Chapter 25. Fusion and Tupling

Zhenjiang Hu, Wei Zhang

School of Computer Science
Peking University

December 27, 2023

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Outline

o Fusion

Zhenjiang Hu, Wei Zhang pter 25. Fusion and Tupli

Fusion

Consider the function to compute the maximum of a list (by
reusing sort):

max : [Int] — Int

max = head- sort

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Consider the function to compute the maximum of a list (by
reusing sort):

max : [Int] — Int

max = head- sort

where sort is defined by

sort = foldr insert []
insert a] = |[q]
insert a(b:x) = ifa>bthena: (b:Xx)

else b : insert a x.

How to eliminate all intermediate results in computing max?

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Consider the following function to reverse a list:

rev x = fastreV x]
fastre xy = reverse x++y
where

reverse = foldr (\ar. r++[a]) []

How to eliminate the intermediate list in computing fastre/?

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Consider the following function to reverse a list:

rev x = fastreV x]
fastre xy = reverse x++y
where

reverse = foldr (\ar. r++[a]) []

How to eliminate the intermediate list in computing fastre/?

Show evaluation steps of rev [1,2,3,4], and explain that (rev xs) is
a quadratic program.

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Law for Foldr

Lemma (Foldr Fusion)

fladr=axfr
f- foldr (&) e = foldr (®) (fe)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Law for Foldr

Lemma (Foldr Fusion)

fladr=axfr
f- foldr (&) e = foldr (®) (fe)

Or written as
fladr)=axfr

f @<7/‘e = ®ﬁLfe

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion: max

Consider the fusion for max:
max = head - foldr insert []

where we assume that max [| = —oo.

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion: max

Consider the fusion for max:
max = head - foldr insert []
where we assume that max [| = —oo.

To apply the foldr fusion lemma, we consider calculation of
head (insert a r).

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

We calculate as follows.

@ For the case of r=[], we have:

head (insert a [])
= { def. of insert }
head |4]
= { def. of head }

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Example: max

@ For the case of r= b: x, we have:

head (insert a (b: x))
= { def. of insert }
head (if a> b then a: (b: x) else b: insert a x)
= { distribute head over if }
if 2> b then head (a: (b: x)) else head (b : insert a x)
= { def. of head }
if a> bthen aelse b
= { assumption: r=b:x}
if a > head r then a else head r

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

In summary, we have

head (insert a r) = a® head r
where a®@ r=if a > rthen a else r

It follows from the foldr fusion lemma that we get the following
new definition for max.

max = foldr (®) (—o0)

A linear time program!

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Example: Fast Reverse

Consider fusion of the following program:

fastreV x y = reverse x ++y

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Example: Fast Reverse

Consider fusion of the following program:

fastreV x y = reverse x ++y

What is the intermediate list in the above computation?

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Fusion

Fusion Example: Fast Reverse

Consider fusion of the following program:

fastreV x y = reverse x ++y

What is the intermediate list in the above computation?

We can see where fusion calculation is application if we rewrite the
definition.

fastreV x = (+H) (reverse x)
= () - foldr (Aar.r++[3]) []) x

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Let us calculate the fusion condition:

(4) (r++[a])

= { 1 expansion }
Ay-(+) (r++[a]) y

= { section notation }
Ay (r++1a]) ++v)

= { associativity of + }
Ay. r++([a] +y)

Marching it with a® ((#) r) gives

axr =Xy.r ([a] ++y)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

So we get
fastrev x = foldr (®) ((+) []) x
where a® r = \y.r ([a] Hy)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

So we get
fastrev x = foldr (®) ((+) []) x
where a® r = \y.r ([a] Hy)

which is the same as

fastreV x = foldr (®) id x
where a® r = \y.r ([a] H)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

So we get
fastrev x = foldr (®) ((+) []) x
where a® r = \y.r ([a] Hy)

which is the same as

fastreV x = foldr (®) id x
where a® r = \y.r ([a] H)

That is,
fastreV [] y =y
fastre/ (a:r)y = fastreV r(a:y)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

So we get
fastrev x = foldr (®) ((+) []) x
where a® r = \y.r ([a] Hy)

which is the same as

fastreV x = foldr (®) id x
where a® r = \y.r ([a] H)

That is,
fastreV [] y =y
fastre/ (a:r)y = fastreV r(a:y)

A linear time algorithm!

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Homework BMF 3-1

Using the foldr fusion lemma to prove the following two equations.
@ foldr (®) e- map f=foldr (Aarfadr) e
@ map f-map g= map (f- g)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Outline

e Tupling

Zhenjiang Hu, Wei Zhang apter 25. Fusion and Tupling

Tupling

What is the time complexity for the following function that
computes the maximum element from a list.

maximum |[aJ = a
maximum (a: x) | a > maximum x = a
| otherwise = maximum x

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Enumerating Bigger Elements
Enumerate all bigger elements in a list. An element is bigger if it is
greater than the sum of the elements that follow it till the end of

the list.
biggers [3,10,4,—2,1,3] = [10, 4, 3]

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Enumerating Bigger Elements
Enumerate all bigger elements in a list. An element is bigger if it is
greater than the sum of the elements that follow it till the end of

the list.
biggers [3,10,4,—2,1,3] = [10, 4, 3]

biggers [| =]
biggers (a: x) = if a > sum x then a: biggers x else biggers x

sum[] =0
sum (a: x) = a+ sum x

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Enumerating Bigger Elements
Enumerate all bigger elements in a list. An element is bigger if it is
greater than the sum of the elements that follow it till the end of

the list.
biggers [3,10,4,—2,1,3] = [10, 4, 3]

biggers [| =]
biggers (a: x) = if a > sum x then a: biggers x else biggers x

sum[] =0
sum (a: x) = a+ sum x

How can we optimize this program?
v

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Enumerating Bigger Elements
Enumerate all bigger elements in a list. An element is bigger if it is
greater than the sum of the elements that follow it till the end of

the list.
biggers [3,10,4,—2,1,3] = [10, 4, 3]

biggers [| =]
biggers (a: x) = if a > sum x then a: biggers x else biggers x

sum[] =0
sum (a: x) = a+ sum x

How can we optimize this program?
v

Exercise: Is biggers a foldr?

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Definition (Mutumorphism)

Functions fi, ..., f, are said to form a mutumorphism if each f;
(i=1,2,...,n) is defined in the following form:

fi [l = &

f,-(a:x) = a@i(fl Xaf2 Xa"'vfn X)
where €; (i=1,2,...,n) are given constants and @®;
(i=1,2,...,n) are given binary functions. We represent the
function fx= (f x,..., f, x) as follows.

f=[(e1,...,en), (B1,-..,®n)]-

.

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Expressive Power of Mutumorphism

@ foldr is a special case:

foldr (®) e = [(e), (oplus)]
@ It covers all primitive recursive functions on lists.
prim [] = e
prim (a:x) = F(a,x, prim x)

This is because we can prim

is mutually defined with the
identity function on lists.

Zhenjiang Hu, Wei Zhang

Chapter 25. Fusion and Tupling

Tupling

biggers as a Mutumorphism

biggers = fst o [([], 0), (1, 2)]
where a @1 (r,s) =if a> sthen a: relse r

ady(rns)=a+s

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Lemma (Mutu-Tupling)

l[(e17e27’"aen)v(@17@2a"'7@n)]]
= foldr (@) (e1, €2, ..., ¢€n)
where adr=(a®1r,adar,...,ad,r)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Consider, as an example, to apply the mutu-tupling lemma to
biggers.

biggers
= { mutumorphism for biggers }
fsto |[([]7 0)7 (@17 @2)]]
= { mutu-tupling lemma }
fst o foldr (@) ([],0)
where a @ (r,s) = (if a> sthen a: relse r,a+s)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Inlining foldr in the derived program gives the following readable
recursive program:

biggers x = let (r,s) = tup xin r
where tup [| = ([],0)
tup (a: x) =let (r,s) = tup x
in (ifa>sthen a:relser,a+s)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Lemma (Foldr-Tupling)

(foldr (1) e1 x, foldr (©2) ex x) = foldr (®) (e1, €2) x
where a® (r1,n) = (a®1n,a®2 r)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

For example, the following program for computing the average of a
list:
average x = sum x/length x

can be transformed into the following with the foldr-tupling lemma.

average x = let (s,/) = tup xin s/|
where tup = foldr (\a (s, /). (a+s,1+ 1)) (0,0)

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

Tupling

Homework BMF 3-2

(1) Using tupling transformation to derive an efficient program for
computing tailsums.

tailsums [] [0]
tailsums (a: x) = tailsums x+ [a+ sum x]

(2) Code the efficient program in Haskell.

Zhenjiang Hu, Wei Zhang Chapter 25. Fusion and Tupling

	Fusion
	Tupling

