
第七章：⾼阶函数

基本概念
处理序列的常用⾼阶函数，foldr/foldl

两个应用问题

1

Adapted from Graham’s Lecture slides.

2

Introduction

A function is called higher-order if it takes a function
as an argument or returns a function as a result.

twice :: (a ® a) ® a ® a
twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.

3

Why Are They Useful?

! Common programming idioms can be encoded as functions
within the language itself.

! Domain specific languages can be defined as collections of
higher-order functions.

! Algebraic properties of higher-order functions can be used
to reason about programs.

4

The Map Function

The higher-order library function called map applies
a function to every element of a list.

map :: (a ® b) ® [a] ® [b]

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]

5

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:

The map function can be defined in a particularly
simple manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f [] = []

map f (x:xs) = f x : map f xs

6

The Filter Function

The higher-order library function filter selects every
element from a list that satisfies a predicate.

filter :: (a ® Bool) ® [a] ® [a]

For example:

> filter even [1..10]

[2,4,6,8,10]

7

Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

8

The Foldr Function

A number of functions on lists can be defined using
the following simple pattern of recursion:

f [] = v

f (x:xs) = x Å f xs

f maps the empty list to some value v, and any non-empty
list to some function Å applied to its head and f of its tail.

9

For example:

sum [] = 0

sum (x:xs) = x + sum xs

and [] = True

and (x:xs) = x && and xs

product [] = 1

product (x:xs) = x * product xs

v = 0

Å = +

v = 1

Å = *

v = True

Å = &&

10

The higher-order library function foldr (fold right)
encapsulates this simple pattern of recursion, with
the function Å and the value v as arguments.

For example:

sum = foldr (+) 0

product = foldr (*) 1

or = foldr (||) False

and = foldr (&&) True

11

Foldr itself can be defined using recursion:

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively,
as simultaneously replacing each (:) in a list by a
given function, and [] by a given value.

12

sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.

13

product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.

14

Other Foldr Examples

Even though foldr encapsulates a simple pattern
of recursion, it can be used to define many more
functions than might first be expected.

Recall the length function:

length :: [a] ® Int

length [] = 0

length (_:xs) = 1 + length xs

15

length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length = foldr (l_ n ® 1+n) 0

Replace each
(:) by l _ n ® 1+n, and
[] by 0.

For example:

16

Now recall the reverse function:

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example:
Replace each

(:) by lx xs ® xs ++ [x], and
[] by [].

17

Hence, we have:

reverse = foldr (lx xs ® xs ++ [x]) []

Finally, we note that the append function (++) has a
particularly compact definition using foldr:

(++ ys) = foldr (:) ys
Replace each

(:) by (:), and
[] by ys.

18

Why Is Foldr Useful?

! Some recursive functions on lists, such as sum, are simpler to
define using foldr.

! Properties of functions defined using foldr can be proved
using algebraic properties of foldr, such as fusion and the
banana split rule.

! Advanced program optimisations can be simpler if foldr is
used in place of explicit recursion.

19

The Foldl Function

It is also possible to define recursive functions on
lists using an operator that is assumed to associate
to the left.

f v [] = v
f v (x:xs) = f (v Å x) xs

f maps the empty list to the accumulator value v, and any non-
empty list to the result of recursively processing the tail using a

new accumulator value obtained by applying an operator Å to the
current value and the head of the list.

20

Foldl itself can be defined using recursion:

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f v [] = v

foldl f v (x:xs) = foldl f (f v x) xs

It is a tail recursion, like a loop.

21

Other Library Functions

The library function (.) returns the composition of
two functions as a single function.

(.) :: (b ® c) ® (a ® b) ® (a ® c)
f . g = lx ® f (g x)

For example:

odd :: Int ® Bool

odd = not . even

22

The library function all decides if every element of
a list satisfies a given predicate.

all :: (a ® Bool) ® [a] ® Bool
all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

True

23

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a ® Bool) ® [a] ® Bool
any p xs = or [p x | x ¬ xs]

For example:

> any (== ’ ’) "abc def"

True

24

The library function takeWhile selects elements from
a list while a predicate holds of all the elements.

takeWhile :: (a ® Bool) ® [a] ® [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

For example:

> takeWhile (/= ’ ’) "abc def"

"abc"

25

Dually, the function dropWhile removes elements
while a predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]
dropWhile p [] = []
dropWhile p (x:xs)

| p x = dropWhile p xs
| otherwise = x:xs

For example:

> dropWhile (== ’ ’) " abc"

"abc"

应用1: Binary String Transmitter
• 2进制到10进制的转换

type Bit = Int

bin2int :: [Bit] -> Int
bin2int bits = sum [w*b | (w,b) <- zip weights bits]

where weights = iterate (*2) 1

-- iterate f x = [x, f x, f (f x), f (f (f x)), ...]
-- iterate f x = x : iterate f (f x)
-- defined in prelude

bin2int = foldr (\x y -> x + 2*y) 0

> bin2int [1,0,1,1]
13

应用1: Binary String Transmitter

• 1o进制数字到8位2进制的转换

27

int2bin :: Int -> [Bit]
int2bin 0 = []
int2bin n = n ‘mod‘ 2 : int2bin (n ‘div‘ 2)

make8 :: [Bit] -> [Bit]
make8 bits = take 8 (bits ++ repeat 0)

Int2bin8 :: Int -> [Bin]
Int2bin8 = make8 . int2bin

应用1: Binary String Transmitter

• ⽂字序列编码

28

encode :: String -> [Bit]
encode = concat . map (make8 . int2bin . ord)

> encode "abc"
[1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]

应用1: Binary String Transmitter

• 2进制序列解码

29

decode :: [Bit] -> String
decode = map (chr . bin2int) . chop8

chop8 :: [Bit] -> [Bit]
chop8 bits = …?

> decode [1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]
"abc"

应用2: 投票算法 (First past the post)

30

In this system, each person has one vote, and the candidate with the
largest number of votes is declared the winner.

votes :: [String]
votes = ["Red", "Blue", "Green", "Blue", "Blue", "Red"]

> result votes
[(1,"Green"), (2,"Red"), (3,"Blue")]

> winner votes
"Blue"

应用2: 投票算法

31

In this system, each person has one vote, and the candidate with the
largest number of votes is declared the winner.

result :: Ord a => [a] -> [(Int,a)]
result vs = sort [(count v vs, v) | v <- rmdups vs]

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : filter (/= x) (rmdups xs)

count :: Eq a => a -> [a] -> Int
count x = length . filter (== x)

应用2: 投票算法 (Alternative vote)

32

In this voting system, each person can vote for as many or as few
candidates as they wish, listing them in preference order on their ballot
(1st choice, 2nd choice, and so on).

ballots :: [[String]]
ballots = [["Red", "Green"],

["Blue"],
["Green", "Red", "Blue"],
["Blue", "Green", "Red"],
["Green"]]

应用2: 投票算法

33

To decide the winner, any empty ballots are first removed, then the
candidate with the smallest number of 1st-choice votes is eliminated
from the ballots, and same process is repeated until only one candidate
remains, who is then declared the winner.

ballots :: [[String]]
ballots = [["Red", "Green"],

["Blue"],
["Green", "Red", "Blue"],
["Blue", "Green", "Red"],
["Green"]]

应用2: 投票算法

34

To decide the winner, any empty ballots are first removed, then the
candidate with the smallest number of 1st-choice votes is eliminated
from the ballots, and same process is repeated until only one candidate
remains, who is then declared the winner.

ballots :: [[String]]
ballots = [["Green"],

["Blue"],
["Green", "Blue"],
["Blue", "Green"],
["Green"]]

应用2: 投票算法

35

To decide the winner, any empty ballots are first removed, then the
candidate with the smallest number of 1st-choice votes is eliminated
from the ballots, and same process is repeated until only one candidate
remains, who is then declared the winner.

ballots :: [[String]]
ballots = [["Green"],

[],
["Green"],
["Green"],
["Green"]]

应用2: 投票算法

36

To decide the winner, any empty ballots are first removed, then the
candidate with the smallest number of 1st-choice votes is eliminated
from the ballots, and same process is repeated until only one candidate
remains, who is then declared the winner.

winner’ :: Ord a => [[a]] -> a
winner’ bs = case rank (filter (/= []) bs) of

[c] -> c
(c:cs) -> winner’ (map (filter (/= c)) bs)

rank :: Ord a => [[a]] -> [a]
rank = map snd . result . map head

37

7-2 Redefine map f and filter p using foldr.

7-1 Express the comprehension [f x | x ¬ xs, p x]
using the functions map and filter.

作业

38

7-3 Modify the binary string transmitter example to detect simple
transmission errors using the concept of parity bits. That is, each
eight-bit binary number produced during encoding is extended
with a parity bit, set to one if the number contains an odd
number of ones, and to zero otherwise. In turn, each resulting
nine-bit binary number consumed during decoding is checked to
ensure that its parity bit is correct, with the parity bit being
discarded if this is the case, and a parity error being reported
otherwise.
Hint: the library function error :: String -> a displays the given
string as an error message and terminates the program; the
polymorphic result type ensures that error can be used in any
context.

作业

