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Type Declarations

In Haskell, a new name for an existing type can be defined using
a type declaration.

‘type String = [Char]
PN

[ String is a synonym for the type [Char]. ]

: oy Jex )2

PEKING UNIVERSITY




Type declarations can be used to make other types easier to
read. For example, given

we can define:

; 2y Jei i
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Like function definitions, type declarations can also have
parameters. For example, given

we can define:

4 2y Jei i
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Type declarations can be nested:

v

However, they cannot be recursive:

5 4y Jei L Z
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Data Declarations

A completely new type can be defined by specifying its values
using a data declaration.

Bool is a new type, with two new
values False and True.

6 oy Jex )2
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Note:

B The two values False and True are called the constructors
for the type Bool.

i Type and constructor names must always begin with an
upper-case letter.

B Data declarations are similar to context free grammars. The
former specifies the values of a type, the latter the
sentences of a language.
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Values of new types can be used in the same ways as those of built
in types. For example, given

we can define:

) deg P
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The constructors in a data declaration can also have parameters.
For example, given

we can define:

) deg P
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Note:

# Shape has values of the form Circle r where r is a float, and
Rect x y where x and y are floats.

B Circle and Rect can be viewed as functions that construct
values of type Shape:

0 NPT EE
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Not surprisingly, data declarations themselves can also have
parameters. For example, given

we can define:

11 Ae%*?
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Recursive Types

In Haskell, new types can be declared in terms of themselves.
That s, types can be recursive.

data Nat = Zero | Succ Nat
TN

{ Nat is a new type, with constructors Zero :: Nat J

and Succ :: Nat — Nat.

12 :: aex‘J
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Note:

B Avalue of type Nat is either Zero, or of the form Succ n
where n :: Nat. That is, Nat contains the following infinite
sequence of values:

13 :: atX\J
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§ We can think of values of type Nat as natural numbers,

where Zero represents o, and Succ represents the successor
function 1+.

i Forexample, the value

represents the natural number

14 :: a\:x‘J'
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Using recursion, it is easy to define functions that convert
between values of type Nat and Int:

: AR ER
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Two naturals can be added by converting them to integers,
adding, and then converting back:

However, using recursion the function add can be defined
without the need for conversions:

’ AR ER
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For example:

Note:

§ Therecursive definition for add corresponds to the laws o+n
=n and (2+m)+n = 1+(M+n).

7 4y Jei kY
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Arithmetic Expressions

Consider a simple form of expressions built up from integers
using addition and multiplication.

18 N ezt
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Using recursion, a suitable new type to represent such
expressions can be declared by:

For example, the expression on the previous slide would be
represented as follows:

19 4y Jei kY
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Using recursion, it is now easy to define functions that process
expressions. For example:

- ¥ JeiiP
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Note:

# The three constructors have types:

# Many functions on expressions can be defined by replacing
the constructors by other functions using a suitable fold
function. For example:

eval = folde id (1) (*)
& ~: akﬁJ
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Newtype Declarations

If a new type has a single constructor with a single argument,
then it can also be declared using the newtype mechanism.

Comparison:
data Nat =N Int Less efficient
type Nat = Int Less safe

Using newtype helps improve type safety, without affecting performance

2 RIPE ]

PEKING UNIVERSITY




Class and instance declarations

We now turn our attention from types to classes. In Haskell, a
new class can be declared using the class mechanism.

For a type a to be an instance of the class Eq, it must support
equality and inequality operators of the specified types.

% :: atX\J’
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Class and instance declarations

The type Bool can be made into an equality type as follows:

Note:
- Only types that are declared using the data and newtype

mechanisms can be made into instances of classes.
- Default definitions can be overridden in instance
declarations if desired.

24 N ezt
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Class and instance declarations

Classes can also be extended to form new classes.

class Eq a => Ord a where
(<), (=), (3), (O=) :: a -> a -> Bool
min, max St A~ a->a

minxy | x <=y
| otherwise

max xy | x <=y
| otherwise

=

instance Ord Bool where
False < True = True
S € _ = False
b<=c=(b<c) || (b==c)
b »c <D
b>c=c<=0b

25
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Derived instances

When new types are declared, it is usually appropriate to make
them into instances of a number of built-in classes.

> False == False
True

> False < True
True

26 :: atx‘J’
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& F1: Tautology Checker

5] &% : Develop a function that decides if simple logical
propositions are always true.

AaA—-A
(AAB)= A
A= (A AB)

(Ar(A=B))=2DB

27 ey ezt Y
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& F1: Tautology Checker
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& 1. Tautology Checker

PR AR T
data Prop = Const Bool
| Var Char
| Not Prop
| And Prop Prop
| Imply Prop Prop
p1:: Prop

29

p1=And (Var'A’) (Not (Var’A’))

p2:: Prop
p2 = Imply (And (Var’A’) (Var 'B’)) (Var ’A)

% 5]

& % 4 vars :: Prop -> [Char], R — /4
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& F1: Tautology Checker

AR

subst :: Subst

subst = [ (‘A" ,True), (‘B’, False)]

%3]

(1) 62—/ Chartg 577 (42, ['A,'B]) &3 %%

09 B & o
varSubsts :: [Chair] -> [Subst]

(2) bR —NEBARI— AL EX,

eval :: Subst -> Prop -> Bool

7% %

dsubsts K & B A 7T AE

feval K & 4

ALY ME
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& F1: Tautology Checker

RAALST
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>isTaut pa
True

>isTaut p2
True

>isTaut p3
False

> isTaut p4
True
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eval (Val n) G
eval (Add x y) c

eval :: Expr -> Cont -> Int

exec Cc n

eval x (EVAL y :

&)
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exec :: Cont -> Int -> Int

exec [] n=n

exec (EVALy : c) n=eval y (ADDn : c)
exec (ADDn : c¢c) m = exec ¢ (n+m)

. AR ER
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%3] A
value (Add (Add (Val 2) (Val 3)) (Val 4))
Ay 18 g AL
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8-1 Usingrecursion and the function add, define a function that
multiplies two natural numbers.

8-2 Define a suitable function folde for expressions and give a
few examples of its use.

8-3 Define atypeTree a of binary trees built from Leaf values of
type a using a Node constructor that takes two binary trees
as parameters.
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