
第六章：递归函数

基本概念, 序列上的递归函数，
相互递归
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Adapted from Graham’s Lecture slides.
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As we have seen, many functions can naturally be defined in 
terms of other functions.

fac :: Int ® Int

fac n = product [1..n]

fac maps any integer n to the product of the 
integers between 1 and n.

函数的定义和作用
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Expressions are evaluated by a stepwise process of applying 
functions to their arguments.

For example:

fac 4

product [1..4]

=

product [1,2,3,4]

=

1*2*3*4

=

24

=
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In Haskell, functions can also be defined in terms of themselves.  
Such functions are called recursive.

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other integer to the product 
of itself and the factorial of its predecessor.

递归函数
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For example:

fac 3

3 * fac 2
=

3 * (2 * fac 1)
=

3 * (2 * (1 * fac 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=

6

3 * 2
=
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Note:

! fac 0 = 1 is appropriate because 1 is the identity for 
multiplication: 1*x = x = x*1.

! The recursive definition diverges on integers < 0 because the 
base case is never reached:

> fac (-1)

*** Exception: stack overflow
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• Some functions, such as factorial, are simpler to 
define in terms of other functions.

• As we shall see, however, many functions can 
naturally be defined in terms of themselves.

• Properties of functions defined using recursion 
can be proved using the simple but powerful 
mathematical technique of induction.

递归函数的作用
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Recursion is not restricted to numbers, but can also be used to 
define functions on lists.

product :: Num a Þ [a] ® a
product []     = 1
product (n:ns) = n * product ns

product maps the empty list to 1, and any non-empty 
list to its head multiplied by the product of its tail.

序列上的递归函数
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For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=
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Using the same pattern of recursion as in product we can define 
the length function on lists.

length :: [a] ® Int

length []     = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0, and any non-
empty list to the successor of the length of its tail.
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For example:

length [1,2,3]

1 + length [2,3]
=

1 + (1 + length [3])
=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3
=
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Using a similar pattern of recursion we can define the reverse
function on lists.

reverse :: [a] ® [a]

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty list, and any non-
empty list to the reverse of its tail appended to its head.
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For example:

reverse [1,2,3]

reverse [2,3] ++ [1]
=

(reverse [3] ++ [2]) ++ [1]
=

((reverse [] ++ [3]) ++ [2]) ++ [1]
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=



课堂练习

• 给出下面程序中的insert的类型和定义，完成“插⼊排序”算法
的定义。

isort :: Ord a => [a] -> [a]
isort [] = []
isort (x:xs) = insert x (isort xs)

14
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Functions with more than one argument can also be defined 
using recursion.  For example:

! Zipping the elements of two lists:

zip :: [a] ® [b] ® [(a,b)]
zip []     _      = []

zip _      []     = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

多参数递归
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drop :: Int ® [a] ® [a]

drop 0 xs = xs

drop _ []     = []

drop n (_:xs) = drop (n-1) xs

! Remove the first n elements from a list:

(++) :: [a] ® [a] ® [a]

[]     ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

! Appending two lists:
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Functions can also be defined using multiple recursion, in which 
a function is applied more than once in its own definition.

多重递归 (Multiple Recursion)

fib :: Int -> Int 
fib 0 = 0 
fib 1 = 1 
fib n = fib (n-2) + fib (n-1)
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qsort :: Ord a Þ [a] ® [a]
qsort []     = []
qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger
where

smaller = [a | a ¬ xs, a £ x]
larger  = [b | b ¬ xs, b > x]

! This is probably the simplest implementation of quicksort 
in any programming language!

Note:

快速排序：



19

For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]



相互递归（Mutual Recursion)

Functions can also be defined using mutual 
recursion, in which two or more functions are all 
defined recursively in terms of each other.
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even :: Int -> Bool 
even 0 = True 
even n = odd (n-1) 

odd :: Int -> Bool 
odd 0 = False 
odd n = even (n-1)
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6-1 Without looking at the standard prelude, define the 
following library functions using recursion:

and :: [Bool] ® Bool

! Decide if all logical values in a list are true:

concat :: [[a]] ® [a]

! Concatenate a list of lists:

作业
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(!!) :: [a] ® Int ® a

! Select the nth element of a list (starting from 0):

elem :: Eq a Þ a ® [a] ® Bool

! Decide if a value is an element of a list:

replicate :: Int ® a ® [a]

! Produce a list with n identical elements:
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6-2 Define a recursive function

merge :: Ord a Þ [a] ® [a] ® [a]

that merges two sorted lists of values to give a single 
sorted list.  For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]
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6-3 Define a recursive function

! Lists of length £ 1 are already sorted;

! Other lists can be sorted by sorting the two halves and 
merging the resulting lists. 

msort :: Ord a Þ [a] ® [a]

that implements merge sort, which can be specified by 
the following two rules:


