e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

EARIL, 5K
IERKEF 1T EF MR
2024F09~12H

Adapted from Graham’s Lecture slides

E155: 1TH#&E —Lazy Evaluation

FEHMIRS:
TR, 1ITERE
TIREIE, ERMEERIRIT
MA: ZAFITE

function application

inc (2 % 3) inc (2 % 3)

= { applying * } = { applying inc }
inc 6 (2 x 3) + 1

= { applying inc } = { applying * }
6 + 1 6 + 1

= { applying + } = { applying + }

7/ 7/

¢* Any two different ways of evaluating the same expression will always
produce the same final value, provided that they both terminate.

1T R R g

* Reducible expression (redex)
>~ — function application

> FRIXTERIRTV is reducible, E7R]LAREIX™ function application

B NIE X
X ER: — 1 redex PR EERI S EMIUEN—TTZT redex
inc (2 *x 3)
¥ Reducefy B g

1. AR (innermost)
2. m=IMREE (outermost)

mult :: (Int, Int) —> Int

mutt (X, v) =X % vy

mult (1+2, 2+3) mult (1+2, 2+3)

= { applying the first + } = { applying mult }
mult (3, 2+3) (1+2) * (2+3)

— { applying + } = { applying the first + }
mult (3, 5) 3 * (2+3)

— { applying mult } = { applying + }
3 * 5 3 * 5

= { applying * } = t applying * }
15 15

* 7EE: 1RZ built-in functions (4 *, +) BRENNZ AW INE FHKIE

mult == Int —> Int —> Int

mult Xx = \y —=> X %k y

mult (1+2) (2+3) mult (1+2) (2+3)
{ applying the first + } { applying the mult}
mult 3 (2+3) (\y —> (1+2) * y) (2+3)
{ applying mult } { applying the lambda }
(\y = 3 x y) (2+3) (1+2) * (2+3)
{ applying + } { applying the first + }
(\y => 3 x y) 5 3 x (2+43)
{ applying the lambda } { applying + }
3 x5 3 x5
{ applying * } { applying * }
15 15

* Note: the only operation that can be performed on a function is
that of applying it to an argument.

(\x => 1 + 2) 0

{ applying the lambda }
1 + 2

{ applying + }
3

The function \Xx —> 1 + 2 is deemed to be black box, even
though its body contains the redex 1 + 2.

¢ Using innermost and outermost evaluation, but not within
lambda expressions, is nhormally referred to as call-by-value
and call-by-name evaluation, respectively.

Termination (& 1E1%)

inf
{ applying inf }
1 + inf
{ applying inf }
1 + (1 + inf)
{ applying inf }
1+ (1 + (1 + inf))
{ applying inf }

inf It

ANt =591 4+ 10t

Termination (& 11 1%)

251 8508

fst (0, inf)
{ applying inf }
fst (@, 1 + inf)
{ applying inf }
fst (0, 1 + (1 + inf))
{ applying inf }
fst (0, 1 + (1 + (1 + inf)))
{ applying inf }

fst (@, inf)
= { applying fst }
0

If there exists any evaluation
sequence that terminates for a given
expression, then call-by-name
evaluation will also terminate for this
expression, and produce the same
final result.

Number of reductions (FE#1T2 /M Rreduction, 7 BESEKH)

_ square :: Int —> Int =
e i [

square (1+2) square (1+2)

= { applying + } = { applying square }
square 3 (1+42) * (1+2)

= { applying square } = { applying the first + }
3 x 3 3 x (1+2)

= { applying * } = { applying + }
9 3 % 3

Arguments are evaluated precisely once i applying * }
using call-by-value evaluation, but may be 9
evaluated many times using call-by-name.

Lazy Evaluation / 184K &

square (1+2)

{ applying square }

. aNa
Call-by-name evaluation ° X o 1+2
in conjunction with Sharing = { applying + }
AR
® X o 3

{ applying * }

Infinite structures / FcPR 4443

ones :: [Int]

Ones = 1 = ones

ones head ones
{ applying ones } { applying ones }
1 : ones head (1 : ones)
{ applying ones } { applying head }
1 : (1 : ones) 1
{ applying ones }
1 : (1 : (1 : ones))
{ applying ones }

Modular Programming Z J§#UEFIZFl o FF

replicate :: Int —> a —> [al
replicate @ _ = []
replicate n x = x : replicate (n-1) x

replicate :: Int —> a —> [al
replicate n = take n . repeat

repeat :: a —> [a]
repeat X = X : repeat X

M AR 1l : ?*&F’?Ul‘l‘ﬁ

2 3 4 5 6 7 8 10 12 14 15
3) 5 T 9 11 13 15
B 7 11 13 _

(D) 11 13

@ 13
(13)

primes :: [Int]
primes = sieve [2..]

sieve :: [Int] — [Int]
sieve (p:xsS) = p ! sieve [x| x « x5, x mad p /=0 |

Strict application of functions

®*Haskell uses lazy evaluation by default, but also provides
a special strict version of function application, written as $!

®*An expression of the form f $! x is only a redex once
evaluation of the argument x, using lazy evaluation as
normal, has reached the point where it is known that the
result is not an undefined value, at which point the
expression can be reduced to the normal application f x

Strict application of functions

®* An expression of the form f $! x is only a redex once
evaluation of the argument x, using lazy evaluation as
normal, has reached the point where it is known that the
result is not an undefined value, at which point the
expression can be reduced to the normal application f x

square $! (1+2)

= { applying + }
square $! 3

= { applying $! }
square 3

= { applying square }
3 *x 3

= { applying * }
9

Strict application of functions

¢ If T is a curried function with two arguments, an application of the
form T X y can be modified to have three different behaviours:

(f §! x) y forces top-level evaluation of x
(f x) $! y {forces top-level evaluation of y

(f §! x) $! y forces top-level evaluation of x and y

e¢* In Haskell, strict application is mainly used to improve the space

performance of programs. sumvith v [] -
sumwith :: Int -> [Int] -> Int sumwith v (x:xs) = (sumwith $! (v+x)) xs
sumwith v [] = vy sumwith 0 [1,2,3]

{ applying sumwith }
(sumwith $! (0+1)) [2,3]

{ applying + }
(sumwith $! 1) [2,3]

= { applying $! }

sumwith v (x:xs) = sumwith (v+x) xs

sumwith 0 [1,2,3]

{ applying sumwith }
sumwith (0+1) [2,3] sumwith 1 [2,3]

{ applying sumwith } { applying sumwith }
sumwith ((0+1)+2) [3] (sumwith $! (1+2)) [3]

{ applying sumwith } { applying + }
sumwith (((0+1)+2)+3) [] sumeh 8! 3$)| 3]

{ applying sunwith }) sumxjiill)lpg HEg] K
((0+1)+2)+3 = { applying sumwith }
{ applying the first + } (sumwith $! (3+3)) []

(1+2)+3 = { applying + }
= { applying the first + } (sumwith $1 6) L]
3+3 = { applying $! }

sumwith 6 []
{ applying sumwith }

{ applying + }
6 6

Generalising from the above example, the library Data.Foldable provides a
strict version of the higher-order library function foldl that forces evaluation of
its accumulator prior to processing the tail of the list:

foldl’ :: (a -> b -> a) -> a -> [b] -> a
foldl’ f v [] = v
foldl’ f v (x:xs8) = ((foldl’ f) $! (f v x)) xs

sumwith = foldl’ (+)

* However, strict application is not a silver bullet that automatically
iImproves the space behaviour of Haskell programs.

* Even for relatively simple examples, the use of strict application
IS a specialist topic that requires careful consideration of the
behaviour of lazy evaluation.

15-1 Using a list comprehension, define an expression fibs :: [Integer]
that generates the infinite sequence of Fibonacci numbers
0,1,1,2,3, 5,8, 13, 21, 34, ...
using the following simple procedure:
* the first two numbers are O and 1;
* the next is the sum of the previous two;
* return to the second step.

X Hint: make use of the library functions zip and tail.

X Note: numbers in the Fibonacci sequence quickly become large,
hence the use of the type Integer of arbitrary-precision integers above.

15-2 Newton’s method for computing the square root of a (hnon-negative)

floating-point number n can be expressed as follows:

o start with an initial approximation to the result;

* given the current approximation a, the next approximation is
defined by the function next a = (a + n/a) / 2;

» repeat the second step until the two most recent approximations
are within some desired distance of one another, at which point
the most recent value Is returned as the result.

Define a function sgroot :: Double -> Double that implements this
procedure.

Hint: first produce an infinite list of approximations using the library
function iterate. For simplicity, take the number 1.0 as the initial
approximation, and 0.00001 as the distance value.

Adapted from Graham’s Lecture slides

E155: 1TH#&E —Lazy Evaluation

i EX BN

