
第⼋章：类型和类族的定义

类型定义，数据定义
递归类型，类族和例化

命题真伪判断问题，抽象机及编译

1

Adapted from Graham’s Lecture slides.

2

Type Declarations

In Haskell, a new name for an existing type can be defined using
a type declaration.

type String = [Char]

String is a synonym for the type [Char].

3

Type declarations can be used to make other types easier to
read. For example, given

origin :: Pos
origin = (0,0)

left :: Pos ® Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

4

Like function definitions, type declarations can also have
parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int ® Int
mult (m,n) = m*n

copy :: a ® Pair a
copy x = (x,x)

5

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos ® Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

6

Data Declarations

A completely new type can be defined by specifying its values
using a data declaration.

data Bool = False | True

Bool is a new type, with two new
values False and True.

7

Note:

! The two values False and True are called the constructors
for the type Bool.

! Type and constructor names must always begin with an
upper-case letter.

! Data declarations are similar to context free grammars. The
former specifies the values of a type, the latter the
sentences of a language.

8

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer ® Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as those of built
in types. For example, given

9

The constructors in a data declaration can also have parameters.
For example, given

data Shape = Circle Float
| Rect Float Float

square :: Float ® Shape
square n = Rect n n

area :: Shape ® Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

10

Note:

! Shape has values of the form Circle r where r is a float, and
Rect x y where x and y are floats.

! Circle and Rect can be viewed as functions that construct
values of type Shape:

circle :: Float ® Shape

rect :: Float ® Float ® Shape

11

Not surprisingly, data declarations themselves can also have
parameters. For example, given

data Maybe a = Nothing | Just a

safediv :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] ® Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:

12

Recursive Types

In Haskell, new types can be declared in terms of themselves.
That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat
and Succ :: Nat ®Nat.

13

Note:

! A value of type Nat is either Zero, or of the form Succ n
where n :: Nat. That is, Nat contains the following infinite
sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•

14

! We can think of values of type Nat as natural numbers,
where Zero represents 0, and Succ represents the successor
function 1+.

! For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=

15

Using recursion, it is easy to define functions that convert
between values of type Nat and Int:

nat2int :: Nat ® Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

16

Two naturals can be added by converting them to integers,
adding, and then converting back:

However, using recursion the function add can be defined
without the need for conversions:

add :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

17

For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note:

! The recursive definition for add corresponds to the laws 0+n
= n and (1+m)+n = 1+(m+n).

18

Arithmetic Expressions

Consider a simple form of expressions built up from integers
using addition and multiplication.

1

+

*

32

19

Using recursion, a suitable new type to represent such
expressions can be declared by:

For example, the expression on the previous slide would be
represented as follows:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

20

Using recursion, it is now easy to define functions that process
expressions. For example:

size :: Expr ® Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr ® Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

21

Note:

! The three constructors have types:

Val :: Int ® Expr
Add :: Expr ® Expr ® Expr
Mul :: Expr ® Expr ® Expr

! Many functions on expressions can be defined by replacing
the constructors by other functions using a suitable fold
function. For example:

eval = folde id (+) (*)

22

Newtype Declarations

If a new type has a single constructor with a single argument,
then it can also be declared using the newtype mechanism.

newtype Nat = N Int

Comparison:

data Nat = N Int

type Nat = Int

Less efficient

Less safe

Using newtype helps improve type safety, without affecting performance.

23

Class and instance declarations

We now turn our attention from types to classes. In Haskell, a
new class can be declared using the class mechanism.

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

For a type a to be an instance of the class Eq, it must support
equality and inequality operators of the specified types.

24

Class and instance declarations

The type Bool can be made into an equality type as follows:

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

Note:

- Only types that are declared using the data and newtype
mechanisms can be made into instances of classes.

- Default definitions can be overridden in instance
declarations if desired.

25

Class and instance declarations

Classes can also be extended to form new classes.

26

Derived instances

When new types are declared, it is usually appropriate to make
them into instances of a number of built-in classes.

data Bool = False | True
deriving (Eq, Ord, Show, Read)

> False == False
True

> False < True
True

27

问题：Develop a function that decides if simple logical
propositions are always true.

应用1：Tautology Checker

28

解法：求各个命题的真值表，判断结果是否都是真。

应用1：Tautology Checker

29

命题表示

应用1：Tautology Checker

p1 :: Prop
p1 = And (Var ’A’) (Not (Var ’A’))

p2 :: Prop
p2 = Imply (And (Var ’A’) (Var ’B’)) (Var ’A’)

练习：定义函数 vars :: Prop -> [Char], 求出⼀个命题表达式中的变量。

30

置换表

应用1：Tautology Checker

subst :: Subst
subst = [(‘A’ ,True), (‘B’, False)]

练习：
(1)给定⼀个Char的序列（如，[‘A’, ‘B’]) 定义函数substs求出所有可能
的置换表。

varSubsts :: [Chair] -> [Subst]
(2)给定⼀个置换表和⼀个命题表达式，定义函数eval求出命题的值。

eval :: Subst -> Prop -> Bool

type Subst = Assoc Char Bool

31

最终程序

应用1：Tautology Checker

isTaut :: Prop -> Bool
isTaut p = and [eval s p | s <- varSubsts vs]

where vs = rmdups (vars p)

> isTaut p1
True

> isTaut p2
True

> isTaut p3
False

> isTaut p4
True

应用2: 抽象机

• 表达式计算

32

data Expr = Val Int | Add Expr Expr

value :: Expr -> Int
value (Val n) = n
value (Add x y) = value x + value y

这没有描述计算的顺序。如何描述这样的控制？

应用2: 抽象机

• 引进控制堆栈，描述当前计算结束后需要“继
续”计算的部分

33

typeCont = [Op]

dataOp = EVAL Expr | ADD Int

应用2: 抽象机

• 计算“控制”堆栈

34

typeCont = [Op]

dataOp = EVAL Expr | ADD Int

当前值后续计算

应用2: 抽象机

• 主函数

35

value :: Expr -> Int
value e = eval e []

练习：给出
value (Add (Add (Val 2) (Val 3)) (Val 4))

的运算过程。

36

8-1 Using recursion and the function add, define a function that
multiplies two natural numbers.

8-2 Define a suitable function folde for expressions and give a
few examples of its use.

8-3 Define a type Tree a of binary trees built from Leaf values of
type a using a Node constructor that takes two binary trees
as parameters.

作业

