
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Chapter 26: Unfold

Zhenjiang Hu, Wei Zhang

School of Computer Science
Peking University

December 29, 2023

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Outline

1 Review: Foldr

2 Unfold

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

foldr

The computation pattern by h is captured by a higher-order
function foldr.

foldr :: (α→ β → β)→ β → [α]→ β
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

In BMF, we write it as right-to-left reduction.

⊕←/ e[] = e
⊕←/ e(a : x) = a⊕ (⊕←/ ex)

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

foldr

The computation pattern by h is captured by a higher-order
function foldr.

foldr :: (α→ β → β)→ β → [α]→ β
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

In BMF, we write it as right-to-left reduction.

⊕←/ e[] = e
⊕←/ e(a : x) = a⊕ (⊕←/ ex)

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Outline

1 Review: Foldr

2 Unfold

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

unfold

unfold is the essential and simplest computation pattern for
producing (possibly infinite) lists.

unfold :: (b→ Bool)→ (b→ a)→ (b→ b)→ b→ [a]
unfold p f g x = if p x then [] else f x : unfold p f g (g x)

This reads that
it generates an empty list if the input satisfies p;
otherwise, it generates a list whose head is produced by f on
the input and whose tail is recursively produced from the new
input created by g on the input.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

unfold

unfold is the essential and simplest computation pattern for
producing (possibly infinite) lists.

unfold :: (b→ Bool)→ (b→ a)→ (b→ b)→ b→ [a]
unfold p f g x = if p x then [] else f x : unfold p f g (g x)

This reads that
it generates an empty list if the input satisfies p;
otherwise, it generates a list whose head is produced by f on
the input and whose tail is recursively produced from the new
input created by g on the input.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

unfold

unfold is the essential and simplest computation pattern for
producing (possibly infinite) lists.

unfold :: (b→ Bool)→ (b→ a)→ (b→ b)→ b→ [a]
unfold p f g x = if p x then [] else f x : unfold p f g (g x)

This reads that
it generates an empty list if the input satisfies p;
otherwise, it generates a list whose head is produced by f on
the input and whose tail is recursively produced from the new
input created by g on the input.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: upto in unfold
Considering the function upto:

upto (3, 6) = [3, 4, 5, 6]

we can define it as an unfold.

where fstGreater (x, y) = x > y
succFst (x, y) = (x + 1, y)

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: upto in unfold
Considering the function upto:

upto (3, 6) = [3, 4, 5, 6]

we can define it as an unfold.

upto (m, n) = unfold fstGreater fst succFst (m, n)
where fstGreater (x, y) = x > y

succFst (x, y) = (x + 1, y)

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: upto in unfold
Considering the function upto:

upto (3, 6) = [3, 4, 5, 6]

we can define it as an unfold.

upto = unfold fstGreater fst succFst
where fstGreater (x, y) = x > y

succFst (x, y) = (x + 1, y)

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: map in unfold

map f = unfold (== []) (f · head) tail

Homework BMF 4-1
Given two sorted lists (xs, ys), the function merge (xs, ys) merges
them into one sorted list. Define merge as an unfold.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: map in unfold

map f = unfold (== []) (f · head) tail

Homework BMF 4-1
Given two sorted lists (xs, ys), the function merge (xs, ys) merges
them into one sorted list. Define merge as an unfold.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: fib in unfold
Considering the function fib for generating infinite sequence of all
Fibonacci numbers:

fib (0, 1) = [0, 1, 1, 2, 3, 5, 8, 13, 21, . . .]

we can define it as an unfold.

fib = unfold (const False) fst (λ(x, y). (y, x + y))
where const x y = x

Homework BMF 4-2
Change the above definition of fib to generate all Fibonacci
numbers that are less than 1000,000.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: fib in unfold
Considering the function fib for generating infinite sequence of all
Fibonacci numbers:

fib (0, 1) = [0, 1, 1, 2, 3, 5, 8, 13, 21, . . .]

we can define it as an unfold.

fib = unfold (const False) fst (λ(x, y). (y, x + y))
where const x y = x

Homework BMF 4-2
Change the above definition of fib to generate all Fibonacci
numbers that are less than 1000,000.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold

Example: fib in unfold
Considering the function fib for generating infinite sequence of all
Fibonacci numbers:

fib (0, 1) = [0, 1, 1, 2, 3, 5, 8, 13, 21, . . .]

we can define it as an unfold.

fib = unfold (const False) fst (λ(x, y). (y, x + y))
where const x y = x

Homework BMF 4-2
Change the above definition of fib to generate all Fibonacci
numbers that are less than 1000,000.

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold: unfold∞

unfold∞, a special case of unfold, is used to generate streams
(infinite lists, denoted by [a]∞).

unfold∞ f g = unfold (const False) f g

It is characterized by the following two equations.

head · unfold∞ f g = f
tail · unfold∞ f g = unfold∞ f g · g

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold: unfold∞

unfold∞, a special case of unfold, is used to generate streams
(infinite lists, denoted by [a]∞).

unfold∞ f g = unfold (const False) f g

It is characterized by the following two equations.

head · unfold∞ f g = f
tail · unfold∞ f g = unfold∞ f g · g

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

Specification with unfold: unfold∞

Examples
fib = unfold∞ fst (λ(x, y). (y, x + y))
from = unfold∞ id succ where succ n = n + 1
iterate f = unfold∞ id f
ones = unfold∞ (const 1) id

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example
The function

mults :: Nat→ [a]∞
mults n = [n× 0, n× 1, n× 2, . . .]

cannot be described by a single unfold.

Proof Sketch. The existence of f and g such that
mults = unfold∞ f g will destroy the equation
tail · unfold∞ f g = unfold∞ f g · g.

Can you construct a theory for unfold (like what we have for
homomorphism)?

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example
The function

mults :: Nat→ [a]∞
mults n = [n× 0, n× 1, n× 2, . . .]

cannot be described by a single unfold.
Proof Sketch. The existence of f and g such that
mults = unfold∞ f g will destroy the equation
tail · unfold∞ f g = unfold∞ f g · g.

Can you construct a theory for unfold (like what we have for
homomorphism)?

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review: Foldr
Unfold

When can a function be described by an unfold?

Not all functions can be described by a single unfold.

Example
The function

mults :: Nat→ [a]∞
mults n = [n× 0, n× 1, n× 2, . . .]

cannot be described by a single unfold.
Proof Sketch. The existence of f and g such that
mults = unfold∞ f g will destroy the equation
tail · unfold∞ f g = unfold∞ f g · g.

Can you construct a theory for unfold (like what we have for
homomorphism)?

Zhenjiang Hu, Wei Zhang Chapter 26: Unfold

	Review: Foldr
	Unfold

