
Review: Foldr
Unfold

Chapter 26. Automatic Parallelization
– An Application –

Zhenjiang Hu, Wei Zhang

School of Computer Scieence
Peking University

December 27, 2024

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Outline

1 Review: Foldr

2 Unfold

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Maximum Prefix Sum Problem
Design a D&C parallel program that computes the maximum of all
the prefix sums of a list.

mps [1,−2, 3,−9, 5, 7,−10, 8,−9, 10] = 5

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Review: List Homomorphism

Function h on lists is a list homomorphism, if

h [] = e
h [a] = f a
h (x ++ y) = h x⊙ h y

for some ⊙.

Properties
Suitable for parallel computation in the D&C style
Basic concept for skeletal parallel programming
Enjoy many nice algebraic properties (1st, 2nd, 3rd
Homomorphism theorems)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Review: Existence of Homomorphism

Existence Lemma
The list function h is a homomorphism iff the implication

h v = h x ∧ h w = h y ⇒ h (v ++w) = h (x ++ y)

holds for all lists v,w, x, y.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

h = ⊕←/ e
h = ⊗→/ e

that is,
h ([a] ++ x) = a⊕ h x
h (x ++ [a]) = h x⊗ a

iff there exists an associative operator ⊙ such that

h(x ++ y) = h x⊙ h y.

Two sequential programs guarantee existence of a parallel program!

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

h = ⊕←/ e
h = ⊗→/ e

that is,
h ([a] ++ x) = a⊕ h x
h (x ++ [a]) = h x⊗ a

iff there exists an associative operator ⊙ such that

h(x ++ y) = h x⊙ h y.

Two sequential programs guarantee existence of a parallel program!

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

h = ⊕←/ e
h = ⊗→/ e

that is,
h ([a] ++ x) = a⊕ h x
h (x ++ [a]) = h x⊗ a

iff there exists an associative operator ⊙ such that

h(x ++ y) = h x⊙ h y.

Two sequential programs guarantee existence of a parallel program!

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Proof of the Third Homomorphism Theorem

Proof. Let h v = h x and h w = h y. Then:
h (v ++w)

= { h = ⊕←/ e }
⊕←/ e(v ++w)

= { property of right-to-left reduction }
⊕←/ ⊕←/ ewv

= { h w = h y }
⊕←/ ⊕←/ eyv

= { property of right-to-left reduction }
⊕←/ e(v ++ y)

= { h = ⊕←/ e }
h (v ++ y)

= { symmetrically, since h = ⊗→/ e }
h (x ++ y)

By the Existence Lemma, h is a homomorphism.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Proof of the Third Homomorphism Theorem

Proof. Let h v = h x and h w = h y. Then:
h (v ++w)

= { h = ⊕←/ e }
⊕←/ e(v ++w)

= { property of right-to-left reduction }
⊕←/ ⊕←/ ewv

= { h w = h y }
⊕←/ ⊕←/ eyv

= { property of right-to-left reduction }
⊕←/ e(v ++ y)

= { h = ⊕←/ e }
h (v ++ y)

= { symmetrically, since h = ⊗→/ e }
h (x ++ y)

By the Existence Lemma, h is a homomorphism.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Examples
sum [1, 2, 3] = 6

sum (a : x) = a + sum x
sum (x ++ [a]) = sum x + a

sort [1, 3, 2] = [1, 2, 3]

sort (a : x) = insert a (sort x)
sort (x ++ [b]) = insert b (sort x)

psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

psums (a : x) = a : (a+) ∗ (psums x)
psums (x ++ [b]) = psums x ++ [last (psums x) + b]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

A Challenge Problem

It remains as a challenge to automatically derive efficient an
associative operator ⊙ from ⊕ and ⊗.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Parallelization Theorem

Let f ◦ denote a weak right inverse of f.

f(a : x) = a⊕ f x
f(x ++ [b]) = f x⊗ b

f(x ++ y) = f x⊙ f y
where a⊙ b = f(f ◦ a ++ f ◦ b)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak (Right) Inverse

g is an inverse of f, if

g y = x ⇔ f x = y

g is a weak (right) inverse of f, if for y ∈ image(f)

g y = x ⇒ f x = y

x y x y
x''

x'

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Properties of Weak Inverse

Weak inverse always exists but may not be unique.

Example: Function sum

sum [] = 0
sum (a : x) = a + sum x

can have infinite number of weak inverse:

g1 y = [y]
g2 y = [0, y]

· · ·

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Properties of Weak Inverse

Weak inverse always exists but may not be unique.

Example: Function sum

sum [] = 0
sum (a : x) = a + sum x

can have infinite number of weak inverse:

g1 y = [y]
g2 y = [0, y]

· · ·

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Parallelizing sum

From
1 sum (a : x) = a + sum x
2 sum (x ++ [b]) = sum x + b
3 sum ◦ y = [y]

we soon obtain

sum (x ++ y) = sum x⊙ sum y
where

a⊙ b = sum (sum ◦ a ++ sum ◦ b)
= sum ([a] ++ [b])
= a + b

That is,
sum (x ++ y) = sum x + sum y.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Parallelizing sum

From
1 sum (a : x) = a + sum x
2 sum (x ++ [b]) = sum x + b
3 sum ◦ y = [y]

we soon obtain

sum (x ++ y) = sum x⊙ sum y
where

a⊙ b = sum (sum ◦ a ++ sum ◦ b)
= sum ([a] ++ [b])
= a + b

That is,
sum (x ++ y) = sum x + sum y.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!

What is a weak inverse for sum?

sum [] = 0
sum (a : x) = a + sum x

What is it for mps?

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum?

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!
What is a weak inverse for sum? sum ◦ y = [y]

sum [] = 0
sum (a : x) = a + sum x

What is it for mps?

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum?

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!
What is a weak inverse for sum? sum ◦ y = [y]

sum [] = 0
sum (a : x) = a + sum x

What is it for mps?

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum?

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!
What is a weak inverse for sum? sum ◦ y = [y]

sum [] = 0
sum (a : x) = a + sum x

What is it for mps? mps ◦ y = [y]

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum?

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!
What is a weak inverse for sum? sum ◦ y = [y]

sum [] = 0
sum (a : x) = a + sum x

What is it for mps? mps ◦ y = [y]

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum?

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is not easy!
What is a weak inverse for sum? sum ◦ y = [y]

sum [] = 0
sum (a : x) = a + sum x

What is it for mps? mps ◦ y = [y]

mps [] = 0
mps (a : x) = 0 ↑ a ↑ (a + mps x)

What is it for f = mps △ sum? f ◦ (p, s) = [p, s− p]

f x = (mps x, sum x)

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is challenging

Can you find a weak inverse for f?

f x = (mss x,mps x,mts x, sum x)

where
mss [] = 0
mss (a : x) = (a + mps x) ↑ mss x ↑ 0
mts [] = 0
mts (a : x) = (a + sum x) ↑ mts x ↑ 0

f ◦ (m, p, t, s) = [p, s− p− t,m, t−m]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Weak inversion is challenging

Can you find a weak inverse for f?

f x = (mss x,mps x,mts x, sum x)

where
mss [] = 0
mss (a : x) = (a + mps x) ↑ mss x ↑ 0
mts [] = 0
mts (a : x) = (a + sum x) ↑ mts x ↑ 0

f ◦ (m, p, t, s) = [p, s− p− t,m, t−m]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Derivation of Weak Right Inverse

Idea:
deriving a weak right inverse

⇓
solving conditional linear equations

Consider to find a weak right inverse for f defined by

f x = (mps x, sum x)

Let x1, x2 be a solution to the following equations:

mps [x1, x2] = p
sum [x1, x2] = s

then
f ◦ (p, s) = [x1, x2]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Derivation of Weak Right Inverse

Idea:
deriving a weak right inverse

⇓
solving conditional linear equations

Consider to find a weak right inverse for f defined by

f x = (mps x, sum x)

Let x1, x2 be a solution to the following equations:

mps [x1, x2] = p
sum [x1, x2] = s

then
f ◦ (p, s) = [x1, x2]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Derivation of Weak Right Inverse

Idea:
deriving a weak right inverse

⇓
solving conditional linear equations

Consider to find a weak right inverse for f defined by

f x = (mps x, sum x)

Let x1, x2 be a solution to the following equations:

0 ↑ x1 ↑ (x1 + x2) = p
x1 + x2 = s

then
f ◦ (p, s) = [x1, x2]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Derivation of Weak Right Inverse

Idea:
deriving a weak right inverse

⇓
solving conditional linear equations

Consider to find a weak right inverse for f defined by

f x = (mps x, sum x)

Let x1, x2 be a solution to the following equations:

x1 = p
x2 = s− p

then
f ◦ (p, s) = [x1, x2]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Derivation of Weak Right Inverse

Idea:
deriving a weak right inverse

⇓
solving conditional linear equations

Consider to find a weak right inverse for f defined by

f x = (mps x, sum x)

Let x1, x2 be a solution to the following equations:

x1 = p
x2 = s− p

then
f ◦ (p, s) = [p, s− p]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Conditional Linear Equations

t1(x1, x2, . . . , xm) = c1
t2(x1, x2, . . . , xm) = c2

...
tm(x1, x2, . . . , xm) = cm

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Conditional Linear Equations

t1(x1, x2, . . . , xm) = c1
t2(x1, x2, . . . , xm) = c2

...
tm(x1, x2, . . . , xm) = cm

t ::= n | x | n x | t1 + t2 | p→ t1; t2
p ::= t1 < t2 | t1 = t2 | ¬p | p1 ∧ p2 | p1 ∨ p2

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Conditional Linear Equations

t1(x1, x2, . . . , xm) = c1
t2(x1, x2, . . . , xm) = c2

...
tm(x1, x2, . . . , xm) = cm

Conditional linear equations can be efficiently solved by using
Mathematica. [PLDI’07]

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Can we generalize the idea from lists to trees?

f(a : x) = a⊕ f x
f(x ++ [b]) = f x⊗ b

f(x ++ y) = f x⊙ f y
where a⊙ b = f(f ◦ a ++ f ◦ b)

⇓

f is a bottom-up tree reduction
f is a top-down tree reduction
f(t1 ◁ t2) = f t1 ⊙ f t2

where a⊙ b = f(f ◦ a ◁ f ◦ b)

Yes, see POPL’09. In fact, all the ideas in this course can be
naturally generated to trees.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Can we generalize the idea from lists to trees?

f(a : x) = a⊕ f x
f(x ++ [b]) = f x⊗ b

f(x ++ y) = f x⊙ f y
where a⊙ b = f(f ◦ a ++ f ◦ b)

⇓

f is a bottom-up tree reduction
f is a top-down tree reduction
f(t1 ◁ t2) = f t1 ⊙ f t2

where a⊙ b = f(f ◦ a ◁ f ◦ b)

Yes, see POPL’09.

In fact, all the ideas in this course can be
naturally generated to trees.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

Review: Foldr
Unfold

Can we generalize the idea from lists to trees?

f(a : x) = a⊕ f x
f(x ++ [b]) = f x⊗ b

f(x ++ y) = f x⊙ f y
where a⊙ b = f(f ◦ a ++ f ◦ b)

⇓

f is a bottom-up tree reduction
f is a top-down tree reduction
f(t1 ◁ t2) = f t1 ⊙ f t2

where a⊙ b = f(f ◦ a ◁ f ◦ b)

Yes, see POPL’09. In fact, all the ideas in this course can be
naturally generated to trees.

Zhenjiang Hu, Wei Zhang Chapter 26. Automatic Parallelization

	Review: Foldr
	Unfold

