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Running Example: Maximum Segment Sum Problem

We will explain the basic concepts of BMF by demonstrating how
to develop a correct linear-time program.

Maximum Segment Sum Problem

Given a list of numbers, find the maximum of sums of all
consecutive sublists.

[−1, 3, 3,−4,−1, 4, 2,−1] =⇒ 7

[−1, 3, 1,−4,−1, 4, 2,−1] =⇒ 6

[−1, 3, 1,−4,−1, 1, 2,−1] =⇒ 4
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Introduction

BMF is a calculus of functions for people to derive programs from
specifications:

a range of concepts and notations for defining functions;

a set of algebraic laws for manipulating functions.
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Question

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1
= ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?
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Review: Functions

A function f that has source type α and target type β is
denoted by

f : α→ β

We shall say that f takes arguments in α and returns results
in β.

Function application is written without brackets; thus f a
means f (a). Function application is more binding than any
other operation, so f a⊗ b means (f a)⊗ b.

Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as fa b.
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Function composition is denoted by a centralized dot (·). We
have

(f · g) x = f (g x)

Two functions f and g are equivalence iff

∀x . f x = g x

Exercise

Show the following equation states that functional composition is
associative.

(f ·) · (g ·) = ((f · g)·)
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Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary
operators can be sectioned. This means that (⊕), (a⊕) and
(⊕a) all denote functions. The definitions are:

(⊕) a b = a⊕ b
(a⊕) b = a⊕ b
(⊕b) a = a⊕ b

Exercise

If ⊕ has type ⊕ : α× β → γ, then what are the types for (⊕),
(a⊕) and (⊕b) for all a in α and b in β?
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The identity element of ⊕ : α× α→ α, if it exists, will be
denoted by id⊕. Thus,

a⊕ id⊕ = id⊕ ⊕ a = a

The constant values function K : α→ β → α is defined by
the equation

K a b = a

Exercise

What is the identity element of functional composition?
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Review: Lists

Lists are finite sequence of values of the same type. We use
the notation [α] to describe the type of lists whose elements
have type α.

Examples:
[1, 2, 1] : [Int]
[[1], [1, 2], [1, 2, 1]] : [[Int]]
[ ] : [α]
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List Constructors

[ ] : [α] constructs an empty list.

[.] : α→ [α] maps elements of α into singleton lists.

[.] a = [a]

The primitive operator on lists is concatenation (++ ).

[1] ++ [2] ++ [1] = [1, 2, 1]

Concatenation is associative:

x ++(y ++ z) = (x ++ y) ++ z
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Algebraic View of Lists

([α],++ , [ ]) is a monoid.

([α],++ , [ ]) is a free monoid generated by α under the
assignment [.] : α→ [α].

([α]+,++) is a semigroup.
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List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

h [ ] = id⊕
h [a] = f a
h (x ++ y) = h x ⊕ h y

It defines a map from the monoid ([α],++ , [ ]) to the monoid
(β,⊕ : β → β → β, id⊕ : β).

Property: h is uniquely determined by f and ⊕.
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An Example: the function returning the length of a list.

# [ ] = 0
# [a] = 1
# (x ++ y) = # x +# y

Note that (Int,+, 0) is a monoid.
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Bags and Sets

A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that ++ is
commutative (as well as associative):

x ++ y = y ++ x

A set is a bag in which repetitions of elements are ignored.
Sets are constructed by adding the rule that ++ is idempotent
(as well as commutative and associative):

x ++ x = x
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Map

The operator ∗ (pronounced map) takes a function on its left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [ ] = [ ]
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Exercise

Prove the following map distributivity.

(f · g)∗ = (f ∗) · (g∗)
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Reduce

The operator / (pronounced reduce) takes an associative binary
operator on its left and a list on its right. Informally, we have

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Formally, ⊕/ is a homomorphism:

⊕/[ ] = id⊕ { if id⊕ exists }
⊕/[a] = a
⊕/(x ++ y) = (⊕/x)⊕ (⊕/y)
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Examples:

max : [Int]→ Int
max = ↑ /

where a ↑ b = if a ≤ b then b else a

head : [α]+ → α
head = ⋖/

where a⋖ b = a

last : [α]+ → α
last = ⋗/

where a⋗ b = b
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Promotion

f ∗ and ⊕/ can be expressed as identities between functions.

Empty Rules
f ∗ ·K [ ] = K [ ]
⊕/ · K [ ] = K id⊕

One-Point Rules
f ∗ ·[·] = [·] · f
⊕/ · [·] = id

Join Rules
f ∗ ·++ / = ++ / · (f ∗)∗
⊕/ ·++ / = ⊕/.(⊕/)∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)



Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Exercise

Any homomorphism h can be defined in the following form:

h = ⊕/ · f ∗

for some functions ⊕ and f .
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An Example of Calculation

Composition of two specific homomorphisms is a homomorphism.

⊕/ · f ∗ ·++ / · g∗
= { map promotion }
⊕/ ·++ / · f ∗ ∗ · g∗

= { reduce promotion }
⊕/ · (⊕/) ∗ ·f ∗ ∗ · g∗

= { map distribution }
⊕/ · (⊕/ · f ∗ ·g)∗
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Directed Reductions

We introduce two more computation patterns→/ (pronounced
left-to-right reduce) and←/ (right-to-left reduce) which are closely
related to /. Informally, we have

⊕→/ e [a1, a2, . . . , an] = ((e ⊕ a1)⊕ · · · )⊕ an
⊕←/ e [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an ⊕ e))

Formally, we can define ⊕→/ e on lists by two equations.

⊕→/ e [ ] = e
⊕→/ e(x ++ [a]) = (⊕→/ ex)⊕ a

Exercise: Give a formal definition for ⊕←/ e .
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Directed Reductions without Seeds

⊕→/ [a1, a2, . . . , an] = ((a1 ⊕ a2)⊕ · · · )⊕ an
⊕←/ [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an−1 ⊕ an))

Properties:
(⊕→/ ) · ([a] ++ ) = ⊕→/ a

(⊕←/ ) · (++ [a]) = ⊕←/ a
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An Example Use of Left-Reduce

Consider the right-hand side of Horner’s rule:

(((1× a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be written using a left-reduce:

⊙→/ 1[a1, a2, . . . , an]

where a⊙ b = (a× b) + 1

Exercise

Give the definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an
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The Special Homework Problem

Suppose f = ⊕→/ e = ⊗←/ e .

1 Prove that f is a homomorphism, i.e., there exisits an
associate operator ⊙ s.t.

f (x ++ y) = f xs ⊙ f ys.

2 Implement in Haskell an algorithm to derive ⊙ from ⊕ and ⊗.
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Accumulations

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators →// (pronounced left-accumulate) and
←// (right-accumulate) and are defined informally by

⊕→// e [a1, a2, . . . , an] = [e, e ⊕ a1, . . . , ((e ⊕ a1)⊕) · · · ⊕ an]
⊕ ←// e [a1, a2, . . . , an] = [a1 ⊕ (a2 ⊕ · · · ⊕ (an ⊕ e)), . . . , an ⊕ e, e]
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Formally, we can define ⊕→// e on lists by two equations by

⊕→// e [ ] = [e]
⊕→// e([a] ++ x) = [e] ++ (⊕→// e⊕ax),

or
⊕→// e [ ] = [e]
⊕→// e(x ++ [a]) = (⊕→// ex) ++ [b ⊕ a]

where b = last(⊕→// ex).
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Efficiency in Accumulate

⊕→// e [a1, a2, . . . , an]: can be evaluated with n− 1 calculations of ⊕.

Exercise

Consider computation of first n + 1 factorial numbers:
[0!, 1!, . . . , n!]. How many calculations of × are required for the
following two programs?

1 ×→// 1[1, 2, . . . , n]

2 fact ∗ [0, 1, 2, · · · , n] where fact n = product [1..n].
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Relation between Reduce and Accumulate

⊕→/ e = last · ⊕→// e

⊕→// e = ⊗→/ [e]

where x ⊗ a = x ++ [last x ⊕ a]
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Segments

A list y is a segment of x if there exists u and v such that

x = u ++ y ++ v .

If u = [], then y is called an initial segment.
If v = [], then y is called an final segment.

An Example:

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: How many segments for a list [a1, a2, . . . , an]?
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inits

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits [a1, a2, . . . , an] = [[ ], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]

inits = (++→// []) · [·]∗
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tails

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, . . . , an], . . . , [an], [ ]]

tails = (++ ←// []) · [·]∗
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segs

segs = ++ / · tails ∗ ·inits

Exercise: Show the result of segs [1, 2].
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Accumulation Lemma

(⊕→// e) = (⊕→/ e) ∗ ·inits
(⊕→// ) = (⊕→/ ) ∗ ·inits+

The accumulation lemma is used frequently in the derivation of
efficient algorithms for problems about segments.

On lists of length n, evaluation of the LHS requires O(n)
computations involving ⊕, while the RHS requires O(n2)
computations.
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The Question: Revisit

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , a2, and we will refer to it as Horner’e rule.

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?
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Horner’s Rule

The following equation

⊕/ · ⊗/ ∗ ·tails = ⊙→/ e

where
e = id⊗
a⊙ b = (a⊗ b)⊕ e

holds, provided that ⊗ distributes (backwards) over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)

for all a, b, and c .
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Homework BMF 1-1

Prove the correctness of the Horner’s rule.

Show that
(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)

is equivalent to

(⊗c) · ⊕/ = ⊕/ · (⊗c) ∗ .

holds on all non-empty lists.

Show that
f = ⊕/ · ⊗/ ∗ ·tails

satisfies the equations

f [ ] = e
f (x ++ [a]) = f x ⊙ a
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Generalizations of Horner’s Rule

Generalization 1:

⊕/ · ⊗/ ∗ ·tails+ = ⊙→/
where
a⊙ b = (a⊗ b)⊕ b

Generalization 2:

⊕/ · (⊗/ · f ∗) ∗ ·tails = ⊙→/ e

where
e = id⊗
a⊙ b = (a⊗ f b)⊕ e
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The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6
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A Direct Solution

mss =↑ / ·+/ ∗ ·segs

Exercise

Write a Haskell program for this direct solution.
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Calculating a Linear Algorithm using Horner’s Rule

mss
= { definition of mss }
↑ / ·+/ ∗ ·segs

= { definition of segs }
↑ / ·+/ ∗ ·++ / · tails ∗ ·inits

= { map and reduce promotion }
↑ / · (↑ / ·+/ ∗ ·tails) ∗ ·inits

= { Horner’s rule with a⊙ b = (a+ b) ↑ 0 }
↑ / · ⊙→/ 0 ∗ ·inits

= { accumulation lemma }
↑ / · ⊙→// 0
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A Program in Haskell

Homework BMF 1-2

Code the derived linear algorithm for mss in Haskell.
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Segment Decomposition

The sequence of calculation steps given in the derivation of the
mss problem arises frequently. The essential idea can be
summarized as a general theorem.

Theorem (Segment Decomposition)

Suppose S and T are defined by

S = ⊕/ · f ∗ ·segs
T = ⊕/ · f ∗ ·tails

If T can be expressed in the form T = h · ⊙→/ e , then we have

S = ⊕/ · h ∗ ·⊙→// e
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Homework BMF 1-3

Prove the segment decomposition theorem.
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