H FEARSA (35 31)
& X A2 B3k it

Ik, kAR
12 & F R ENFFHEARA
202149 A 15

NEE TR

PEKING UNIVERSITY




L IRZLIT

2 75 dei xS

PEKING UNIVERSITY




P L

e 1988: L5 il K5 T A A KA

* 1996: H AA R AF Z & LF 1‘«‘?}&:—7—4;1

* 1997: H KA R KF L5 3 BHIF

e 2000: H AR 7 KF L5 3| HIZ

e 2008: H KEH 213 & F A AT #iZ

e 2018: H AA 7 KF 12 &F 2R ARAF IR &KX
e 2019: Jb X K5 HHEM A BB HIZ

HALSZAALE, ACMA S A5, IEEE Fellow
HALFERRE BRNFAFREE

G D »
<: ‘f‘.'L t < J y
~ < 9 x\ > T

PEKING UNIVERSITY




ZEATE

e Functional Programming (1985-now)
— Calculating Efficient Functional Programs
— ACM ICFP Steering Committee Co-Chair (2012-2013)

e Algorithmic Languages and Calculi (1992-now)

— Parallel programming and Automatic
Parallelization

— IFIP WG 2.2 Member

e Bidirectional Languages (2003-now)

— Bidirectional languages for system/data
interoperability

— Steering Committee Member of MODELS, ICMT, BX

‘* AR L

PEKING UNIVERSITY




HAFR: R

PRSRFR: ERFBRARFR

MRI: BEFIRITES, REEVES, REILRE, BEFEE

M AR X HVABIE: 86-10-62757974
A5 1247 F

g AR X BFHi4: huzj@pku.edu.cn
A K449 F

MAET: hitp://sei.pku.edu.cn/~hu

S >
: oy Jez )

PEKING UNIVERSITY




ERFR: BIHI%

WHsthr: BEHEsER

W BARETE, BAEERERIT

M AR X ~ EBETFHMEF: zhangw.sei@pku.edu.cn
B4 4 1803 %

g X
T HE KA 437 F

c 30”'”&% t ; \g
A 54;4

PEKING UNIVERSITY




o WhF: HE%
o WF o xrf@pku.edu.cn

0 3 56% @) 1:30

< Bo#@mER

7N t')' >
: a 5£79\S

PEKING UNIVERSITY




5 3% B XAR R BINAS

~°u~,,,¢ » w
o deix X2

PEKING UNIVERSITY




Functional Programming in

OREILLY

(s

Real World
OCaml

Yaron Minsky, Machavapeddy
& Jasea Mickey

Wishu Anggoro

Learning

C++ Functional
Programming

Functlonéi}

Th;'nking

Neal Ferd

'Algorithms
for Functional
Programming

OREILLY

Functional
Programming
in Python

Real-World

! 1
.I 3

) 3 »I‘"'l
THINKING
FUNCTIONALLY

with
HASKELL

RICHARD BIRD




FHRAEZ R A W EAES

Lambda Calculus Church-Turing Thesis

If an algorithm exists,

then there is an equivalent
Turing Machine or
applicable Lambda-function
for that algorithm.

Alonzo Church (1903-1995)

Father of Al and Lisp

Operators + Notions for Functions

Whole Programming Languages

John McCarthy (1927-2011)

i :: ae x‘ J’ w
598 PEKING UNIVERSITY




S IR BRAF T A8 5 3 N R AR S 4

|II

8 4 "simple = easy!
;h—b%?\]i T 2 A0 21 7 3B AT BT
B EEYE T REINESRH LR E,

AR T R R &

7 it
% nH 44 =2 3N
FUNCTIONALLY AE A v ) BH & S5 I
HASKELL +
RICHARD BIRD 7%-3? ﬁi}%;}ﬁ}ﬂ é@ ,fjt,fjc

PEKING UNIVERSITY




RSB KRS KBS — 15 3R

12

We aim to teach the core principles so that students can quickly grasp
any new language that comes along.

4l K 4

RS

N

ETRXF

Chalmers University of Technology
University of New South Wales
Australian National University

2y Jex )2
2 . 579\ Z

PEKING UNIVERSITY




Dijstra=f=F & A

0

To the members of the Budget Council

I write to you because of a rumour of efforts to replace in the introductory
programming course of our undergraduate curriculum the functional programming lan-
guage Haskell by the imperative language Java, and because I think that in this
case the Budget Council has to take responsibility lest the decision be taken at
the wrong level.

You see, it is no minor matter. Colleagues from outside the state (still!)
often wonder how I can survive in a place like Austin, Texas, automatically assum-
ing that Texas's solid conservatism guarantees equally solid mediocrity. My usual
answer is something like "Don't worry. The CS Department is quite an enlightened
place, for instance for introductory programming we introduce our freshmen to Has-
kell"; they react first almost with disbelief, and then with envy --usually it
turns out that their undergraduate curriculum has not recovered from the transition
from Pascal to something like C++ or Java.

A very practical reason for preferring functional programming in a freshman
course is that most students already have a certain familiarity with imperative
programming. Facing them with the novelty of functional programming immediately
drives home the message that there is more to programming than they thought. And
quickly they will observe that functional programming elegantly admits solutions
that are very hard (or impossible) to formulate with the programming vehicle of
their high school days.

A fundamental reason for the preference is that functional programs are much
more readily appreciated as mathematical objects than imperative ones, so that you
can teach what rigorous reasoning about programs amounts to. The additional advan-
tage of functional programming with "lazy evaluation" is that it provides an en-
vironment that discourages operational reasoning.

Finally, in the specific comparison of Haskell versus Java, Haskell, though
not perfect, is of a quality that is several orders of magnitude higher than Java,
which is a mess (and needed an extensive advertizing campaign and aggressive sales-
manship for its commercial acceptance). It is bad enough that, on the whole, in-

ustin K 5 4k 28 # 32 FP

TN P anSCrpuon |

dustry accepts designs of well-identified lousiness as "de facto" standards. Per-
sonally I think that the University should keep the healthier alternatives alive.
* . *

It is not only the violin that shapes the violinist, we are all shaped by the
the tools we train ourselves to use, and in this respect programming languages have
a devious influence: they shape our thinking habits. This circumstance makes the
choice of first programming language so important. One would like to use the intro-
ductory programming course as a means of creating a culture that can serve as a ba-
sis for a computing science curriculum, rather than be forced to start that with a
lot of unlearning (if that is possible at all: what has become our past, forever
remains so). The choice implies a grave responsibility towards our undergraduate
students, and that is why it can not be left to a random chairman of something but
has to be done by the Budget Council. This is not something that can be left to
the civil servants or the politicians; here statesmen are needed.

Austin, 12 April 2001

E:ifng lJTTIE;)(s}ha
Jlimidivio

13

TR

PEKING UNIVERSITY




FP % 3t 69 32

Why
Functional Programming
Matters

lohn Hughes
Fhe University, Glasgow

1390

Volume 2, Issue 3
September 2015

Article Contents
Abstract
INTRODUCTION

CORRECTNESS OF PROGRAM
CONSTRUCTION

STRUCTURING COMPUTATION

PARALLEL AND DISTRIBUTED
COMPUTATION

FUNCTIONAL THINKING IN
PRACTICE

How functional programming mattered 3
Zhenjiang Hu %, John Hughes, Meng Wang

National Science Review, Volume 2, Issue 3, September 2015, Pages 349-370,
https://doi.org/10.1093/nsr/nwv042
Published: 13 July2015 Article history ¥

PDF Bl Split View ¢¢ Cite A Permissions «$ Share ¥

Abstract

In 1989 when functional programming was still considered a niche topic,
Hughes wrote a visionary paper arguing convincingly ‘why functional
programming matters’. More than two decades have passed. Has functional
programming really mattered? Our answer is a resounding ‘Yes!’. Functional
programming is now at the forefront of a new generation of programming
technologies, and enjoying increasing popularity and influence. In this paper,
we review the impact of functional programming, focusing on how it has
changed the way we may construct programs, the way we may verify
programs, and fundamentally the way we may think about programs.

Keywords: functional programming, functional languages, equational reasoning,
monad, high order function

John Hughes: Why Functional Programming Matters. Comput. J. 32(2): 98-107 (1989)

Zhenjiang Hu, John Hughes, Meng Wang: How functional programming mattered. National
Science Review, Volume 2, Issue 3, September 2015, Pages 349—370

14

Jeg K3

PEKING UNIVERSITY



AL H Y

15

~°u~,,,¢ » w
o deix X2

PEKING UNIVERSITY



PRAL B 49

’kkﬁ&uiiﬁTuﬁ%%$%ﬁ(%%
B,ﬁ?,m%éﬁ%ﬁﬁiﬂ,ﬁfﬁ
) UL EEIREA, 15 AR
— IAEAZ T8 AR RS AR e R X E %ﬂi
- RO AT R AL
— IR T A NAL I B A6 AT Fe AR AR )

1

IR A B 5 B R L& ROAT 69 2055 Amd
H— O RAL AL

16 an\J >4

PEKING UNIVERSITY




LA

S5

7



FEZAE =3y

e Haskell & # X A2 5% +t: Y9114k

- XA, BB, BRI, FARHHK, RELL,
Bk 8l |VE R 8958 2, TR, &AL

o (A TAgda®y) RFIEFEHEH: H1akiR
— 20y L5 HA
- B ERE5R A E R
- BEIBEFERFES

o I E ML KR! 7 R BR

18 Jﬁx\J’w

PEKING UNIVERSITY




2 wos"

Lectures on
RO THREE» R

Constructive Functional Programming
by

R.S. Bird RBERE TSI

{#i il Haskell /il Agda &7
BRI skfh g
2021 FE 8 H

Oxtord University
ngmnnwf Lalaomwry
ming 8a -
817 Kable Hoag " CrovP-Libmry
Oxford OX1 3QD
Oxtorg (0865) 54141

Technical Monograph PRG-69
ISBN 0-902928-51-1

September 1988

Oxford University Computing Laboratory
Programming Research Group

mnd Ed lﬂon %:,‘o:ﬁ;l;:‘ ;:;D An Awesome Publisher

England

Graham Hutton, Programming in Haskell, Cambridge University Press, 2016.

Richard Bird, Lecture Notes on Constructive Functional Programming,
Technical Monograph PRG-69, Oxford University, 1988.
»
-«
Jez

PEKING UNIVERSITY

19




20

AR

$ Jei i

PEKING UNIVERSITY



4 A A

* A 300
o M. 304
e K. 404

o M ay XA, HARAEL K.

SEILN »
? AT LS

PEKING UNIVERSITY




