
第⼋章：类型和类族的定义

类型定义，数据定义
递归类型，类族和例化

命题真伪判断问题，抽象机及编译
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Adapted from Graham’s Lecture slides.
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Type Declarations

In Haskell, a new name for an existing type can be defined using 
a type declaration.

type String = [Char]

String is a synonym for the type [Char].
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Type declarations can be used to make other types easier to 
read.  For example, given

origin :: Pos
origin = (0,0)

left :: Pos ® Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also have 
parameters.  For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int ® Int
mult (m,n) = m*n

copy :: a ® Pair a
copy x = (x,x)
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Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos ® Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Data Declarations

A completely new type can be defined by specifying its values 
using a data declaration.

data Bool = False | True

Bool is a new type, with two new 
values False and True.
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Note:

! The two values False and True are called the constructors
for the type Bool.

! Type and constructor names must always begin with an 
upper-case letter.

! Data declarations are similar to context free grammars.  The 
former specifies the values of a type, the latter the 
sentences of a language.



8

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer ® Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as those of built 
in types.  For example, given 
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The constructors in a data declaration can also have parameters.  
For example, given

data Shape = Circle Float
| Rect Float Float

square :: Float ® Shape
square n = Rect n n

area :: Shape ® Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:
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Note:

! Shape has values of the form Circle r where r is a float, and 
Rect x y where x and y are floats.

! Circle and Rect can be viewed as functions that construct 
values of type Shape:

circle :: Float ® Shape

rect :: Float ® Float ® Shape
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Not surprisingly, data declarations themselves can also have 
parameters.  For example, given

data Maybe a = Nothing | Just a

safediv :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] ® Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:
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Recursive Types

In Haskell, new types can be declared in terms of themselves.  
That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat 
and Succ :: Nat ®Nat.
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Note:

! A value of type Nat is either Zero, or of the form Succ n 
where n :: Nat.  That is, Nat contains the following infinite 
sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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! We can think of values of type Nat as natural numbers, 
where Zero represents 0, and Succ represents the successor 
function 1+.

! For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that convert 
between values of type Nat and Int:

nat2int :: Nat ® Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))
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Two naturals can be added by converting them to integers, 
adding, and then converting back:

However, using recursion the function add can be defined 
without the need for conversions:

add :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 
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For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note:

! The recursive definition for add corresponds to the laws 0+n 
= n and (1+m)+n = 1+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from integers 
using addition and multiplication.

1

+

*

32
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Using recursion, a suitable new type to represent such 
expressions can be declared by:

For example, the expression on the previous slide would be 
represented as follows:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions that process 
expressions.  For example:

size :: Expr ® Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval :: Expr ® Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Note:

! The three constructors have types:

Val :: Int ® Expr
Add :: Expr ® Expr ® Expr
Mul :: Expr ® Expr ® Expr

! Many functions on expressions can be defined by replacing 
the constructors by other functions using a suitable fold
function.  For example:

eval = folde id (+) (*)
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Newtype Declarations

If a new type has a single constructor with a single argument, 
then it can also be declared using the newtype mechanism.

newtype Nat = N Int

Comparison:

data Nat = N Int

type Nat = Int

Less efficient

Less safe

Using newtype helps improve type safety, without affecting performance.
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Class and instance declarations

We now turn our attention from types to classes. In Haskell, a 
new class can be declared using the class mechanism.

class Eq a where 
(==), (/=) :: a -> a -> Bool 
x /= y = not (x == y)

For a type a to be an instance of the class Eq, it must support 
equality and inequality operators of the specified types.
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Class and instance declarations

The type Bool can be made into an equality type as follows:

instance Eq Bool where 
False == False = True
True == True    = True
_ == _                 = False

Note:

- Only types that are declared using the data and newtype 
mechanisms can be made into instances of classes. 

- Default definitions can be overridden in instance 
declarations if desired.
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Class and instance declarations

Classes can also be extended to form new classes.
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Derived instances

When new types are declared, it is usually appropriate to make 
them into instances of a number of built-in classes.

data Bool = False | True 
deriving (Eq, Ord, Show, Read)

> False == False 
True 

> False < True 
True
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问题：Develop a function that decides if simple logical 
propositions are always true.

应用1：Tautology Checker
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解法：求各个命题的真值表，判断结果是否都是真。

应用1：Tautology Checker
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命题表示

应用1：Tautology Checker

p1 :: Prop 
p1 = And (Var ’A’) (Not (Var ’A’)) 

p2 :: Prop 
p2 = Imply (And (Var ’A’) (Var ’B’)) (Var ’A’)

练习：定义函数 vars :: Prop -> [Char], 求出⼀个命题表达式中的变量。
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置换表

应用1：Tautology Checker

subst :: Subst
subst = [ (‘A’ ,True),  (‘B’, False)]

练习：
(1)给定⼀个Char的序列（如，[‘A’, ‘B’]) 定义函数substs求出所有可能
的置换表。

varSubsts :: [Chair] -> [Subst]
(2)给定⼀个置换表和⼀个命题表达式，定义函数eval求出命题的值。

eval :: Subst -> Prop -> Bool

type Subst = Assoc  Char  Bool
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最终程序

应用1：Tautology Checker

isTaut :: Prop -> Bool 
isTaut p = and [eval s p  | s <- varSubsts vs ]

where vs = rmdups (vars p)

> isTaut p1
True

> isTaut p2 
True 

> isTaut p3 
False 

> isTaut p4 
True



应用2: 抽象机

• 表达式计算
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data Expr = Val Int | Add Expr Expr

value :: Expr -> Int
value (Val n)       = n
value (Add x y)  = value x + value y

这没有描述计算的顺序。如何描述这样的控制？



应用2: 抽象机

• 引进控制堆栈，描述当前计算结束后需要“继
续”计算的部分
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typeCont = [Op]

dataOp = EVAL Expr | ADD Int



应用2: 抽象机

• 计算“控制”堆栈
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typeCont = [Op]

dataOp = EVAL Expr | ADD Int

当前值后续计算



应用2: 抽象机

• 主函数
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value :: Expr -> Int
value e = eval e []

练习：给出
value (Add (Add (Val 2) (Val 3)) (Val 4))

的运算过程。



36

8-1 Using recursion and the function add, define a function that 
multiplies two natural numbers.

8-2 Define a suitable function folde for expressions and give a 
few examples of its use.

8-3 Define a type Tree a of binary trees built from Leaf values of 
type a using a Node constructor that takes two binary trees 
as parameters.

作业


