
Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Chapter 22. Bird Meertens Formalism (BMF)
A Quick Tour

Zhenjiang Hu, Wei Zhang

Department of Computer Science and Technology
Peking University

Email: huzj@pku.edu.cn

Peking, 2022

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Outline

1 Running Example: Maximum Segment Sum Problem

2 Bird Meertens Formalism

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Running Example: Maximum Segment Sum Problem

We will explain the basic concepts of BMF by demonstrating how
to develop a correct linear-time program.

Maximum Segment Sum Problem

Given a list of numbers, find the maximum of sums of all
consecutive sublists.

[−1, 3, 3,−4,−1, 4, 2,−1] =⇒ 7

[−1, 3, 1,−4,−1, 4, 2,−1] =⇒ 6

[−1, 3, 1,−4,−1, 1, 2,−1] =⇒ 4

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Outline

1 Running Example: Maximum Segment Sum Problem

2 Bird Meertens Formalism
Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Introduction

BMF is a calculus of functions for people to derive programs from
specifications:

a range of concepts and notations for defining functions;

a set of algebraic laws for manipulating functions.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Question

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1
= ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Question

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1
= ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Question

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1
= ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?

Do you have suitable notation for expressing the Horner’s rule
concisely?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Question

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1
= ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Review: Functions

A function f that has source type α and target type β is
denoted by

f : α→ β

We shall say that f takes arguments in α and returns results
in β.

Function application is written without brackets; thus f a
means f (a). Function application is more binding than any
other operation, so f a⊗ b means (f a)⊗ b.

Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as fa b.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Function composition is denoted by a centralized dot (·). We
have

(f · g) x = f (g x)

Two functions f and g are equivalence iff

∀x . f x = g x

Exercise

Show the following equation states that functional composition is
associative.

(f ·) · (g ·) = ((f · g)·)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Function composition is denoted by a centralized dot (·). We
have

(f · g) x = f (g x)

Two functions f and g are equivalence iff

∀x . f x = g x

Exercise

Show the following equation states that functional composition is
associative.

(f ·) · (g ·) = ((f · g)·)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary
operators can be sectioned. This means that (⊕), (a⊕) and
(⊕a) all denote functions. The definitions are:

(⊕) a b = a⊕ b
(a⊕) b = a⊕ b
(⊕b) a = a⊕ b

Exercise

If ⊕ has type ⊕ : α× β → γ, then what are the types for (⊕),
(a⊕) and (⊕b) for all a in α and b in β?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary
operators can be sectioned. This means that (⊕), (a⊕) and
(⊕a) all denote functions. The definitions are:

(⊕) a b = a⊕ b
(a⊕) b = a⊕ b
(⊕b) a = a⊕ b

Exercise

If ⊕ has type ⊕ : α× β → γ, then what are the types for (⊕),
(a⊕) and (⊕b) for all a in α and b in β?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

The identity element of ⊕ : α× α→ α, if it exists, will be
denoted by id⊕. Thus,

a⊕ id⊕ = id⊕ ⊕ a = a

The constant values function K : α→ β → α is defined by
the equation

K a b = a

Exercise

What is the identity element of functional composition?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

The identity element of ⊕ : α× α→ α, if it exists, will be
denoted by id⊕. Thus,

a⊕ id⊕ = id⊕ ⊕ a = a

The constant values function K : α→ β → α is defined by
the equation

K a b = a

Exercise

What is the identity element of functional composition?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Review: Lists

Lists are finite sequence of values of the same type. We use
the notation [α] to describe the type of lists whose elements
have type α.

Examples:
[1, 2, 1] : [Int]
[[1], [1, 2], [1, 2, 1]] : [[Int]]
[] : [α]

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

List Constructors

[] : [α] constructs an empty list.

[.] : α→ [α] maps elements of α into singleton lists.

[.] a = [a]

The primitive operator on lists is concatenation (++).

[1] ++ [2] ++ [1] = [1, 2, 1]

Concatenation is associative:

x ++(y ++ z) = (x ++ y) ++ z

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Algebraic View of Lists

([α],++ , []) is a monoid.

([α],++ , []) is a free monoid generated by α under the
assignment [.] : α→ [α].

([α]+,++) is a semigroup.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

h [] = id⊕
h [a] = f a
h (x ++ y) = h x ⊕ h y

It defines a map from the monoid ([α],++ , []) to the monoid
(β,⊕ : β → β → β, id⊕ : β).

Property: h is uniquely determined by f and ⊕.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

h [] = id⊕
h [a] = f a
h (x ++ y) = h x ⊕ h y

It defines a map from the monoid ([α],++ , []) to the monoid
(β,⊕ : β → β → β, id⊕ : β).

Property: h is uniquely determined by f and ⊕.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

An Example: the function returning the length of a list.

[] = 0
[a] = 1
(x ++ y) = # x +# y

Note that (Int,+, 0) is a monoid.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Bags and Sets

A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that ++ is
commutative (as well as associative):

x ++ y = y ++ x

A set is a bag in which repetitions of elements are ignored.
Sets are constructed by adding the rule that ++ is idempotent
(as well as commutative and associative):

x ++ x = x

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Map

The operator ∗ (pronounced map) takes a function on its left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [] = []
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Exercise

Prove the following map distributivity.

(f · g)∗ = (f ∗) · (g∗)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Map

The operator ∗ (pronounced map) takes a function on its left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [] = []
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Exercise

Prove the following map distributivity.

(f · g)∗ = (f ∗) · (g∗)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Map

The operator ∗ (pronounced map) takes a function on its left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [] = []
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Exercise

Prove the following map distributivity.

(f · g)∗ = (f ∗) · (g∗)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Reduce

The operator / (pronounced reduce) takes an associative binary
operator on its left and a list on its right. Informally, we have

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Formally, ⊕/ is a homomorphism:

⊕/[] = id⊕ { if id⊕ exists }
⊕/[a] = a
⊕/(x ++ y) = (⊕/x)⊕ (⊕/y)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Reduce

The operator / (pronounced reduce) takes an associative binary
operator on its left and a list on its right. Informally, we have

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Formally, ⊕/ is a homomorphism:

⊕/[] = id⊕ { if id⊕ exists }
⊕/[a] = a
⊕/(x ++ y) = (⊕/x)⊕ (⊕/y)

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Examples:

max : [Int]→ Int
max = ↑ /

where a ↑ b = if a ≤ b then b else a

head : [α]+ → α
head = ⋖/

where a⋖ b = a

last : [α]+ → α
last = ⋗/

where a⋗ b = b

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Promotion

f ∗ and ⊕/ can be expressed as identities between functions.

Empty Rules
f ∗ ·K [] = K []
⊕/ · K [] = K id⊕

One-Point Rules
f ∗ ·[·] = [·] · f
⊕/ · [·] = id

Join Rules
f ∗ ·++ / = ++ / · (f ∗)∗
⊕/ ·++ / = ⊕/.(⊕/)∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Exercise

Any homomorphism h can be defined in the following form:

h = ⊕/ · f ∗

for some functions ⊕ and f .

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

An Example of Calculation

Composition of two specific homomorphisms is a homomorphism.

⊕/ · f ∗ ·++ / · g∗
= { map promotion }
⊕/ ·++ / · f ∗ ∗ · g∗

= { reduce promotion }
⊕/ · (⊕/) ∗ ·f ∗ ∗ · g∗

= { map distribution }
⊕/ · (⊕/ · f ∗ ·g)∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Directed Reductions

We introduce two more computation patterns→/ (pronounced
left-to-right reduce) and←/ (right-to-left reduce) which are closely
related to /. Informally, we have

⊕→/ e [a1, a2, . . . , an] = ((e ⊕ a1)⊕ · · ·)⊕ an
⊕←/ e [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an ⊕ e))

Formally, we can define ⊕→/ e on lists by two equations.

⊕→/ e [] = e
⊕→/ e(x ++ [a]) = (⊕→/ ex)⊕ a

Exercise: Give a formal definition for ⊕←/ e .

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Directed Reductions

We introduce two more computation patterns→/ (pronounced
left-to-right reduce) and←/ (right-to-left reduce) which are closely
related to /. Informally, we have

⊕→/ e [a1, a2, . . . , an] = ((e ⊕ a1)⊕ · · ·)⊕ an
⊕←/ e [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an ⊕ e))

Formally, we can define ⊕→/ e on lists by two equations.

⊕→/ e [] = e
⊕→/ e(x ++ [a]) = (⊕→/ ex)⊕ a

Exercise: Give a formal definition for ⊕←/ e .

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Directed Reductions without Seeds

⊕→/ [a1, a2, . . . , an] = ((a1 ⊕ a2)⊕ · · ·)⊕ an
⊕←/ [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an−1 ⊕ an))

Properties:
(⊕→/) · ([a] ++) = ⊕→/ a

(⊕←/) · (++ [a]) = ⊕←/ a

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Directed Reductions without Seeds

⊕→/ [a1, a2, . . . , an] = ((a1 ⊕ a2)⊕ · · ·)⊕ an
⊕←/ [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an−1 ⊕ an))

Properties:
(⊕→/) · ([a] ++) = ⊕→/ a

(⊕←/) · (++ [a]) = ⊕←/ a

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner’s rule:

(((1× a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be written using a left-reduce:

⊙→/ 1[a1, a2, . . . , an]

where a⊙ b = (a× b) + 1

Exercise

Give the definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner’s rule:

(((1× a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be written using a left-reduce:

⊙→/ 1[a1, a2, . . . , an]
where a⊙ b = (a× b) + 1

Exercise

Give the definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner’s rule:

(((1× a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be written using a left-reduce:

⊙→/ 1[a1, a2, . . . , an]
where a⊙ b = (a× b) + 1

Exercise

Give the definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

The Special Homework Problem

Suppose f = ⊕→/ e = ⊗←/ e .

1 Prove that f is a homomorphism, i.e., there exisits an
associate operator ⊙ s.t.

f (x ++ y) = f xs ⊙ f ys.

2 Implement in Haskell an algorithm to derive ⊙ from ⊕ and ⊗.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Accumulations

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators →// (pronounced left-accumulate) and
←// (right-accumulate) and are defined informally by

⊕→// e [a1, a2, . . . , an] = [e, e ⊕ a1, . . . , ((e ⊕ a1)⊕) · · · ⊕ an]
⊕ ←// e [a1, a2, . . . , an] = [a1 ⊕ (a2 ⊕ · · · ⊕ (an ⊕ e)), . . . , an ⊕ e, e]

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Formally, we can define ⊕→// e on lists by two equations by

⊕→// e [] = [e]
⊕→// e([a] ++ x) = [e] ++ (⊕→// e⊕ax),

or
⊕→// e [] = [e]
⊕→// e(x ++ [a]) = (⊕→// ex) ++ [b ⊕ a]

where b = last(⊕→// ex).

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Efficiency in Accumulate

⊕→// e [a1, a2, . . . , an]: can be evaluated with n− 1 calculations of ⊕.

Exercise

Consider computation of first n + 1 factorial numbers:
[0!, 1!, . . . , n!]. How many calculations of × are required for the
following two programs?

1 ×→// 1[1, 2, . . . , n]

2 fact ∗ [0, 1, 2, · · · , n] where fact n = product [1..n].

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Relation between Reduce and Accumulate

⊕→/ e = last · ⊕→// e

⊕→// e = ⊗→/ [e]

where x ⊗ a = x ++ [last x ⊕ a]

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Segments

A list y is a segment of x if there exists u and v such that

x = u ++ y ++ v .

If u = [], then y is called an initial segment.
If v = [], then y is called an final segment.

An Example:

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: How many segments for a list [a1, a2, . . . , an]?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

inits

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits [a1, a2, . . . , an] = [[], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]

inits = (++→// []) · [·]∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

inits

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits [a1, a2, . . . , an] = [[], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]

inits = (++→// []) · [·]∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

tails

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, . . . , an], . . . , [an], []]

tails = (++ ←// []) · [·]∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

tails

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, . . . , an], . . . , [an], []]

tails = (++ ←// []) · [·]∗

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

segs

segs = ++ / · tails ∗ ·inits

Exercise: Show the result of segs [1, 2].

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Accumulation Lemma

(⊕→// e) = (⊕→/ e) ∗ ·inits
(⊕→//) = (⊕→/) ∗ ·inits+

The accumulation lemma is used frequently in the derivation of
efficient algorithms for problems about segments.

On lists of length n, evaluation of the LHS requires O(n)
computations involving ⊕, while the RHS requires O(n2)
computations.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

The Question: Revisit

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1× a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , a2, and we will refer to it as Horner’e rule.

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?
Do you have suitable notation for expressing the Horner’s rule
concisely?

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Horner’s Rule

The following equation

⊕/ · ⊗/ ∗ ·tails = ⊙→/ e

where
e = id⊗
a⊙ b = (a⊗ b)⊕ e

holds, provided that ⊗ distributes (backwards) over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)

for all a, b, and c .

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Homework BMF 1-1

Prove the correctness of the Horner’s rule.

Show that
(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)

is equivalent to

(⊗c) · ⊕/ = ⊕/ · (⊗c) ∗ .

holds on all non-empty lists.

Show that
f = ⊕/ · ⊗/ ∗ ·tails

satisfies the equations

f [] = e
f (x ++ [a]) = f x ⊙ a

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Generalizations of Horner’s Rule

Generalization 1:

⊕/ · ⊗/ ∗ ·tails+ = ⊙→/
where
a⊙ b = (a⊗ b)⊕ b

Generalization 2:

⊕/ · (⊗/ · f ∗) ∗ ·tails = ⊙→/ e

where
e = id⊗
a⊙ b = (a⊗ f b)⊕ e

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Generalizations of Horner’s Rule

Generalization 1:

⊕/ · ⊗/ ∗ ·tails+ = ⊙→/
where
a⊙ b = (a⊗ b)⊕ b

Generalization 2:

⊕/ · (⊗/ · f ∗) ∗ ·tails = ⊙→/ e

where
e = id⊗
a⊙ b = (a⊗ f b)⊕ e

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

A Direct Solution

mss =↑ / ·+/ ∗ ·segs

Exercise

Write a Haskell program for this direct solution.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

A Direct Solution

mss =↑ / ·+/ ∗ ·segs

Exercise

Write a Haskell program for this direct solution.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Calculating a Linear Algorithm using Horner’s Rule

mss
= { definition of mss }
↑ / ·+/ ∗ ·segs

= { definition of segs }
↑ / ·+/ ∗ ·++ / · tails ∗ ·inits

= { map and reduce promotion }
↑ / · (↑ / ·+/ ∗ ·tails) ∗ ·inits

= { Horner’s rule with a⊙ b = (a+ b) ↑ 0 }
↑ / · ⊙→/ 0 ∗ ·inits

= { accumulation lemma }
↑ / · ⊙→// 0

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

A Program in Haskell

Homework BMF 1-2

Code the derived linear algorithm for mss in Haskell.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Segment Decomposition

The sequence of calculation steps given in the derivation of the
mss problem arises frequently. The essential idea can be
summarized as a general theorem.

Theorem (Segment Decomposition)

Suppose S and T are defined by

S = ⊕/ · f ∗ ·segs
T = ⊕/ · f ∗ ·tails

If T can be expressed in the form T = h · ⊙→/ e , then we have

S = ⊕/ · h ∗ ·⊙→// e

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

Running Example: Maximum Segment Sum Problem
Bird Meertens Formalism

Review: Functions and Lists
Structured Recursive Computation Patterns
Horner’s Rule
Application

Homework BMF 1-3

Prove the segment decomposition theorem.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

	Running Example: Maximum Segment Sum Problem
	Bird Meertens Formalism
	Review: Functions and Lists
	Structured Recursive Computation Patterns
	Horner's Rule
	Application

