
Specification and Implementation
Problem Solving

Program Calculation

Chapter 16: Introduction to Calculational
Programming

Zhenjiang Hu, Wei Zhang

School of Computer Science
Peking University

November 20, 2024

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Outline

1 Specification and Implementation

2 Problem Solving

3 Program Calculation

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specification and Implementation

A specification
describes what task an algorithm is to perform,
expresses the programmers’ intent,
should be as clear as possible.

An implementation
describes how task is to perform,
expresses an algorithm (an execution),
should be efficiently done within the time and space available.

The link is that the implementation should be proved to satisfy the
specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specification and Implementation

A specification
describes what task an algorithm is to perform,
expresses the programmers’ intent,
should be as clear as possible.

An implementation
describes how task is to perform,
expresses an algorithm (an execution),
should be efficiently done within the time and space available.

The link is that the implementation should be proved to satisfy the
specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specification and Implementation

A specification
describes what task an algorithm is to perform,
expresses the programmers’ intent,
should be as clear as possible.

An implementation
describes how task is to perform,
expresses an algorithm (an execution),
should be efficiently done within the time and space available.

The link is that the implementation should be proved to satisfy the
specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

How to write a specification?

By predicates: describing intended relationship between input
and output of an algorithm.

By functions: describing straightforward functional mapping
from input to output of an algorithm, which is executable but
could be terribly inefficient.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

How to write a specification?

By predicates: describing intended relationship between input
and output of an algorithm.

By functions: describing straightforward functional mapping
from input to output of an algorithm, which is executable but
could be terribly inefficient.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (1/3)

Specification: describing intended relationship between input and
output of an algorithm.

Example: increase
The specification

increase :: Int → Int
increase x > square x

says that the result of increase should be strictly greater than the
square of its input, where square x = x ∗ x.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (1/3)

Specification: describing intended relationship between input and
output of an algorithm.

Example: increase
The specification

increase :: Int → Int
increase x > square x

says that the result of increase should be strictly greater than the
square of its input, where square x = x ∗ x.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (2/3)
In this case, an Implementation is first given and then proved to
satisfy the specification.

Example: increase (continue)
One implementation is

increase x = square x + 1

which can be proved by the following simple calculation.

increase x
= { definition of increase }

square x + 1
> { arithmetic property }

square x

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (2/3)
In this case, an Implementation is first given and then proved to
satisfy the specification.

Example: increase (continue)
One implementation is

increase x = square x + 1

which can be proved by the following simple calculation.

increase x
= { definition of increase }

square x + 1
> { arithmetic property }

square x

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (2/3)
In this case, an Implementation is first given and then proved to
satisfy the specification.

Example: increase (continue)
One implementation is

increase x = square x + 1

which can be proved by the following simple calculation.

increase x
= { definition of increase }

square x + 1
> { arithmetic property }

square x

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Predicates (3/3)

Exercise
Give another implementation of increase and prove that your
implementation meets its specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Functions (1/3)

Specification: describing straightforward functional mapping from
input to output of an algorithm, which is executable but could be
terribly inefficient.

Example: quad
The specification for computing quadruple of a number can be
described straightforwardly by

quad x = x ∗ x ∗ x ∗ x

which is not efficient in the sense that multiplications are used
three times.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Functions (1/3)

Specification: describing straightforward functional mapping from
input to output of an algorithm, which is executable but could be
terribly inefficient.

Example: quad
The specification for computing quadruple of a number can be
described straightforwardly by

quad x = x ∗ x ∗ x ∗ x

which is not efficient in the sense that multiplications are used
three times.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Functions (2/3)
With functional specification, we do not need to invent the
implementation; just to improve specification via calculation.

Example: quad (continue)
We derive (develop) an efficient algorithm with only two multiplications
by the following calcualtion.

quad x
= { specification }

x ∗ x ∗ x ∗ x
= { since x is associative }

(x ∗ x) ∗ (x ∗ x)
= { definition of square }

square x ∗ square x
= { definition of square }

square (aquare x)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Functions (2/3)
With functional specification, we do not need to invent the
implementation; just to improve specification via calculation.

Example: quad (continue)
We derive (develop) an efficient algorithm with only two multiplications
by the following calcualtion.

quad x
= { specification }

x ∗ x ∗ x ∗ x
= { since x is associative }

(x ∗ x) ∗ (x ∗ x)
= { definition of square }

square x ∗ square x
= { definition of square }

square (aquare x)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Specifying Algorithms by Functions (3/3)

Exercise
Extend the idea in the derivation of efficient quad to develop an
efficient algorithm for computing exp defined by

exp(x, n) = xn.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Advantages of Functional Specification

Functional specification is executable.

Functional specification is powerful to express intended
mappings directly by functions or through their composition.
Functional specification is suitable for reasoning, when
functions used are well-structured with good algebraic
properties.

In this course, we consider functional specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Advantages of Functional Specification

Functional specification is executable.
Functional specification is powerful to express intended
mappings directly by functions or through their composition.

Functional specification is suitable for reasoning, when
functions used are well-structured with good algebraic
properties.

In this course, we consider functional specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Advantages of Functional Specification

Functional specification is executable.
Functional specification is powerful to express intended
mappings directly by functions or through their composition.
Functional specification is suitable for reasoning, when
functions used are well-structured with good algebraic
properties.

In this course, we consider functional specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Advantages of Functional Specification

Functional specification is executable.
Functional specification is powerful to express intended
mappings directly by functions or through their composition.
Functional specification is suitable for reasoning, when
functions used are well-structured with good algebraic
properties.

In this course, we consider functional specification.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Outline

1 Specification and Implementation

2 Problem Solving

3 Program Calculation

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Tsuru-Kame-Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 6 heads and 20 legs. Find out the numbers
of cranes and tortoises.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Kindergarten Approach

A simple enumeration

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Kindergarten Approach

A simple enumeration

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Kindergarten Approach

A simple enumeration

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Primary School

Reasoning

if all 6 animals were cranes, there ought to be 6× 2 = 12 legs.

However, there are in fact 20 legs, the extra 20 − 12 = 8 legs
must belong to some tortoises.

Since one tortoise can add 2 legs, we have 8/2 = 4 tortoises.

So there must be 6 − 4 = 2 cranes.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Middle School

Algebra (Equation Theory)

x + y = 6
2x + 4y = 20

which gives
x = 2
y = 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Middle School

Algebra (Equation Theory)

x + y = 6
2x + 4y = 20

which gives
x = 2
y = 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Middle School

Algebra (Equation Theory)

x + y = 6
2x + 4y = 20

which gives
x = 2
y = 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Middle School

Algebra (Equation Theory)

x + y = 6
2x + 4y = 20

which gives
x = 2
y = 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

The same problem may have different difficulties depending
on what weapons we have in hand.

Many arithmetic problems can be easily solved
if we use the equation theory.

What are weapons for solving programming problems? Do we
have an “equation theory” for constructing correct and
efficient programs?

⇓
Calculational Programming

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

The same problem may have different difficulties depending
on what weapons we have in hand.

Many arithmetic problems can be easily solved
if we use the equation theory.

What are weapons for solving programming problems? Do we
have an “equation theory” for constructing correct and
efficient programs?

⇓
Calculational Programming

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

The same problem may have different difficulties depending
on what weapons we have in hand.

Many arithmetic problems can be easily solved
if we use the equation theory.

What are weapons for solving programming problems? Do we
have an “equation theory” for constructing correct and
efficient programs?

⇓
Calculational Programming

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Programming Problem

Can you develop a correct linear-time program for solving the
following problem?

Maximum Segment Sum Problem
Given a list of numbers, find the maximum of sums of all
consecutive sublists.

[−1, 3, 3,−4,−1, 4, 2,−1] =⇒ 7
[−1, 3, 1,−4,−1, 4, 2,−1] =⇒ 6
[−1, 3, 1,−4,−1, 1, 2,−1] =⇒ 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);

2 Computing sum for each segment(sums);
3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);
2 Computing sum for each segment(sums);

3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);
2 Computing sum for each segment(sums);
3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);
2 Computing sum for each segment(sums);
3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);
2 Computing sum for each segment(sums);
3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

A Simple Solution

1 Enumerating all segments (segs);
2 Computing sum for each segment(sums);
3 Calculating the maximum of all the sums (max).

Exercise
How many segments does a list of length n have?

Exercise
What is the time complexity of this simple solution?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There indeed exists a clever solution!

mss=0; s=0;
for(i=0;i<n;i++){

s += x[i];
if(s<0) s=0;
if(mss<s) mss= s;

}

x[i] 3 1 −4 −1 1 2 −1
s 0 3 4 0 0 1 3 2

mss 0 3 4 4 4 4 4 4

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There is a big gap between the simple and clever solutions!

Can we calculate the clever solution from the simple solution?
What rules and theorems are necessary to do so?
How to apply the rules and theorems to do so?
Can we reuse the derivation procedure to solve similar
problems, say maximum increasing segment sum problme?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There is a big gap between the simple and clever solutions!
Can we calculate the clever solution from the simple solution?

What rules and theorems are necessary to do so?
How to apply the rules and theorems to do so?
Can we reuse the derivation procedure to solve similar
problems, say maximum increasing segment sum problme?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There is a big gap between the simple and clever solutions!
Can we calculate the clever solution from the simple solution?
What rules and theorems are necessary to do so?

How to apply the rules and theorems to do so?
Can we reuse the derivation procedure to solve similar
problems, say maximum increasing segment sum problme?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There is a big gap between the simple and clever solutions!
Can we calculate the clever solution from the simple solution?
What rules and theorems are necessary to do so?
How to apply the rules and theorems to do so?

Can we reuse the derivation procedure to solve similar
problems, say maximum increasing segment sum problme?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

There is a big gap between the simple and clever solutions!
Can we calculate the clever solution from the simple solution?
What rules and theorems are necessary to do so?
How to apply the rules and theorems to do so?
Can we reuse the derivation procedure to solve similar
problems, say maximum increasing segment sum problme?

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Outline

1 Specification and Implementation

2 Problem Solving

3 Program Calculation

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Transformational Programming

One starts by writing clean and correct programs, and then use
program transformation techniques to transform them step-by-step
to more efficient equivalents.

Specification: Clean and Correct programs
⇓

Folding/Unfolding Program Transformation
⇓

Efficient Programs

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Program Calculation

Program calculation is a kind of program transformation based on
Constructive Algorithmics, a framework for developing
laws/rules/theories for manipulating programs.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Program Calculation

Program calculation is a kind of program transformation based on
Constructive Algorithmics, a framework for developing
laws/rules/theories for manipulating programs.

Specification: Clean and Correct programs
⇓

Folding-free Program Transformation
⇓

Efficient Programs

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Work on Program Calculation

Algorithm Derivation
Fold/Unfold-based Transformational Programming
(Darlington&Burstall:77)

Bird-Meertens Formalism (BMF) (Bird:87)

Algebra of Programming (Bird&de Moor:96)

Our Work on Program Transformation in Calculation Form
Fusion (ICFP’96)

Tupling (ICFP’97)

Accumulation (NGC’99)

Inversion/Bidirectionalization (MPC’04, PEPM’07, ICFP’07, MPC’10, ICFP’10)

Dynamic Programming (ICFP’00, ICFP’03, ICFP’08)

Parallelization (POPL’98, ESOP’02, PLDI’07, POPL’09, ESOP’12)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Work on Program Calculation

Algorithm Derivation
Fold/Unfold-based Transformational Programming
(Darlington&Burstall:77)

Bird-Meertens Formalism (BMF) (Bird:87)

Algebra of Programming (Bird&de Moor:96)

Our Work on Program Transformation in Calculation Form
Fusion (ICFP’96)

Tupling (ICFP’97)

Accumulation (NGC’99)

Inversion/Bidirectionalization (MPC’04, PEPM’07, ICFP’07, MPC’10, ICFP’10)

Dynamic Programming (ICFP’00, ICFP’03, ICFP’08)

Parallelization (POPL’98, ESOP’02, PLDI’07, POPL’09, ESOP’12)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

What I will talk in this course?
Algorithm Derivation

Fold/Unfold-based Transformational Programming
(Darlington&Burstall:77)

Bird-Meertens Formalism (BMF) (Bird:87)

Algebra of Programming (Bird&de Moor:96)

Our Work on Program Transformation in Calculation Form
Fusion (ICFP’96)

Tupling (ICFP’97)

Accumulation (NGC’99)

Inversion/Bidirectionalization (MPC’04, PEPM’07, ICFP’07, MPC’10, ICFP’10)

Dynamic Programming (ICFP’00, ICFP’03, ICFP’08)

Parallelization (POPL’98, ESOP’02, PLDI’07, POPL’09, ESOP’12)

⇑
Functional Programming

(basic concepts of algorithmic languages, program specification and reasoning)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

What I will talk in this course?
Algorithm Derivation

Fold/Unfold-based Transformational Programming
(Darlington&Burstall:77)

Bird-Meertens Formalism (BMF) (Bird:87)

Algebra of Programming (Bird&de Moor:96)

Our Work on Program Transformation in Calculation Form
Fusion (ICFP’96)

Tupling (ICFP’97)

Accumulation (NGC’99)

Inversion/Bidirectionalization (MPC’04, PEPM’07, ICFP’07, MPC’10, ICFP’10)

Dynamic Programming (ICFP’00, ICFP’03, ICFP’08)

Parallelization (POPL’98, ESOP’02, PLDI’07, POPL’09, ESOP’12)

⇑
Functional Programming

(basic concepts of algorithmic languages, program specification and reasoning)

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Plan

1 Tool for Calculation: Agda (about 3 lectures)
Learn functional programming in Agda
Learn program reasoning in Agda

2 Program Calculus: BMF (about 4 lectures)
Learn basic programming theory for calculating programs from
problem specifications
Learn basic techniques for calculating programs

3 Applications of Calculational Programming (about 1 lectures)
Learn how to solve a wide class of optimization problems
Learn how to automatic parallelize sequential programs

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

References

Aaron Stump, Verified Functional Programming in Agda.
ACM Book, 2016.
Ulf Norell, Dependently Typed Programming in Agda.
Advanced Functional Programming 2008: 230-266.
Richard Bird, Lecture Notes on Constructive Functional
Programming, Technical Monograph PRG-69, Oxford
University, 1988.
Richard Bird and Oege de Moor, The Algebra of
Programming, Prentice-Hall, 1996.
Roland Backhouse, Program Construction: Calculating
Implementation from Specification, Wiley, 2003.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming



Specification and Implementation
Problem Solving

Program Calculation

Homework

16-1 Write a Haskell program to solve the maximum segment sum
problem, following the three steps in the slides.

16-2 Write a Haskell program to solve the maximum segment sum
problem, using the smart algorithm in the slides.

Zhenjiang Hu, Wei Zhang Chapter 16: Introduction to Calculational Programming


	Specification and Implementation
	Problem Solving
	Program Calculation

