightarrow c$ ，＇f＇可以作为operator 来用：

$$
f x y=x^{\prime} f^{\prime} y
$$

Why Are Sections Useful？

Useful functions can sometimes be constructed in a simple way using sections．For example：
（1＋）－successor function
（1／）－reciprocation function
（＊2）－doubling function
（／2）－halving function

作业

4-1 Consider a function safetail that behaves in the same way as tail, except that safetail maps the empty list to the empty list, whereas tail gives an error in this case. Define safetail using:
(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function null :: [a] Bool can be used to test if a list is empty.

4－2 The Luhn algorithm is used to check bank card numbers for simple errors such as mistyping a digit，and proceeds as follows：
－consider each digit as a separate number；
－moving left，double every other number from the second last（从右向左，偶数位的数字乘2）
－subtract 9 from each number that is now greater than 9 ；add all the resulting numbers together；
－if the total is divisible by 10 ，the card number is valid．
Define a function luhn ：：Int－＞Int－＞Int－＞Int－＞Bool that decides if a four－ digit bank card number is valid．For example：
＞luhn 1784
True
＞luhn 4783
False＂

