Chapter 22. Bird Meertens Formalism (BMF) A Quick Tour

Zhenjiang Hu, Wei Zhang

Department of Computer Science and Technology
Peking University
Email: huzj@pku.edu.cn

Peking, 2022

Outline

(1) Running Example: Maximum Segment Sum Problem
(2) Bird Meertens Formalism

Running Example: Maximum Segment Sum Problem

We will explain the basic concepts of BMF by demonstrating how to develop a correct linear-time program.

Maximum Segment Sum Problem
Given a list of numbers, find the maximum of sums of all consecutive sublists.

- $[-1,3,3,-4,-1,4,2,-1] \Longrightarrow 7$
- $[-1,3,1,-4,-1,4,2,-1] \Longrightarrow 6$
- $[-1,3,1,-4,-1,1,2,-1] \Longrightarrow 4$

Outline

(1) Running Example: Maximum Segment Sum Problem
(2) Bird Meertens Formalism

- Review: Functions and Lists
- Structured Recursive Computation Patterns
- Horner's Rule
- Application

Introduction

BMF is a calculus of functions for people to derive programs from specifications:

- a range of concepts and notations for defining functions;
- a set of algebraic laws for manipulating functions.

Question

Consider the following simple identity:

$$
\begin{aligned}
& \left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1 \\
& \quad=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
\end{aligned}
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{n}$, and we will refer to it as Horner'e rule.

Question

Consider the following simple identity:

$$
\begin{aligned}
& \left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1 \\
& \quad=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
\end{aligned}
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{n}$, and we will refer to it as Horner'e rule.

- How many \times are used in each side?

Question

Consider the following simple identity:

$$
\begin{aligned}
& \left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1 \\
& \quad=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
\end{aligned}
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{n}$, and we will refer to it as Horner'e rule.

- How many \times are used in each side?
- Can we generalize \times to $\otimes,+$ to \oplus ? What are the essential constraints for \otimes and \oplus ?

Question

Consider the following simple identity:

$$
\begin{aligned}
& \left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1 \\
& \quad=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
\end{aligned}
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{n}$, and we will refer to it as Horner'e rule.

- How many \times are used in each side?
- Can we generalize \times to $\otimes,+$ to \oplus ? What are the essential constraints for \otimes and \oplus ?
- Do you have suitable notation for expressing the Horner's rule concisely?

Review: Functions

- A function f that has source type α and target type β is denoted by

$$
f: \alpha \rightarrow \beta
$$

We shall say that f takes arguments in α and returns results in β.

- Function application is written without brackets; thus f a means $f(a)$. Function application is more binding than any other operation, so $f a \otimes b$ means $(f a) \otimes b$.
- Functions are curried and applications associates to the left, so $f a b$ means $(f a) b$ (sometimes written as $f_{a} b$.
- Function composition is denoted by a centralized dot (•). We have

$$
(f \cdot g) x=f(g x)
$$

- Two functions f and g are equivalence iff

$$
\forall x . f x=g x
$$

- Function composition is denoted by a centralized dot (•). We have

$$
(f \cdot g) x=f(g x)
$$

- Two functions f and g are equivalence iff

$$
\forall x . f x=g x
$$

Exercise

Show the following equation states that functional composition is associative.

$$
(f \cdot) \cdot(g \cdot)=((f \cdot g) \cdot)
$$

- Binary operators will be denoted by \oplus, \otimes, \odot, etc. Binary operators can be sectioned. This means that $(\oplus),(a \oplus)$ and $(\oplus a)$ all denote functions. The definitions are:

$$
\begin{aligned}
& (\oplus) a b=a \oplus b \\
& (a \oplus) b=a \oplus b \\
& (\oplus b) a=a \oplus b
\end{aligned}
$$

- Binary operators will be denoted by \oplus, \otimes, \odot, etc. Binary operators can be sectioned. This means that $(\oplus),(a \oplus)$ and $(\oplus a)$ all denote functions. The definitions are:

$$
\begin{aligned}
& (\oplus) a b=a \oplus b \\
& (a \oplus) b=a \oplus b \\
& (\oplus b) a=a \oplus b
\end{aligned}
$$

Exercise

If \oplus has type $\oplus: \alpha \times \beta \rightarrow \gamma$, then what are the types for (\oplus), $(a \oplus)$ and $(\oplus b)$ for all a in α and b in β ?

- The identity element of $\oplus: \alpha \times \alpha \rightarrow \alpha$, if it exists, will be denoted by $i d_{\oplus}$. Thus,

$$
a \oplus i d_{\oplus}=i d_{\oplus} \oplus a=a
$$

- The constant values function $K: \alpha \rightarrow \beta \rightarrow \alpha$ is defined by the equation

$$
K a b=a
$$

- The identity element of $\oplus: \alpha \times \alpha \rightarrow \alpha$, if it exists, will be denoted by $i d_{\oplus}$. Thus,

$$
a \oplus i d_{\oplus}=i d_{\oplus} \oplus a=a
$$

- The constant values function $K: \alpha \rightarrow \beta \rightarrow \alpha$ is defined by the equation

$$
K a b=a
$$

Exercise

What is the identity element of functional composition?

Review: Lists

- Lists are finite sequence of values of the same type. We use the notation $[\alpha]$ to describe the type of lists whose elements have type α.
- Examples:
$[1,2,1]:[I n t]$
$[[1],[1,2],[1,2,1]]:[[I n t]]$
[] : $[\alpha]$

List Constructors

- [] : $[\alpha]$ constructs an empty list.
- [.] : $\alpha \rightarrow[\alpha]$ maps elements of α into singleton lists.

$$
[\cdot] a=[a]
$$

- The primitive operator on lists is concatenation (+).

$$
[1]+[2]+[1]=[1,2,1]
$$

Concatenation is associative:

$$
x+(y+z)=(x+y)+z
$$

Algebraic View of Lists

- $([\alpha],+,[])$ is a monoid.
- ($[\alpha], \#,[])$ is a free monoid generated by α under the assignment [.] : $\alpha \rightarrow[\alpha]$.
- $\left([\alpha]^{+},+\right)$is a semigroup.

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

$$
\begin{array}{ll}
h[] & =i d_{\oplus} \\
h[a] & =f a \\
h(x++y) & =h x \oplus h y
\end{array}
$$

It defines a map from the monoid $([\alpha], \#,[])$ to the monoid $\left(\beta, \oplus: \beta \rightarrow \beta \rightarrow \beta, i d_{\oplus}: \beta\right)$.

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

$$
\begin{array}{ll}
h[] & =i d_{\oplus} \\
h[a] & =f a \\
h(x++y) & =h x \oplus h y
\end{array}
$$

It defines a map from the monoid $([\alpha], \#,[])$ to the monoid $\left(\beta, \oplus: \beta \rightarrow \beta \rightarrow \beta, i d_{\oplus}: \beta\right)$.

Property: h is uniquely determined by f and \oplus.

An Example: the function returning the length of a list.

$$
\begin{array}{ll}
\#[] & =0 \\
\#[a] & =1 \\
\#(x++y) & =\# x+\# y
\end{array}
$$

Note that $(\operatorname{lnt},+, 0)$ is a monoid.

Bags and Sets

- A bag is a list in which the order of the elements is ignored. Bags are constructed by adding the rule that H is commutative (as well as associative):

$$
x+y=y+x
$$

- A set is a bag in which repetitions of elements are ignored. Sets are constructed by adding the rule that $\#$ is idempotent (as well as commutative and associative):

$$
x+x=x
$$

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$
f *\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\begin{array}{lll}
f & a_{1}, f & a_{2}, \ldots, f \\
a_{n}
\end{array}\right]
$$

Formally, $\left(f_{*}\right)$ (or sometimes simply written as $f *$) is a homomorphism:

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$
f *\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\begin{array}{lll}
f & a_{1}, f & a_{2}, \ldots, f \\
a_{n}
\end{array}\right]
$$

Formally, $(f *)$ (or sometimes simply written as $f *)$ is a homomorphism:

$$
\begin{array}{ll}
f *[] & =[] \\
f *[a] & =[f a] \\
f *(x+y) & =(f * x)+(f * y)
\end{array}
$$

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$
f *\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\begin{array}{lll}
f & a_{1}, f & a_{2}, \ldots, f \\
a_{n}
\end{array}\right]
$$

Formally, $(f *)$ (or sometimes simply written as $f *)$ is a homomorphism:

$$
\begin{array}{ll}
f *[] & =[] \\
f *[a] & =[f a] \\
f *(x+y) & =(f * x)+(f * y)
\end{array}
$$

Exercise

Prove the following map distributivity.

$$
(f \cdot g) *=(f *) \cdot(g *)
$$

Reduce

The operator / (pronounced reduce) takes an associative binary operator on its left and a list on its right. Informally, we have

$$
\oplus /\left[a_{1}, a_{2}, \ldots, a_{n}\right]=a_{1} \oplus a_{2} \oplus \cdots \oplus a_{n}
$$

Formally, $\oplus /$ is a homomorphism:

Reduce

The operator / (pronounced reduce) takes an associative binary operator on its left and a list on its right. Informally, we have

$$
\oplus /\left[a_{1}, a_{2}, \ldots, a_{n}\right]=a_{1} \oplus a_{2} \oplus \cdots \oplus a_{n}
$$

Formally, $\oplus /$ is a homomorphism:

$$
\begin{array}{ll}
\oplus /[] & =i d_{\oplus} \quad\left\{\text { if } i d_{\oplus} \text { exists }\right\} \\
\oplus /[a] & =a \\
\oplus /(x+y) & =(\oplus / x) \oplus(\oplus / y)
\end{array}
$$

Examples:

$$
\begin{aligned}
\max : & {[\operatorname{lnt}] \rightarrow \text { Int } } \\
\max : & \uparrow / \\
& \\
& \text { where } a \uparrow b=\text { if } a \leq b \text { then } b \text { else } a \\
\text { head }: & {[\alpha]^{+} \rightarrow \alpha } \\
\text { head }: & \lessdot / \\
& \\
& \text { where } a \lessdot b=a \\
\text { last }: & {[\alpha]^{+} \rightarrow \alpha } \\
\text { last }: & \gtrdot / \\
& \\
& \text { where } a \gtrdot b=b
\end{aligned}
$$

Promotion

$f *$ and $\oplus /$ can be expressed as identities between functions.
Empty Rules

$$
\begin{aligned}
& f * \cdot K[]=K[] \\
& \oplus / \cdot K[]=K i d_{\oplus}
\end{aligned}
$$

One-Point Rules

$$
\begin{aligned}
& f * \cdot[\cdot]=[\cdot] \cdot f \\
& \oplus / \cdot[\cdot]=i d
\end{aligned}
$$

Join Rules

$$
\begin{aligned}
& f * \cdot+/=+/ \cdot(f *) * \\
& \oplus / \cdot+/=\oplus / \cdot(\oplus /) *
\end{aligned}
$$

Exercise

Any homomorphism h can be defined in the following form:

$$
h=\oplus / \cdot f *
$$

for some functions \oplus and f.

An Example of Calculation

Composition of two specific homomorphisms is a homomorphism.

$$
\begin{array}{cc}
& \oplus / \cdot f * \cdot+/ \cdot g * \\
= & \{\text { map promotion }\} \\
= & \oplus / \cdot++/ \cdot f * * \cdot g * \\
= & \{\text { reduce promotion }\} \\
= & \oplus / \cdot(\oplus /) * \cdot f * * \cdot g * \\
& \{\text { map distribution }\} \\
& \oplus / \cdot(\oplus / \cdot f * \cdot g) *
\end{array}
$$

Directed Reductions

We introduce two more computation patterns \nrightarrow (pronounced left-to-right reduce) and ψ (right-to-left reduce) which are closely related to /. Informally, we have

$$
\begin{aligned}
\oplus \nrightarrow e\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(e \oplus a_{1}\right) \oplus \cdots\right) \oplus a_{n} \\
\oplus H e\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n} \oplus e\right)\right)
\end{aligned}
$$

Formally, we can define $\oplus \dagger_{e}$ on lists by two equations.

$$
\begin{array}{ll}
\oplus \not \mapsto_{e}[] & =e \\
\oplus \not \mapsto_{e}(x+[a]) & =\left(\oplus \not_{e} x\right) \oplus a
\end{array}
$$

Directed Reductions

We introduce two more computation patterns \nrightarrow (pronounced left-to-right reduce) and ψ (right-to-left reduce) which are closely related to /. Informally, we have

$$
\begin{aligned}
\oplus \nmid e\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(e \oplus a_{1}\right) \oplus \cdots\right) \oplus a_{n} \\
\oplus H e\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n} \oplus e\right)\right)
\end{aligned}
$$

Formally, we can define $\oplus f_{e}$ on lists by two equations.

$$
\begin{array}{ll}
\oplus \not_{e}[] & =e \\
\oplus \not_{e}(x+[a]) & =\left(\oplus \not_{e} x\right) \oplus a
\end{array}
$$

Exercise: Give a formal definition for $\oplus \psi_{e}$.

Directed Reductions without Seeds

$$
\begin{aligned}
\oplus \nrightarrow\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n} \\
\oplus H\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n-1} \oplus a_{n}\right)\right)
\end{aligned}
$$

Directed Reductions without Seeds

$$
\begin{aligned}
\oplus \nrightarrow\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n} \\
\oplus H\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n-1} \oplus a_{n}\right)\right)
\end{aligned}
$$

Properties:

$$
\begin{array}{ll}
(\oplus \nrightarrow) \cdot([a]+) & =\oplus \nrightarrow a \\
(\oplus \psi) \cdot(+[a]) & =\oplus \not+\psi_{a}
\end{array}
$$

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$
\left(\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times \cdots+1\right) \times a_{n}+1
$$

This expression can be written using a left-reduce:

$$
\odot \not \nrightarrow 1_{1}\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$
\left(\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times \cdots+1\right) \times a_{n}+1
$$

This expression can be written using a left-reduce:

$$
\begin{aligned}
& \odot \not \not_{1}\left[a_{1}, a_{2}, \ldots, a_{n}\right] \\
& \quad \text { where } a \odot b=(a \times b)+1
\end{aligned}
$$

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$
\left(\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times \cdots+1\right) \times a_{n}+1
$$

This expression can be written using a left-reduce:

$$
\begin{aligned}
& \odot \not \not_{1}\left[a_{1}, a_{2}, \ldots, a_{n}\right] \\
& \quad \text { where } a \odot b=(a \times b)+1
\end{aligned}
$$

Exercise

Give the definition of \ominus such that the following holds.
$\ominus \nrightarrow\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left(\left(\left(a_{1} \times a_{2}+a_{2}\right) \times a_{3}+a_{3}\right) \times \cdots+a_{n-1}\right) \times a_{n}+a_{n}$

The Special Homework Problem

Suppose $f=\oplus \not_{e}=\otimes \not \psi_{e}$.
(1) Prove that f is a homomorphism, i.e., there exisits an associate operator \odot s.t.

$$
f(x+y)=f x s \odot f y s
$$

(2) Implement in Haskell an algorithm to derive \odot from \oplus and \otimes.

Accumulations

With each form of directed reduction over lists there corresponds a form of computation called an accumulation. These forms are expressed with the operators $\# t$ (pronounced left-accumulate) and \#/ (right-accumulate) and are defined informally by

$$
\begin{aligned}
& \oplus \not H_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[e, e \oplus a_{1}, \ldots,\left(\left(e \oplus a_{1}\right) \oplus\right) \cdots \oplus a_{n}\right] \\
& \oplus H e\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n} \oplus e\right)\right), \ldots, a_{n} \oplus e, e\right]
\end{aligned}
$$

Formally, we can define $\oplus H_{e}$ on lists by two equations by

$$
\begin{array}{ll}
\oplus \not H_{e}[] & =[e] \\
\oplus \not \| e([a]+x) & =[e]+\left(\oplus H_{e \oplus a} x\right),
\end{array}
$$

or

$$
\begin{aligned}
\oplus H_{e}[] & = \\
\oplus H_{e}(x+[a])= & \left(\oplus H_{e} x\right)+[b \oplus a] \\
& \text { where } b=\operatorname{last}\left(\oplus \notin H_{e} x\right) .
\end{aligned}
$$

Efficiency in Accumulate

$\oplus H_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right]:$ can be evaluated with $n-1$ calculations of \oplus.

Exercise

Consider computation of first $n+1$ factorial numbers: $[0!, 1!, \ldots, n!]$. How many calculations of \times are required for the following two programs?
(1) $\times \#_{1}[1,2, \ldots, n]$
(2) fact $*[0,1,2, \cdots, n]$ where fact $n=$ product $[1 . . n]$.

Relation between Reduce and Accumulate

$$
\begin{aligned}
& \oplus \not_{e}=\text { last } \cdot \oplus \not H_{e} \\
& \oplus \#_{e}=\otimes H_{[e]} \\
& \quad \text { where } x \otimes a=x+[\text { last } x \oplus a]
\end{aligned}
$$

Segments

A list y is a segment of x if there exists u and v such that

$$
x=u+y+v .
$$

If $u=[]$, then y is called an initial segment.
If $v=$ [], then y is called an final segment.
An Example:

$$
\operatorname{segs}[1,2,3]=[[],[1],[1,2],[2],[1,2,3],[2,3],[3]]
$$

Exercise: How many segments for a list $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$?

inits

The function inits returns the list of initial segments of a list, in increasing order of a list.

$$
\text { inits }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[[],\left[a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right]
$$

inits

The function inits returns the list of initial segments of a list, in increasing order of a list.

$$
\begin{gathered}
\text { inits }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[[],\left[a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right] \\
\text { inits } \left.=\left(+H_{[}\right]\right) \cdot[\cdot] *
\end{gathered}
$$

tails

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$
\text { tails }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[a_{2}, \ldots, a_{n}\right], \ldots,\left[a_{n}\right],[]\right]
$$

tails

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$
\begin{gathered}
\text { tails }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[a_{2}, \ldots, a_{n}\right], \ldots,\left[a_{n}\right],[]\right] \\
\text { tails }=\left(+H_{[]}\right) \cdot[\cdot] *
\end{gathered}
$$

segs

$$
\text { segs }=+/ \cdot \text { tails } * \cdot \text { inits }
$$

Exercise: Show the result of segs $[1,2]$.

Accumulation Lemma

$$
\begin{aligned}
& (\oplus \not H e)=\left(\oplus \not H_{e}\right) * \cdot \text { inits }_{e} \\
& (\oplus \not H)=(\oplus \nrightarrow) * \cdot \text { inits }^{+}
\end{aligned}
$$

The accumulation lemma is used frequently in the derivation of efficient algorithms for problems about segments.

On lists of length n, evaluation of the LHS requires $O(n)$ computations involving \oplus, while the RHS requires $O\left(n^{2}\right)$ computations.

The Question: Revisit

Consider the following simple identity:

$$
\left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{2}$, and we will refer to it as Horner'e rule.

- Can we generalize \times to \otimes, + to \oplus ? What are the essential constraints for \otimes and \oplus ?
- Do you have suitable notation for expressing the Horner's rule concisely?

Horner's Rule

The following equation

$$
\begin{aligned}
& \oplus / \cdot \otimes / * \cdot \text { tails }=\odot \not \mapsto_{e} \\
& \text { where } \\
& \quad \quad e=i d_{\otimes} \\
& \quad a \odot b=(a \otimes b) \oplus e
\end{aligned}
$$

holds, provided that \otimes distributes (backwards) over \oplus :

$$
(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
$$

for all a, b, and c.

Homework BMF 1-1

Prove the correctness of the Horner's rule.

- Show that

$$
(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
$$

is equivalent to

$$
(\otimes c) \cdot \oplus /=\oplus / \cdot(\otimes c) *
$$

holds on all non-empty lists.

- Show that

$$
f=\oplus / \cdot \otimes / * \cdot \text { tails }
$$

satisfies the equations

$$
\begin{array}{ll}
f[] & =e \\
f(x+[a]) & =f x \odot a
\end{array}
$$

Generalizations of Horner's Rule

Generalization 1:

$$
\begin{aligned}
& \oplus / \cdot \otimes / * \cdot \text { tails }^{+}=\odot \nrightarrow \\
& \quad \text { where } \\
& \quad a \odot b=(a \otimes b) \oplus b
\end{aligned}
$$

Generalizations of Horner's Rule

Generalization 1:

$$
\begin{aligned}
& \oplus / \cdot \otimes / * \cdot \text { tails }^{+}=\odot \nrightarrow \\
& \quad \text { where } \\
& \quad a \odot b=(a \otimes b) \oplus b
\end{aligned}
$$

Generalization 2:

$$
\oplus / \cdot(\otimes / \cdot f *) * \cdot \text { tails }=\odot \not \dashv_{e}
$$

where

$$
\begin{aligned}
& e=i d_{\otimes} \\
& a \odot b=(a \otimes f b) \oplus e
\end{aligned}
$$

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

$$
m s s[3,1,-4,1,5,-9,2]=6
$$

A Direct Solution

$$
m s s=\uparrow / \cdot+/ * \cdot s e g s
$$

A Direct Solution

$$
m s s=\uparrow / \cdot+/ * \cdot s e g s
$$

Exercise

Write a Haskell program for this direct solution.

Calculating a Linear Algorithm using Horner's Rule

mss
$=\quad\{$ definition of mss $\}$
$\uparrow / \cdot+/ * \cdot \operatorname{segs}$
$=\{$ definition of segs $\}$
$\uparrow / \cdot+/ * \cdot+/ \cdot$ tails $* \cdot$ inits
$=\quad\{$ map and reduce promotion $\}$
$\uparrow / \cdot(\uparrow / \cdot+/ * \cdot$ tails $) * \cdot$ inits
$=\quad\{$ Horner's rule with $a \odot b=(a+b) \uparrow 0\}$
$\uparrow / \cdot \odot \nrightarrow 0 * \cdot$ inits
$=\{$ accumulation lemma $\}$
$\uparrow ~ / ~ \cdot ~ \odot ~ H o ~$

A Program in Haskell

Homework BMF 1-2

Code the derived linear algorithm for mss in Haskell.

Segment Decomposition

The sequence of calculation steps given in the derivation of the mss problem arises frequently. The essential idea can be summarized as a general theorem.

Theorem (Segment Decomposition)

Suppose S and T are defined by

$$
\begin{aligned}
& S=\oplus / \cdot f * \cdot \text { segs } \\
& T=\oplus / \cdot f * \cdot \text { tails }
\end{aligned}
$$

If T can be expressed in the form $T=h \cdot \odot \mu_{e}$, then we have

$$
S=\oplus / \cdot h * \cdot \odot H_{e}
$$

Homework BMF 1-3

Prove the segment decomposition theorem.

