Adapted from Graham＇s Lecture slides．

第九章：倒计时问题

What Is Countdown?

- A popular quiz programme on British television that has been running since 1982.
- Based upon an original French version called "Des Chiffres et Des Lettres".
- Includes a numbers game that we shall refer to as the countdown problem.

Example

Using the numbers

and the arithmetic operators

$$
+\quad-\quad * \quad \div
$$

construct an expression whose value is

Rules

- All the numbers, including intermediate results, must be positive naturals $(1,2,3, \ldots)$.
- Each of the source numbers can be used at most once when constructing the expression.
- We abstract from other rules that are adopted on television for pragmatic reasons.

For our example, one possible solution is

$$
(25-10) *(50+1)=765
$$

Notes:

- There are $\underline{780}$ solutions for this example.
- Changing the target number to 831 gives an example that has no solutions.

Evaluating Expressions

Operators:

$$
\text { data } O p=\text { Add | Sub | Mul | Div }
$$

Apply an operator:

$$
\begin{aligned}
& \text { apply : : Op } \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& \text { app7y Add } x y=x+y \\
& \text { apply Sub } x y=x-y \\
& \text { apply Mul } x y=x * y \\
& \text { apply Div } x y=x \text { 'div` } y^{y}
\end{aligned}
$$

Decide if the result of applying an operator to two positive natural numbers is another such:

$$
\begin{aligned}
& \text { valid }:: ~ O p \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Bool } \\
& \text { valid Add } \overline{-}=\text { True } \\
& \text { valid Sub } \bar{y}=x>y \\
& \text { valid Mul } \bar{y}=\text { True } \\
& \text { valid Div } \bar{y}=x \text { "mod` } y==0
\end{aligned}
$$

Expressions:

```
data Expr = Va1 Int | App Op Expr Expr
```

Return the overall value of an expression, provided that it is a positive natural number:

```
eval :: Expr }->\mathrm{ [Int]
eval (Val n) = [n | n > 0]
eval (App o 1 r) = [apply o x y | x \leftarrow eval 1
, y}\leftarroweval 
, valid o x y]
```

Either succeeds and returns a singleton list, or fails and returns the empty list.

PEKING UNIVERSITY

Combinatorial functions

-- subs : returns all subsequences of a list.

```
subs :: [a] -> [[a]] > subs [1,2,3]
subs [] = [[]] [[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]
subs (x:xs) = yss ++ map (x:) yss
    where yss = subs xs
```

-- inter leave : returns all possible ways of inserting a new element into a list.

```
interleave :: a -> [a] -> [[a]] > interleave 1 [2,3,4]
interleave x [] = [[x]] [[1,2,3,4],[2,1,3,4],[2,3,1,4],[2,3,4,1]]
interleave x (y:ys) = (x:y:ys) : map (y:) (interleave x ys)
```

-- perms : returns all permutations of a list.

```
perms :: [a] -> [[a]] > perms [1,2,3]
perms [] = [[]] [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]
perms (x:xs) = concat (map (interleave x) (perms xs))
```


Combinatorial functions

-- choices : return a list of all possible ways of choosing zero or more elements from a list in any order:

```
choices :: [a] -> [[a]]
choices = concat . map perms . subs
```

> choices [1,2,3]
$[[],[3],[2],[2,3],[3,2],[1],[1,3],[3,1],[1,2],[2,1]$, $[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]$

Formalising The Problem

-- values : return a list of all the values in an expression.

```
values :: Expr -> [Int]
values (Val n) = [n]
values (App - 1 r) = values 1 ++ values r
```

-- solution : Decide if an expression is a solution for a given list of source numbers and a target number.

```
solution :: Expr }->\mathrm{ [Int] }->\mathrm{ Int }->\mathrm{ Bool
solution e ns n = elem (values e) (choices ns)
    && eval e == [n]
```


Brute Force Solution

-- split : return a list of all possible ways of splitting a list into two non-empty parts:

$$
\begin{array}{ll}
\text { split :: [a] } & ->[([a],[a])] \\
\text { split }[] & =[] \\
\text { split }[] & =[] \\
\text { split }(x: x s) & =([x], x s):[(x: l s, r s) \mid(l s, r s)<-~ s p l i t ~ x s]
\end{array}
$$

```
> split [1,2,3,4]
[([1],[2,3,4]),([1,2], [3,4]),([1, 2, 3], [4])]
```

-- exprs : return a list of all possible expressions whose values are precisely a given list of numbers

```
exprs :: [Int] -> [Expr]
exprs [] = []
exprs [n] = [Val n]
exprs ns = [e | (ls,rs) \leftarrow split ns
, 1}\leftarrow\mathrm{ exprs 1s
, r }\leftarrow\mathrm{ exprs rs
, e }\leftarrow\mathrm{ combine 1 r]
```

-- combine : combine two expressions using each operator

```
combine :: Expr }->\mathrm{ Expr }->\mathrm{ [Expr]
combine 1 r =
    [App o 1 r | o \leftarrow [Add,Sub,Mul,Div]]
```

Return a list of all possible expressions that solve an instance of the countdown problem:

```
solutions :: [Int] -> Int }->\mathrm{ [Expr]
solutions ns n = [e | ns' }\leftarrow\mathrm{ choices ns
    , e }\leftarrow\mathrm{ exprs ns'
    , eval e == [n]]
```

PEKING UNIVERSITY

How Fast Is It？

System：

Compiler：\quad GHC version 7．10．2
Example：
solutions $[1,3,7,10,25,50] 765$
One solution： 0.108 seconds
All solutions： 12.224 seconds

Can We Do Better?

- Many of the expressions that are considered will typically be invalid - fail to evaluate.
- For our example, only around 5 million of the 33 million possible expressions are valid.
- Combining generation with evaluation would allow earlier rejection of invalid expressions.

Fusing Two Functions

Valid expressions and their values:

```
type Result = (Expr,Int)
```

We seek to define a function that fuses together the generation and evaluation of expressions:

```
results :: [Int] -> [Result]
results ns = [(e,n) | e \leftarrow exprs ns
    , n < eval e]
```

This behaviour is achieved by defining

```
results [] = []
results [n] = [(Val n,n) | n > 0]
results ns =
    [res | (ls,rs) \leftarrow split ns
        , 1x }\leftarrow\mathrm{ results 1s
        , ry }\leftarrow\mathrm{ results rs
        , res }\leftarrow\mathrm{ combine' lx ry]
```

where

$$
\text { combine' :: Result } \rightarrow \text { Result } \rightarrow \text { [Result] }
$$

Combining results：

$$
\begin{aligned}
& \text { combine' }(7, x)(r, y)= \\
& \quad[(\text { App o } 1 r \text { apply o x y) } \\
& \text { | o } \leftarrow \text { [Add, Sub, Mul, Div] } \\
& \text {, valid o x y] }
\end{aligned}
$$

New function that solves countdown problems：

```
solutions' :: [Int] -> Int }->\mathrm{ [Expr]
solutions' ns n =
    [e | ns' }\leftarrow\mathrm{ choices ns
    , (e,m) \leftarrow results ns'
    , m == n]
```


How Fast Is It Now?

Example:
 solutions' $[1,3,7,10,25,50] 765$

One solution: 0.014 seconds

All solutions: 1.312 seconds

Can We Do Better?

- Many expressions will be essentially the same using simple arithmetic properties, such as:

$$
\begin{aligned}
& x * y=y * x \\
& x * 1=x
\end{aligned}
$$

- Exploiting such properties would considerably reduce the search and solution spaces.

Exploiting Properties

Strengthening the valid predicate to take account of commutativity and identity properties:

$$
\begin{aligned}
& \text { valid : : Op } \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Bool } \\
& \text { valid Add } x y=x \leq y \\
& \text { valid Sub } x y=x>y \\
& \text { valid Mul } x y=x \leq y \& \& x \neq 1 \& \& y \neq 1 \\
& \text { valid Div } x y=x \text { ‘mod` } y=0 \& \& y \neq 1
\end{aligned}
$$

How Fast Is It Now?

Example: solutions'' [1,3,7,10,25,50] 765

Valid: $\quad 250,000$ expressions
Around 20 times less.

Solutions: 49 expressions

Around 16 times less.

One solution: 0.007 seconds

All solutions: 0.119 seconds

More generally, our program usually returns all solutions in a fraction of a second, and is around 100 times faster that the original version.

作业

9-1.
Modify the final program to:
a. allow the use of exponentiation in expressions;
b. produce the nearest solutions if no exact solution is possible;
c. order the solutions using a suitable measure of simplicity.

PEKING UNIVERSITY

