第五章：List Comprehension

基本概念：Generators，Guards， String Comprehension，
凯撒加密问题

Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets.

$$
\left\{x^{2} \mid x \in\{1 \ldots 5\}\right\}
$$

The set $\{1,4,9,16,25\}$ of all numbers x^{2} such that x is an element of the set $\{1 \ldots 5\}$.

Lists Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists.

$$
[x \wedge 2 \mid x \leftarrow[1 . .5]]
$$

> The list $[1,4,9,16,25]$ of all numbers $x^{\wedge} 2$ such that x is an element of the list $[1 . .5]$.

Note:

- The expression $\mathrm{x} \leftarrow[1 . .5]$ is called a generator, as it states how to generate values for x .
- Comprehensions can have multiple generators, separated by commas. For example:

$$
\begin{aligned}
& >[(x, y) \mid x \leftarrow[1,2,3], y \leftarrow[4,5]] \\
& {[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]}
\end{aligned}
$$

- Changing the order of the generators changes the order of the elements in the final list:

$$
\begin{aligned}
& >[(x, y) \mid y \leftarrow[4,5], x \leftarrow[1,2,3]] \\
& {[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]}
\end{aligned}
$$

- Multiple generators are like nested loops, with later generators as more deeply nested loops whose variables change value more frequently.
- For example:

PEKING UNIVERSITY

Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators.

$$
[(x, y) \mid x \leftarrow[1 . .3], y \leftarrow[x . .3]]
$$

Using a dependant generator we can define the library function that concatenates a list of lists:

```
concat :: [[a]] -> [a]
concat xss = [x | xs \leftarrow xss, x \leftarrow xs]
```

For example:

```
> concat [[1,2,3],[4,5],[6]]
    [1,2,3,4,5,6]
```


Guards

List comprehensions can use guards to restrict the values produced by earlier generators.

$$
[x \mid x \leftarrow[1 . .10], \text { even } x]
$$

The list $[2,4,6,8,10]$ of all numbers x such that x is an element of the list [1..10] and x is even.

PEKING UNIVERSITY

Using a guard we can define a function that maps a positive integer to its list of factors：

```
factors :: Int -> [Int]
factors n =
    [x | x < [1..n], n `mod` x == 0]
```

For example：

```
> factors 15
[1,3,5,15]
```

A positive integer is prime if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

```
prime :: Int }->\mathrm{ Bool
prime n = factors n == [1,n]
```

For example:

```
> prime 15
```

False
> prime 7
True

PEKING UNIVERSITY

Using a guard we can now define a function that returns the list of all primes up to a given limit：

```
primes :: Int -> [Int]
primes n = [x | x < [2..n], prime x]
```

For example：

```
> primes 40
[2,3,5,7,11,13,17,19, 23,29,31, 37]
```


The Zip Function

A useful library function is zip，which maps two lists to a list of pairs of their corresponding elements．

$$
\text { zip : : [a] } \rightarrow[b] \rightarrow[(a, b)]
$$

For example：

$$
\begin{aligned}
& >\text { zip ['a','b', 'c'] }[1,2,3,4] \\
& {\left[\left(' a{ }^{\prime}, 1\right),\left(' b^{\prime}, 2\right),\left(' c^{\prime}, 3\right)\right]}
\end{aligned}
$$

Using zip we can define a function returns the list of all pairs of adjacent elements from a list:

```
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
```

For example:

```
> pairs [1,2,3,4]
[(1, 2), (2, 3), (3,4)]
```

Using pairs we can define a function that decides if the elements in a list are sorted：

```
sorted :: Ord a # [a] -> Bool
sorted xs = and [x \leq y | (x,y) \leftarrow pairs xs]
```

For example：

```
> sorted [1,2,3,4]
True
> sorted [1,3,2,4]
False
```

Using zip we can define a function that returns the list of all positions of a value in a list:

```
positions :: Eq a }=>\mathrm{ a }->\mathrm{ [a] }->\mathrm{ [Int]
positions x xs =
    [i | (x',i) \leftarrow zip xs [0..], x == x']
```

For example:

```
> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]
```

PEKING UNIVERSITY

String Comprehensions

A string is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.

```
"abc" :: String
```


PEKING UNIVERSITY

Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:

```
> length "abcde"
5
> take 3 "abcde"
"abc"
> zip "abc" [1,2,3,4]
[('a',1), ('b', 2), ('c', 3)]
```

Similarly, list comprehensions can also be used to define functions on strings, such counting how many times a character occurs in a string:

```
count :: Char }->\mathrm{ String }->\mathrm{ Int
count x xs = length [x' | x' \leftarrow xs, x == x']
```

For example:

```
> count 's' "Mississippi"
4
```

PEKING UNIVERSITY

凯撒加密问题

－To encode a string，Caesar simply replaced each letter in the string by the letter three places further down in the alphabet， wrapping around at the end of the alphabet．

```
encode :: Int }->\mathrm{ String }->\mathrm{ String
encode 3 "haskell is fun" = "kdvnhoo lv ixq"
```

```
crack :: String }->\mathrm{ String
crack "kdvnhoo lv ixq" = "haskell is fun"
```

PEKING UNIVERSITY
－加密

```
encode :: Int }->\mathrm{ String }->\mathrm{ String
encode nxs = [ shift nx|x\leftarrowxs]
shift :: Int }->\mathrm{ Char }->\mathrm{ Char
shift n c = int2let ((letzint c + n) 'mod` 26)
```

letzint ：：Char－＞Int letzint $\mathrm{c}=$ ord c －ord＇a＇
intzlet ：：Int－＞Char int2let $n=\operatorname{chr}\left(\right.$ ord ${ }^{\prime} a^{\prime}+n$ ）

其中，ord 和 chr 是模块 Data．Char 中定义的两个函数
$>$ ord ：：Char \rightarrow Int（将一个字符转换为编码值）
$>$ chr ：：Int \rightarrow Char（将一个字符的编码值转换为字符）

- 解密 (crack)

The key to cracking the Caesar cipher is the observation that some letters are used more frequently than others in English text.

$$
\begin{aligned}
\text { table :: } & {[\text { Float }] } \\
\text { table }= & {[8.1,1.5,2.8,4.2,12.7,2.2,2.0,6.1,7.0,} \\
& 0.2,0.8,4.0,2.4,6.7,7.5,1.9,0.1,6.0, \\
& 6.3,9.0,2.8,1.0,2.4,0.2,2.0,0.1]
\end{aligned}
$$

A standard method for comparing a list of observed frequencies os with a list of expected frequencies es is the chi-square statistic, defined by the following summation in which n denotes the length of the two lists, and $x s_{i}$ denotes the i th element of a list $x s$ counting from zero:

$$
\sum_{i=0}^{n-1} \frac{\left(o s_{i}-e s_{i}\right)^{2}}{e s_{i}}
$$

```
crack :: String -> String
crack xs = encode (-factor) xs
where
    factor = position (minimum chitab) chitab
    chitab = [chisqr (rotate n table') table | | < [0..25]]
    table' = freqs xs
```

请自行给出 chisqr 和freqs 的定义。

PEKING UNIVERSITY

作业
5-1

请给出凯撒解密函数的完整定义
crack :: String -> String
(仅考虑"明文中仅包含小写字母和空格"的情况)

5－2 A triple（ x, y, z ）of positive integers is called pythagorean if $x^{2}+y^{2}=z^{2}$ ．Using a list comprehension，define a function

$$
\text { pyths :: Int } \rightarrow \text { [(Int, Int, Int)] }
$$

that maps an integer n to all such triples with components in［1．．n］．For example：

```
> pyths 5
[(3,4,5),(4,3,5)]
```

5-3 A positive integer is perfect if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function

```
perfects :: Int }->\mathrm{ [Int]
```

that returns the list of all perfect numbers up to a given limit. For example:

```
> perfects 500
[6,28,496]
```

5-4 The scalar product of two lists of integers xs and ys of length n is give by the sum of the products of the corresponding integers:

Using a list comprehension, define a function that returns the scalar product of two lists.

