Chapter 26: Unfold

Zhenjiang Hu, Wei Zhang

School of Computer Science
Peking University

December 29, 2023

Outline

(1) Review: Foldr
(2) Unfold

foldr

The computation pattern by h is captured by a higher-order function foldr.

$$
\begin{array}{ll}
\text { foldr } & ::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta \\
\text { foldr } f \text { e }[] & =e \\
\text { foldr } f \text { e }(x: x s) & =f x(\text { foldr } f e x s)
\end{array}
$$

foldr

The computation pattern by h is captured by a higher-order function foldr.

$$
\begin{array}{ll}
\text { foldr } & ::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta \\
\text { foldr } f \text { e }[] & =e \\
\text { foldr } f \text { e }(x: x s) & =f x(\text { foldr fexs })
\end{array}
$$

In BMF, we write it as right-to-left reduction.

$$
\begin{array}{ll}
\oplus \psi e[] & =e \\
\oplus \psi e(a: x) & =a \oplus\left(\oplus \forall e^{x}\right)
\end{array}
$$

Outline

(1) Review: Foldr
(2) Unfold

unfold

unfold is the essential and simplest computation pattern for producing (possibly infinite) lists.

unfold

unfold is the essential and simplest computation pattern for producing (possibly infinite) lists.

$$
\begin{aligned}
& \text { unfold }::(b \rightarrow B o o l) \rightarrow(b \rightarrow a) \rightarrow(b \rightarrow b) \rightarrow b \rightarrow[a] \\
& \text { unfold } p \mathrm{f} g x=\text { if } p x \text { then [] else } f x: \text { unfold } p f g(g x)
\end{aligned}
$$

unfold

unfold is the essential and simplest computation pattern for producing (possibly infinite) lists.

$$
\begin{aligned}
& \text { unfold }::(b \rightarrow B o o l) \rightarrow(b \rightarrow a) \rightarrow(b \rightarrow b) \rightarrow b \rightarrow[a] \\
& \text { unfold } p f g x=\text { if } p x \text { then [] else } f x: \text { unfold } p f g(g x)
\end{aligned}
$$

This reads that

- it generates an empty list if the input satisfies p;
- otherwise, it generates a list whose head is produced by f on the input and whose tail is recursively produced from the new input created by g on the input.

Specification with unfold

Example: upto in unfold
Considering the function upto:

$$
\text { upto }(3,6)=[3,4,5,6]
$$

we can define it as an unfold.

Specification with unfold

Example: upto in unfold

Considering the function upto:

$$
\text { upto }(3,6)=[3,4,5,6]
$$

we can define it as an unfold.

$$
\begin{gathered}
\text { upto }(m, n)=\text { unfold fstGreater fst succFst }(m, n) \\
\text { where fstGreater }(x, y)=x>y \\
\operatorname{succFst}(x, y)=(x+1, y)
\end{gathered}
$$

Specification with unfold

Example: upto in unfold

Considering the function upto:

$$
\text { upto }(3,6)=[3,4,5,6]
$$

we can define it as an unfold.

$$
\begin{array}{r}
\text { upto }=\text { unfold fstGreater fst succFst } \\
\text { where } \text { fstGreater }(x, y)=x>y \\
\operatorname{succFst}(x, y)=(x+1, y)
\end{array}
$$

Specification with unfold

Example: map in unfold

$$
\operatorname{map} f=\text { unfold }(==[])(f \cdot \text { head }) \text { tail }
$$

Specification with unfold

Example: map in unfold

$$
\operatorname{map} f=\text { unfold }(==[])(f \cdot \text { head }) \text { tail }
$$

Homework BMF 4-1

Given two sorted lists ($x s, y s$), the function merge ($x s, y s$) merges them into one sorted list. Define merge as an unfold.

Specification with unfold

Example: fib in unfold
Considering the function fib for generating infinite sequence of all Fibonacci numbers:

$$
\text { fib }(0,1)=[0,1,1,2,3,5,8,13,21, \ldots]
$$

we can define it as an unfold.

Specification with unfold

Example: fib in unfold
Considering the function fib for generating infinite sequence of all Fibonacci numbers:

$$
\text { fib }(0,1)=[0,1,1,2,3,5,8,13,21, \ldots]
$$

we can define it as an unfold.

$$
\begin{aligned}
\text { fib }= & \text { unfold (const False) fst }(\lambda(x, y) .(y, x+y)) \\
& \text { where const } x y=x
\end{aligned}
$$

Specification with unfold

Example: fib in unfold

Considering the function fib for generating infinite sequence of all Fibonacci numbers:

$$
\text { fib }(0,1)=[0,1,1,2,3,5,8,13,21, \ldots]
$$

we can define it as an unfold.

$$
\begin{aligned}
& \text { fib }=\text { unfold (const False) fst }(\lambda(x, y) \cdot(y, x+y)) \\
& \quad \text { where const } x y=x
\end{aligned}
$$

Homework BMF 4-2
Change the above definition of fib to generate all Fibonacci numbers that are less than 1000,000 .

Specification with unfold: unfold ${ }^{\infty}$

unfold $^{\infty}$, a special case of unfold, is used to generate streams (infinite lists, denoted by $[a]^{\infty}$).

$$
\text { unfold }^{\infty} f g=\text { unfold (const False) } f g
$$

Specification with unfold: unfold ${ }^{\infty}$

unfold ${ }^{\infty}$, a special case of unfold, is used to generate streams (infinite lists, denoted by $[a]^{\infty}$).

$$
\text { unfold }^{\infty} f g=\text { unfold (const False) } f g
$$

It is characterized by the following two equations.

$$
\begin{aligned}
& \text { head } \cdot \text { unfold }^{\infty} \mathrm{fg}=f \\
& \text { tail } \cdot \text { unfold }^{\infty} \mathrm{fg}=\text { unfold }^{\infty} \mathrm{fg} \cdot \mathrm{~g}
\end{aligned}
$$

Specification with unfold: unfold ${ }^{\infty}$

Examples

$$
\begin{array}{ll}
\text { fib } & =\text { unfold }^{\infty} \text { fst }(\lambda(x, y) \cdot(y, x+y)) \\
\text { from } & =\text { unfold }^{\infty} \text { id succ where succ } n=n+1 \\
\text { iterate } f & =\text { unfold }^{\infty} \text { id } f \\
\text { ones } & =\text { unfold }^{\infty}(\text { const } 1) \text { id }
\end{array}
$$

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example

The function

$$
\begin{array}{lll}
\text { mults } & :: \quad N a t \rightarrow[a]^{\infty} \\
\text { mults } n & =[n \times 0, n \times 1, n \times 2, \ldots]
\end{array}
$$

cannot be described by a single unfold.

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example

The function

$$
\begin{array}{ll}
\text { mults } & :: \quad \text { Nat } \rightarrow[a]^{\infty} \\
\text { mults } n & =[n \times 0, n \times 1, n \times 2, \ldots]
\end{array}
$$

cannot be described by a single unfold. Proof Sketch. The existence of f and g such that mults $=u^{\prime} f f^{\prime} d^{\infty} f g$ will destroy the equation tail \cdot unfold ${ }^{\infty} f g=$ unfold $^{\infty} f g \cdot g$.

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example

The function

$$
\begin{array}{ll}
\text { mults } & :: \quad \text { Nat } \rightarrow[a]^{\infty} \\
\text { mults } n & =[n \times 0, n \times 1, n \times 2, \ldots]
\end{array}
$$

cannot be described by a single unfold.
Proof Sketch. The existence of f and g such that mults $=u^{\prime} f f^{\prime} d^{\infty} f g$ will destroy the equation tail. unfold ${ }^{\infty} f g=$ unfold $^{\infty} f g \cdot g$.

Can you construct a theory for unfold (like what we have for homomorphism)?

