Chapter 22. Bird Meertens Formalism (BMF) A Quick Tour

Zhenjiang Hu, Wei Zhang

Department of Computer Science and Technology Peking University Email: huzj@pku.edu.cn

Peking, 2022

Outline

1 Running Example: Maximum Segment Sum Problem

イロト イポト イヨト イヨト

э

Running Example: Maximum Segment Sum Problem

We will explain the basic concepts of BMF by demonstrating how to develop a correct linear-time program.

Maximum Segment Sum Problem

Given a list of numbers, find the maximum of sums of all *consecutive* sublists.

- $[-1,3,3,-4,-1,4,2,-1] \implies 7$
- $[-1,3,1,-4,-1,4,2,-1] \implies 6$
- $[-1, 3, 1, -4, -1, 1, 2, -1] \implies 4$

・ 同 ト ・ ヨ ト ・ ヨ ト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Outline

Running Example: Maximum Segment Sum Problem

2 Bird Meertens Formalism

- Review: Functions and Lists
- Structured Recursive Computation Patterns
- Horner's Rule
- Application

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Introduction

BMF is a calculus of functions for *people* to derive programs from specifications:

- a range of concepts and notations for defining functions;
- a set of algebraic laws for manipulating functions.

イロト イポト イラト イラト

Question

Consider the following simple identity:

$$egin{aligned} (\mathsf{a}_1 imes \mathsf{a}_2 imes \mathsf{a}_3) + (\mathsf{a}_2 imes \mathsf{a}_3) + \mathsf{a}_3 + 1 \ &= ((1 imes \mathsf{a}_1 + 1) imes \mathsf{a}_2 + 1) imes \mathsf{a}_3 + 1 \end{aligned}$$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_n , and we will refer to it as Horner'e rule.

Question

Consider the following simple identity:

$$egin{aligned} (\mathsf{a}_1 imes\mathsf{a}_2 imes\mathsf{a}_3)+(\mathsf{a}_2 imes\mathsf{a}_3)+\mathsf{a}_3+1\ &=((1 imes\mathsf{a}_1+1) imes\mathsf{a}_2+1) imes\mathsf{a}_3+1 \end{aligned}$$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_n , and we will refer to it as Horner'e rule.

• How many \times are used in each side?

Question

Consider the following simple identity:

$$egin{aligned} (\mathsf{a}_1 imes\mathsf{a}_2 imes\mathsf{a}_3)+(\mathsf{a}_2 imes\mathsf{a}_3)+\mathsf{a}_3+1\ &=((1 imes\mathsf{a}_1+1) imes\mathsf{a}_2+1) imes\mathsf{a}_3+1 \end{aligned}$$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_n , and we will refer to it as Horner'e rule.

- How many \times are used in each side?
- Can we generalize \times to \otimes , + to \oplus ? What are the essential constraints for \otimes and \oplus ?

Question

Consider the following simple identity:

$$egin{aligned} (a_1 imes a_2 imes a_3) + (a_2 imes a_3) + a_3 + 1 \ &= ((1 imes a_1 + 1) imes a_2 + 1) imes a_3 + 1 \end{aligned}$$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_n , and we will refer to it as Horner'e rule.

- How many \times are used in each side?
- Can we generalize × to ⊗, + to ⊕? What are the essential constraints for ⊗ and ⊕?
- Do you have suitable notation for expressing the Horner's rule concisely?

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Review: Functions

• A function f that has source type α and target type β is denoted by

 $f: \alpha \to \beta$

We shall say that f takes arguments in α and returns results in β .

- Function application is written without brackets; thus f a means f(a). Function application is more binding than any other operation, so f a ⊗ b means (f a) ⊗ b.
- Functions are curried and applications associates to the left, so *f* a *b* means (*f* a) *b* (sometimes written as *f*_a *b*.

• Function composition is denoted by a centralized dot (·). We have

$$(f \cdot g) x = f (g x)$$

• Two functions f and g are equivalence iff

$$\forall x. f x = g x$$

• Function composition is denoted by a centralized dot (·). We have

$$(f \cdot g) x = f (g x)$$

• Two functions f and g are equivalence iff

$$\forall x. f x = g x$$

Exercise

Show the following equation states that functional composition is associative.

$$(f \cdot) \cdot (g \cdot) = ((f \cdot g) \cdot)$$

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary operators can be sectioned. This means that (⊕), (a⊕) and (⊕a) all denote functions. The definitions are:

$$(\oplus)$$
 a $b = a \oplus b$
 $(a\oplus)$ $b = a \oplus b$
 $(\oplus b)$ $a = a \oplus b$

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary operators can be sectioned. This means that (⊕), (a⊕) and (⊕a) all denote functions. The definitions are:

$$(\oplus) a b = a \oplus b$$

 $(a\oplus) b = a \oplus b$
 $(\oplus b) a = a \oplus b$

Exercise

If \oplus has type \oplus : $\alpha \times \beta \rightarrow \gamma$, then what are the types for (\oplus), $(a\oplus)$ and $(\oplus b)$ for all *a* in α and *b* in β ?

 The identity element of ⊕ : α × α → α, if it exists, will be denoted by id_⊕. Thus,

$$a \oplus \mathit{id}_\oplus = \mathit{id}_\oplus \oplus a = a$$

• The constant values function $K:\alpha\to\beta\to\alpha$ is defined by the equation

$$K a b = a$$

 The identity element of ⊕ : α × α → α, if it exists, will be denoted by id_⊕. Thus,

$$a \oplus \mathit{id}_\oplus = \mathit{id}_\oplus \oplus a = a$$

• The constant values function $K : \alpha \to \beta \to \alpha$ is defined by the equation

$$K a b = a$$

Exercise

What is the identity element of functional composition?

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Review: Lists

- Lists are finite sequence of values of the same type. We use the notation [α] to describe the type of lists whose elements have type α.
 - Examples:

 [1, 2, 1] : [Int]
 [[1], [1, 2], [1, 2, 1]] : [[Int]]
 [] : [α]

List Constructors

- [] : [α] constructs an empty list.
- [.] : $\alpha \to [\alpha]$ maps elements of α into singleton lists.

[.] a = [a]

• The primitive operator on lists is concatenation (++).

$$[1] ++ [2] ++ [1] = [1, 2, 1]$$

Concatenation is associative:

$$x ++ (y ++ z) = (x ++ y) ++ z$$

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Algebraic View of Lists

- ([α], ++, []) is a monoid.
- ([α], ++, []) is a free monoid generated by α under the assignment [.] : $\alpha \rightarrow [\alpha]$.
- $([\alpha]^+, \#)$ is a semigroup.

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

$$\begin{array}{lll} h \begin{bmatrix} 1 \\ - \end{array} & = & id_{\oplus} \\ h \begin{bmatrix} a \end{bmatrix} & = & f & a \\ h & (x + + y) & = & h & x \oplus h & y \end{array}$$

It defines a map from the monoid $([\alpha], +, [])$ to the monoid $(\beta, \oplus : \beta \to \beta \to \beta, id_{\oplus} : \beta)$.

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

It defines a map from the monoid $([\alpha], +, [])$ to the monoid $(\beta, \oplus : \beta \to \beta \to \beta, id_{\oplus} : \beta)$.

Property: *h* is uniquely determined by *f* and \oplus .

An Example: the function returning the length of a list.

$$\begin{array}{rcl} \# \ [] & = & 0 \\ \# \ [a] & = & 1 \\ \# \ (x + + y) & = & \# \ x + \# \ y \end{array}$$

Note that (Int, +, 0) is a monoid.

イロト イポト イヨト イヨト

э

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Bags and Sets

• A bag is a list in which the order of the elements is ignored. Bags are constructed by adding the rule that ++ is commutative (as well as associative):

$$x ++ y = y ++ x$$

• A set is a bag in which repetitions of elements are ignored. Sets are constructed by adding the rule that # is idempotent (as well as commutative and associative):

$$x ++ x = x$$

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$f * [a_1, a_2, \dots, a_n] = [f a_1, f a_2, \dots, f a_n]$$

Formally, (f*) (or sometimes simply written as f*) is a homomorphism:

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$f * [a_1, a_2, \dots, a_n] = [f a_1, f a_2, \dots, f a_n]$$

Formally, (f*) (or sometimes simply written as f*) is a homomorphism:

$$\begin{array}{l} f * [] & = & [] \\ f * [a] & = & [f \ a] \\ f * (x ++ y) & = & (f * x) ++ (f * y) \end{array}$$

Map

The operator * (pronounced map) takes a function on its left and a list on its right. Informally, we have

$$f * [a_1, a_2, \dots, a_n] = [f a_1, f a_2, \dots, f a_n]$$

Formally, (f*) (or sometimes simply written as f*) is a homomorphism:

Exercise

Prove the following map distributivity.

$$(f \cdot g) * = (f *) \cdot (g *)$$

Reduce

The operator / (pronounced reduce) takes an associative binary operator on its left and a list on its right. Informally, we have

$$\oplus/[a_1,a_2,\ldots,a_n] = a_1 \oplus a_2 \oplus \cdots \oplus a_n$$

Formally, \oplus / is a homomorphism:

Reduce

The operator / (pronounced reduce) takes an associative binary operator on its left and a list on its right. Informally, we have

$$\oplus/[a_1,a_2,\ldots,a_n] = a_1 \oplus a_2 \oplus \cdots \oplus a_n$$

Formally, \oplus / is a homomorphism:

$$\begin{array}{lll} \oplus/[] &= id_{\oplus} & \{ \text{ if } id_{\oplus} \text{ exists } \} \\ \oplus/[a] &= a \\ \oplus/(x + y) &= (\oplus/x) \oplus (\oplus/y) \end{array}$$

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Examples:

$$\begin{array}{rcl} max & : & [Int] \rightarrow Int \\ max & = & \uparrow / \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

$$\begin{array}{rll} \textit{head} & : & [\alpha]^+ \to \alpha \\ \textit{head} & = &$$

$$\begin{array}{rll} \textit{last} & : & [\alpha]^+ \to \alpha \\ \textit{last} & = & >/ \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & &$$

< ロ > < 部 > < き > < き >

æ

Running Example: Maximum Segment Sum Problem Bird Meertens Formalism Horner's Rule Application

Promotion

f* and $\oplus/$ can be expressed as identities between functions.

Empty Rules

One-Point Rules

$$f * \cdot K [] = K []$$

$$\oplus / \cdot K [] = K id_{\oplus}$$

$$f * \cdot [\cdot] = [\cdot] \cdot f$$

$$\oplus / \cdot [\cdot] = id$$

Join Rules

$$\begin{array}{rcl} f \ast \cdot ++ / &=& ++ / \cdot (f \ast) \ast \\ \oplus / \cdot ++ / &=& \oplus / . (\oplus /) \ast \end{array}$$

イロト イポト イヨト イヨト

э

Exercise

Any homomorphism h can be defined in the following form:

$$h = \oplus / \cdot f *$$

for some functions \oplus and f.

イロト イボト イヨト イヨト

э

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

An Example of Calculation

Composition of two specific homomorphisms is a homomorphism.

$$\begin{array}{rcl} \oplus/\cdot f*\cdot + +/\cdot g* \\ = & \{ \text{ map promotion } \} \\ \oplus/\cdot + +/\cdot f**\cdot g* \\ = & \{ \text{ reduce promotion } \} \\ \oplus/\cdot (\oplus/)*\cdot f**\cdot g* \\ = & \{ \text{ map distribution } \} \\ \oplus/\cdot (\oplus/\cdot f*\cdot g)* \end{array}$$

Directed Reductions

We introduce two more computation patterns $\not\rightarrow$ (pronounced left-to-right reduce) and $\not\leftarrow$ (right-to-left reduce) which are closely related to /. Informally, we have

$$\begin{array}{rcl} \oplus \not\rightarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& ((e \oplus a_{1}) \oplus \cdots) \oplus a_{n} \\ \oplus \not\leftarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& a_{1} \oplus (a_{2} \oplus \cdots \oplus (a_{n} \oplus e)) \end{array}$$

Formally, we can define $\oplus \not\rightarrow_e$ on lists by two equations.

$$\begin{array}{ll} \oplus \not\rightarrow_{e}[] &= e \\ \oplus \not\rightarrow_{e}(x + [a]) &= (\oplus \not\rightarrow_{e} x) \oplus a \end{array}$$

Directed Reductions

We introduce two more computation patterns $\not\rightarrow$ (pronounced left-to-right reduce) and $\not\leftarrow$ (right-to-left reduce) which are closely related to /. Informally, we have

$$\begin{array}{rcl} \oplus \not\rightarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& ((e \oplus a_{1}) \oplus \cdots) \oplus a_{n} \\ \oplus \not\leftarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& a_{1} \oplus (a_{2} \oplus \cdots \oplus (a_{n} \oplus e)) \end{array}$$

Formally, we can define $\oplus \not\rightarrow_e$ on lists by two equations.

$$\begin{array}{ll} \oplus \not\rightarrow_{e}[] &= e \\ \oplus \not\rightarrow_{e}(x + [a]) &= (\oplus \not\rightarrow_{e} x) \oplus a \end{array}$$

Exercise: Give a formal definition for $\oplus \not\leftarrow_e$.

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Directed Reductions without Seeds

$$\begin{array}{lll} \oplus \not \rightarrow [a_1, a_2, \dots, a_n] &= & ((a_1 \oplus a_2) \oplus \dots) \oplus a_n \\ \oplus \not \leftarrow [a_1, a_2, \dots, a_n] &= & a_1 \oplus (a_2 \oplus \dots \oplus (a_{n-1} \oplus a_n)) \end{array}$$

イロト イボト イヨト イヨト

э

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Directed Reductions without Seeds

$$\begin{array}{rcl} \oplus \not \rightarrow [a_1, a_2, \dots, a_n] & = & ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n \\ \oplus \not \leftarrow [a_1, a_2, \dots, a_n] & = & a_1 \oplus (a_2 \oplus \cdots \oplus (a_{n-1} \oplus a_n)) \end{array}$$

Properties:

$$(\oplus \not\rightarrow) \cdot ([a] ++) = \oplus \not\rightarrow_a \\ (\oplus \not\leftarrow) \cdot (++ [a]) = \oplus \not\leftarrow_a$$

イロト イポト イヨト イヨト

э

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$(((1 \times a_1 + 1) \times a_2 + 1) \times \cdots + 1) \times a_n + 1$$

This expression can be written using a left-reduce:

$$\odot \not\rightarrow_1[a_1, a_2, \ldots, a_n]$$

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$(((1 \times a_1 + 1) \times a_2 + 1) \times \cdots + 1) \times a_n + 1$$

This expression can be written using a left-reduce:

$$\odot \not \Rightarrow_1[a_1, a_2, \dots, a_n]$$

where $a \odot b = (a \times b) + 1$

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$(((1 \times a_1 + 1) \times a_2 + 1) \times \cdots + 1) \times a_n + 1$$

This expression can be written using a left-reduce:

$$\odot \not \Rightarrow_1[a_1, a_2, \dots, a_n]$$

where $a \odot b = (a \times b) + 1$

Exercise

Give the definition of \ominus such that the following holds.

$$\ominus \not\rightarrow [a_1, a_2, \ldots, a_n] = (((a_1 \times a_2 + a_2) \times a_3 + a_3) \times \cdots + a_{n-1}) \times a_n + a_n$$

The Special Homework Problem

Suppose $f = \oplus \not\rightarrow_e = \otimes \not\leftarrow_e$.

Prove that f is a homomorphism, i.e., there exisits an associate operator ⊙ s.t.

$$f(x ++ y) = f xs \odot f ys.$$

2 Implement in Haskell an algorithm to derive \odot from \oplus and \otimes .

Accumulations

With each form of directed reduction over lists there corresponds a form of computation called an accumulation. These forms are expressed with the operators # (pronounced left-accumulate) and # (right-accumulate) and are defined informally by

Formally, we can define $\oplus \#_e$ on lists by two equations by

$$\begin{array}{rcl} \oplus \not \not \gg_e[] & = & [e] \\ \oplus \not \not \gg_e([a] ++ x) & = & [e] ++ (\oplus \not \gg_{e \oplus a} x), \end{array}$$

or

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Efficiency in Accumulate

$\oplus \#_e[a_1, a_2, \dots, a_n]$: can be evaluated with n-1 calculations of \oplus .

Exercise

Consider computation of first n + 1 factorial numbers: [0!, 1!, ..., n!]. How many calculations of \times are required for the following two programs?

1 ×
$$\#_1[1, 2, ..., n]$$

2 fact * [0, 1, 2, \cdots , n] where fact n = product [1..n].

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Relation between Reduce and Accumulate

$$\oplus \not\rightarrow_e = last \cdot \oplus \not \gg_e$$

イロト イボト イヨト イヨト

Segments

A list y is a segment of x if there exists u and v such that

x = u + y + v.

If u = [], then y is called an initial segment. If v = [], then y is called an final segment.

An Example:

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: How many segments for a list $[a_1, a_2, \ldots, a_n]$?

イロト イポト イラト イラト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

inits

The function inits returns the list of initial segments of a list, in increasing order of a list.

inits
$$[a_1, a_2, \dots, a_n] = [[], [a_1], [a_1, a_2], \dots, [a_1, a_2, \dots, a_n]]$$

イロト イポト イヨト イヨト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

inits

The function inits returns the list of initial segments of a list, in increasing order of a list.

inits
$$[a_1, a_2, \dots, a_n] = [[], [a_1], [a_1, a_2], \dots, [a_1, a_2, \dots, a_n]]$$

$$inits = (\# \#_{[]}) \cdot [\cdot] *$$

イロト イポト イヨト イヨト

tails

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$tails \ [a_1, a_2, \dots, a_n] = [[a_1, a_2, \dots, a_n], [a_2, \dots, a_n], \dots, [a_n], []]$$

イロト イポト イヨト イヨト

tails

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$tails \ [a_1, a_2, \dots, a_n] = [[a_1, a_2, \dots, a_n], [a_2, \dots, a_n], \dots, [a_n], []]$$

$$\mathit{tails} = (\# \not\#_{[]}) \cdot [\cdot] \ast$$

イロト イポト イヨト イヨト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

$segs = ++ / \cdot tails * \cdot inits$

Exercise: Show the result of segs [1, 2].

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Accumulation Lemma

$$(\oplus \not\!/_e) = (\oplus \not\!/_e) * \cdot inits (\oplus \not\!/_e) = (\oplus \not\!/_e) * \cdot inits^+$$

The accumulation lemma is used frequently in the derivation of efficient algorithms for problems about segments.

On lists of length n, evaluation of the LHS requires O(n) computations involving \oplus , while the RHS requires $O(n^2)$ computations.

イロト イポト イラト イラト

The Question: Revisit

Consider the following simple identity:

 $(a_1 \times a_2 \times a_3) + (a_2 \times a_3) + a_3 + 1 = ((1 \times a_1 + 1) \times a_2 + 1) \times a_3 + 1$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_2 , and we will refer to it as Horner'e rule.

- Can we generalize \times to \otimes , + to \oplus ? What are the essential constraints for \otimes and \oplus ?
- Do you have suitable notation for expressing the Horner's rule concisely?

Horner's Rule

The following equation

Horner's Rule

holds, provided that \otimes distributes (backwards) over \oplus :

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

for all *a*, *b*, and *c*.

э

Homework BMF 1-1

Prove the correctness of the Horner's rule.

Show that

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

is equivalent to

$$(\otimes c) \cdot \oplus / = \oplus / \cdot (\otimes c) * .$$

holds on all non-empty lists.

Show that

$$f = \oplus / \cdot \otimes / * \cdot tails$$

satisfies the equations

$$\begin{array}{rcl} f \ [] & = & e \\ f \ (x ++ [a]) & = & f \ x \odot a \end{array}$$

Review: Functions and Lists Structured Recursive Computation Patterns **Horner's Rule** Application

Generalizations of Horner's Rule

Generalization 1:

Review: Functions and Lists Structured Recursive Computation Patterns **Horner's Rule** Application

Generalizations of Horner's Rule

Generalization 1:

Generalization 2:

イロト イボト イヨト イヨト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

mss
$$[3, 1, -4, 1, 5, -9, 2] = 6$$

Running Example: Maximum Segment Sum Problem Bird Meertens Formalism Horner's Rule Application

A Direct Solution

$$mss = \uparrow / \cdot + / * \cdot segs$$

æ

Running Example: Maximum Segment Sum Problem Bird Meertens Formalism Horner's Rule Application

A Direct Solution

$$mss = \uparrow / \cdot + / * \cdot segs$$

Exercise

Write a Haskell program for this direct solution.

イロト イポト イヨト イヨト

Review: Functions and Lists Structured Recursive Computation Patterns Horner's Rule Application

Calculating a Linear Algorithm using Horner's Rule

mss = { definition of *mss* } $\uparrow / \cdot + / * \cdot segs$ = { definition of segs } $\uparrow / \cdot + / * \cdot + + / \cdot tails * \cdot inits$ = { map and reduce promotion } $\uparrow / \cdot (\uparrow / \cdot + / * \cdot tails) * \cdot inits$ = { Horner's rule with $a \odot b = (a+b) \uparrow 0$ } $\uparrow / \cdot \odot \rightarrow_0 * \cdot inits$ = { accumulation lemma } $\uparrow / \cdot \odot \#_0$

Review: Functions and Lists Running Example: Maximum Segment Sum Problem Bird Meertens Formalism Application

A Program in Haskell

Homework BMF 1-2

Code the derived linear algorithm for mss in Haskell.

Zhenjiang Hu, Wei Zhang Chapter 22. Bird Meertens Formalism (BMF)

イロト イポト イヨト イヨト

Segment Decomposition

The sequence of calculation steps given in the derivation of the *mss* problem arises frequently. The essential idea can be summarized as a general theorem.

Theorem (Segment Decomposition)

Suppose S and T are defined by

$$S = \bigoplus / \cdot f * \cdot segs$$
$$T = \bigoplus / \cdot f * \cdot tails$$

If T can be expressed in the form $T = h \cdot \odot \not\rightarrow_e$, then we have

$$S = \oplus / \cdot h * \cdot \odot \#_e$$

Homework BMF 1-3

Prove the segment decomposition theorem.

イロト イボト イヨト イヨト