
Chapter 19:
Lists in Agda

Zhenjiang Hu, Wei Zhang
School of Computer Science, PKU

December 4, 2024

1

The List Datatype and Type Parameters

2

data 𝕃 {ℓ} (A : Set ℓ) : Set ℓ where
[] : 𝕃 A
:: : (x : A) (xs : 𝕃 A) → 𝕃 A

[]
1 :: 2 :: 3 :: []
tt :: tt :: ff :: ff :: []

Basic Operations on Lists

3

[_] : ∀ {ℓ} {A : Set ℓ} → A → 𝕃 A
[x] = x :: []

is-empty : ∀{ℓ}{A : Set ℓ} → 𝕃 A → 𝔹
is-empty [] = tt
is-empty (_ :: _) = ff

head : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → is-empty l ≡ ff → A
head [] ()
head (x :: xs) _ = x

head2 : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → maybe A
head2 [] = nothing
head2 (a :: _) = just a

Basic Operations on Lists

4

length : ∀{ℓ}{A : Set ℓ} → 𝕃 A → ℕ
length [] = 0
length (x :: xs) = suc (length xs)

++ : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

map : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A → B) → 𝕃 A → 𝕃 B
map f [] = []
map f (x :: xs) = f x :: map f xs

filter : ∀{ℓ}{A : Set ℓ} → (A → 𝔹) → 𝕃 A → 𝕃 A
filter p [] = []
filter p (x :: xs) = let r = filter p xs in

if p x then x :: r else r

foldr : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (A → B → B) → B → 𝕃 A → B
foldr f b [] = b
foldr f b (a :: as) = f a (foldr f b as)

Reasoning about List Operations

5

length-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) →
length (l1 ++ l2) ≡ (length l1) + (length l2)

length-++ [] l2 = refl
length-++ (h :: t) l2 rewrite length-++ t l2 = refl

map-append : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} →
(f : A → B) (l1 l2 : 𝕃 A) →
map f (l1 ++ l2) ≡ (map f l1) ++ (map f l2)

map-append f [] l2 = refl
map-append f (x :: xs) l2 rewrite map-append f xs l2 = refl

Length of Filtered Lists, and the with Construct

6

length-filter : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) →
length (filter p l) ≤ length l ≡ tt

length-filter p [] = refl
length-filter p (x :: l) with p x
length-filter p (x :: l) | tt = length-filter p l
length-filter p (x :: l) | ff =

≤-trans{length (filter p l)}
(length-filter p l)
(≤-suc (length l))

postulate
≤-trans : ∀ {x y z : ℕ} →

x ≤ y ≡ tt → y ≤ z ≡ tt → x ≤ z ≡ tt
≤-suc : (x : ℕ) → x ≤ suc x ≡ tt

Filter Is Idempotent, and the keep Idiom

7

filter-idem : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) →
(filter p (filter p l)) ≡ (filter p l)

filter-idem p [] = refl
filter-idem p (x :: l) with keep (p x)
filter-idem p (x :: l) | tt , p’

rewrite p' | p' | filter-idem p l = refl
filter-idem p (x :: l) | ff , p’

rewrite p' = filter-idem p l

Homework

19.1. Define a polymorphic function takeWhile, which
takes in a predicate on type A (i.e., a function of type A →
B), and a list of As, and returns the longest prefix of the list
that satisfies the predicate.
19.2. Define a function repeat function that takes a number
n and an element a, and constructs a list of length n where
all elements are just a.
19.3. Prove that if value a satisfies predicate p, then
takeWhile p (repeat n a) is equal to repeat n a, where
takeWhile is the function you defined in the previous
problem.

8

