Adapted from Graham's Lecture slides.

第八章: 类型和类族的定义

类型定义,数据定义 递归类型,类族和例化 命题真伪判断问题,抽象机及编译

In Haskell, a new name for an existing type can be defined using a <u>type declaration</u>.

Type declarations can be used to make other types easier to read. For example, given

type Pos = (Int,Int)

we can define:

origin :: Pos origin = (0,0)

left :: Pos \rightarrow Pos left (x,y) = (x-1,y)

Like function definitions, type declarations can also have <u>parameters</u>. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int \rightarrow Int mult (m,n) = m*n copy :: a \rightarrow Pair a copy x = (x,x)

Type declarations can be nested:

type Pos = (Int,Int) **type** Trans = Pos \rightarrow Pos

However, they cannot be recursive:

A completely new type can be defined by specifying its values using a <u>data declaration</u>.

data Bool = False | True

Bool is a new type, with two new values False and True.

- The two values False and True are called the <u>constructors</u> for the type Bool.
 - Type and constructor names must always begin with an upper-case letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

Values of new types can be used in the same ways as those of built in types. For example, given

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer] answers = [Yes,No,Unknown] flip :: Answer → Answer flip Yes = No flip No = Yes flip Unknown = Unknown

The constructors in a data declaration can also have parameters. For example, given

we can define:

square :: Float \rightarrow Shape square n = Rect n n

area :: Shape \rightarrow Float area (Circle r) = pi * r^2 area (Rect x y) = x * y

- Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.
- Circle and Rect can be viewed as <u>functions</u> that construct values of type Shape:

circle :: Float \rightarrow Shape rect :: Float \rightarrow Float \rightarrow Shape

Not surprisingly, data declarations themselves can also have parameters. For example, given

data Maybe **a** = Nothing | Just **a**

we can define:

safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

In Haskell, new types can be declared in terms of themselves. That is, types can be <u>recursive</u>.

Note:

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

We can think of values of type Nat as <u>natural numbers</u>, where Zero represents o, and Succ represents the successor function 1+.

For example, the value

Succ (Succ (Succ Zero))

represents the natural number

$$1 + (1 + (1 + 0)) = 3$$

Using recursion, it is easy to define functions that convert between values of type Nat and Int:

nat2int :: Nat \rightarrow Int nat2int Zero = 0 nat2int (Succ n) = 1 + nat2int nint2nat :: Int \rightarrow Nat int2nat 0 = Zeroint2nat n = Succ (int2nat (n-1))

Two naturals can be added by converting them to integers, adding, and then converting back:

add :: Nat
$$\rightarrow$$
 Nat \rightarrow Nat
add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be defined without the need for conversions:

add Zero n = nadd (Succ m) n = Succ (add m n)

For example:

Note:

The recursive definition for add corresponds to the laws o+n = n and (1+m)+n = 1+(m+n).

Arithmetic Expressions

Consider a simple form of <u>expressions</u> built up from integers using addition and multiplication.

Using recursion, a suitable new type to represent such expressions can be declared by:

data	Expr	=	Val	Int	
			Add	Expr	Expr
			Mul	Expr	Expr

For example, the expression on the previous slide would be represented as follows:

Add (Val 1) (Mul (Val 2) (Val 3))

Using recursion, it is now easy to define functions that process expressions. For example:

size	:: Expr \rightarrow Int							
size	(Val n) = 1							
size	(Add x y) = size x + size y							
size	(Mul x y) = size x + size y							
eval	:: Expr \rightarrow Int							
eval	(Val n) = n							
eval	(Add x y) = eval x + eval y							
eval	(Mul x y) = eval x * eval y							

Note:

The three constructors have types:

Val :: Int
$$\rightarrow$$
 Expr
Add :: Expr \rightarrow Expr \rightarrow Expr
Mul :: Expr \rightarrow Expr \rightarrow Expr

Many functions on expressions can be defined by replacing the constructors by other functions using a suitable <u>fold</u> function. For example:

eval = folde id (+) (*)

Newtype Declarations

If a new type has a single constructor with a single argument, then it can also be declared using the <u>newtype</u> mechanism.

newtype Nat = N Int

Comparison:

Using newtype helps improve type safety, without affecting performance.

Class and instance declarations

We now turn our attention from types to classes. In Haskell, a new class can be declared using the class mechanism.

class Eq a **where** (==), (/=) :: a -> a -> Bool x /= y = not (x == y)

For a type a to be an instance of the class Eq, it must support equality and inequality operators of the specified types.

Class and instance declarations

The type Bool can be made into an equality type as follows:

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

Note:

- Only types that are declared using the **data** and **newtype** mechanisms can be made into instances of classes.
- Default definitions can be overridden in instance declarations if desired.

Class and instance declarations

Classes can also be extended to form new classes.

```
class Eq a => Ord a where
 (<), (<=), (>), (>=) :: a -> a -> Bool
 min, max :: a -> a -> a
 min x y | x <= y = x
 | otherwise = y
 max x y | x <= y = y
 | otherwise = x
```

```
instance Ord Bool where
False < True = True
_ < _ = False
b <= c = (b < c) || (b == c)
b > c = c < b
b >= c = c <= b</pre>
```


Derived instances

When new types are declared, it is usually appropriate to make them into instances of a number of built-in classes.

> data Bool = False | True **deriving** (Eq, Ord, Show, Read)

> False == False True

> False < True True

问题: Develop a function that decides if simple logical propositions are always true.

$$A \land \neg A$$
$$(A \land B) \Rightarrow A$$
$$A \Rightarrow (A \land B)$$
$$(A \land (A \Rightarrow B)) \Rightarrow B$$

解法: 求各个命题的真值表, 判断结果是否都是真。

			A	В	$(A \land B) \Rightarrow A$
		$A \mid A \land \neg A$	F	F	T
		F F	F	T	T
		T F	T	F	T
			T	T	T
A	В	$A \Rightarrow (A \land B)$	A	B	$(A \land (A \Rightarrow B)) \Rightarrow B$
F	F	T	F	F	T
F	T	T	F	T	T
T	F	F	T	F	T
T	T	T	T	T	T

命题表示

```
data Prop = Const Bool
| Var Char
| Not Prop
| And Prop Prop
| Imply Prop Prop
```

```
p1 :: Prop
p1 = And (Var 'A') (Not (Var 'A'))
```

```
p2 :: Prop
p2 = Imply (And (Var 'A') (Var 'B')) (Var 'A')
```

练习:定义函数 vars :: Prop -> [Char], 求出一个命题表达式中的变量。

置换表

type Subst = Assoc Char Bool

subst :: Subst
subst = [(`A' ,True), (`B', False)]

练习:

(1) 给定一个Char的序列 (如, ['A', 'B']) 定义函数substs求出所有可能 的置换表。

varSubsts :: [Chair] -> [Subst] (2) 给定一个置换表和一个命题表达式,定义函数eval求出命题的值。 eval :: Subst -> Prop -> Bool

最终程序

isTaut :: Prop -> Bool
isTaut p = and [eval s p | s <- varSubsts vs]
where vs = rmdups (vars p)</pre>

> isTaut p1 True

> isTaut p2 True

> isTaut p3 False

> isTaut p4 True

• 表达式计算

data Expr = Val Int | Add Expr Expr value :: Expr -> Int value (Val n) = n value (Add x y) = value x + value y

这没有描述计算的顺序。如何描述这样的控制?

引进控制堆栈, 描述当前计算结束后需要"继续"计算的部分

type Cont = [Op]

data Op = EVAL Expr | ADD Int

eval :: Expr -> Cont -> Int eval (Val n) c = exec c n eval (Add x y) c = eval x (EVAL y : c)

• 计算"控制"堆栈

type Cont = [Op] **data** Op = EVAL Expr | ADD Int

• 主函数

value :: Expr -> Int value e = eval e []

8-1 Using recursion and the function add, define a function that <u>multiplies</u> two natural numbers.

8-2 Define a suitable function <u>folde</u> for expressions and give a few examples of its use.

8-3 Define a type <u>Tree a</u> of binary trees built from <u>Leaf</u> values of type a using a <u>Node</u> constructor that takes two binary trees as parameters.

