
计算概论A—实验班

函数式程序设计
Functional Programming

胡振江，张 伟

北京大学 计算机学院
2024年09～12月

第15章：计算模型—Lazy Evaluation

Adapted from Graham’s Lecture slides

主要知识点：

计算，计算策略

无限数据，模块化程序设计

应用：素数序列计算

计算：function application
 inc :: Int -> Int
 inc n = n + 1

inc (2 * 3)
= { applying * }

inc 6
= { applying inc }

6 + 1
= { applying + }

7

inc (2 * 3)
= { applying inc }

(2 * 3) + 1
= { applying * }

6 + 1
= { applying + }

7

✤ Any two different ways of evaluating the same expression will always
produce the same final value, provided that they both terminate.

计算策略
✤Reducible expression (redex)
‣ 一个 function application
‣ 称这个表达式 is reducible，因为可以将这个 function application
替换为对应的定义

✴注意：一个 redex 中可能包含更细粒度的一个或多个 redex
inc (2 * 3)

✤Reduce的策略
1. 最内策略 (innermost)
2. 最外策略 (outermost)

 mult :: (Int, Int) -> Int
 mult (x, y) = x * y最内策略 最外策略

✴注意：很多 built-in functions （如 *, +）要求它们的参数必须首先被求值

 mult :: Int -> Int -> Int
 mult x = \y -> x * y最内策略 最外策略

✴Note: the only operation that can be performed on a function is
that of applying it to an argument.

The function \x -> 1 + 2 is deemed to be black box, even
though its body contains the redex 1 + 2.

✤Using innermost and outermost evaluation, but not within
lambda expressions, is normally referred to as call-by-value
and call-by-name evaluation, respectively.

Termination (终止性)

 inf :: Int
 inf = 1 + inf

Termination (终止性) inf :: Int
 inf = 1 + inf

最内策略 最外策略

If there exists any evaluation
sequence that terminates for a given
expression, then call-by-name
evaluation will also terminate for this
expression, and produce the same
final result.

Number of reductions (需要进行多少次reduction，才能完成求值)

 square :: Int -> Int
 square n = n * n最内策略 最外策略

Arguments are evaluated precisely once
using call-by-value evaluation, but may be
evaluated many times using call-by-name.

Lazy Evaluation / 惰性求值

Call-by-name evaluation
in conjunction with Sharing

Infinite structures / 无限结构
 ones :: [Int]
 ones = 1 : ones

Modular Programming 之 将数据和控制分开

 replicate :: Int -> a -> [a]
 replicate 0 _ = []
 replicate n x = x : replicate (n-1) x

 replicate :: Int -> a -> [a]
 replicate n = take n . repeat

 repeat :: a -> [a]
 repeat x = x : repeat x

应用示例：素数序列计算

 primes :: [Int]
 primes = sieve [2..]
 sieve :: [Int] -> [Int]
 sieve (p:xs) = p : sieve [x | x <- xs, x `mod` p /= 0]

Strict application of functions

✤Haskell uses lazy evaluation by default, but also provides
a special strict version of function application, written as $!

✤An expression of the form f $! x is only a redex once
evaluation of the argument x, using lazy evaluation as
normal, has reached the point where it is known that the
result is not an undefined value, at which point the
expression can be reduced to the normal application f x

Strict application of functions
✤An expression of the form f $! x is only a redex once

evaluation of the argument x, using lazy evaluation as
normal, has reached the point where it is known that the
result is not an undefined value, at which point the
expression can be reduced to the normal application f x

Strict application of functions
✤ If f is a curried function with two arguments, an application of the

form f x y can be modified to have three different behaviours:

✤ In Haskell, strict application is mainly used to improve the space
performance of programs.

✤However, strict application is not a silver bullet that automatically
improves the space behaviour of Haskell programs.

✤Even for relatively simple examples, the use of strict application
is a specialist topic that requires careful consideration of the
behaviour of lazy evaluation.

作业

15-1 Using a list comprehension, define an expression fibs :: [Integer]
that generates the infinite sequence of Fibonacci numbers

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
using the following simple procedure:
• the first two numbers are 0 and 1;
• the next is the sum of the previous two;
• return to the second step.

✴ Hint: make use of the library functions zip and tail.
✴ Note: numbers in the Fibonacci sequence quickly become large,

hence the use of the type Integer of arbitrary-precision integers above.

15-2 Newton’s method for computing the square root of a (non-negative)
floating-point number n can be expressed as follows:
• start with an initial approximation to the result;
• given the current approximation a, the next approximation is

defined by the function next a = (a + n/a) / 2;
• repeat the second step until the two most recent approximations

are within some desired distance of one another, at which point
the most recent value is returned as the result.

Define a function sqroot :: Double -> Double that implements this
procedure.
Hint: first produce an infinite list of approximations using the library
function iterate. For simplicity, take the number 1.0 as the initial
approximation, and 0.00001 as the distance value.

第15章：计算模型—Lazy Evaluation

Adapted from Graham’s Lecture slides

就到这里吧

