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External and Internal Proofs

• External verification: proofs are external to 
programs. 
– Algebraic properties are usually proved externally

• Internal verification: write functions with more 
semantically expressive types.
– Can be applied for essential invariants of datatypes
– Easier to apply for complex programs
– Harder to read
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The Vector Datatype
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data 𝕍 {ℓ} (A : Set ℓ) : ℕ → Set ℓ where
[] : 𝕍 A 0
_::_ : {n : ℕ} → A → 𝕍 A n → 𝕍 A (suc n)

test-vector : 𝕍 𝔹 4
test-vector = ff :: tt :: ff :: ff :: []

test-vector2 : 𝕃 (𝕍 𝔹 2)
test-vector2 = (ff :: tt :: []) :: 

(tt :: ff :: []) :: 
(tt :: ff :: []) :: []

test-vector3 : 𝕍 (𝕍 𝔹 3) 2
test-vector3 = (tt :: tt :: tt :: []) ::

(ff :: ff :: ff :: []) :: []



Functions over Vectors
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_++𝕍_ : ∀ {ℓ} {A : Set ℓ}{n m : ℕ} → 
𝕍 A n → 𝕍 A m → 𝕍 A (n + m)

[] ++𝕍 ys = ys
(x :: xs) ++𝕍 ys = x :: xs ++𝕍 ys

head𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → 𝕍 A (suc n) → A
head𝕍 (x :: _) = x

tail𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → 𝕍 A n → 𝕍 A (pred n)
tail𝕍 [] = []
tail𝕍 (_ :: xs) = xs

map𝕍 : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'}{n : ℕ} → 
(A → B) → 𝕍 A n → 𝕍 B n

map𝕍 f [] = []
map𝕍 f (x :: xs) = f x :: map𝕍 f xs



Functions over Vectors
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concat𝕍 : ∀{ℓ}{A : Set ℓ}{n m : ℕ} → 
𝕍 (𝕍 A n) m → 𝕍 A (m * n)

concat𝕍 [] = []
concat𝕍 (x :: xs) = x ++𝕍 (concat𝕍 xs)

nth𝕍 : ∀ {ℓ} {A : Set ℓ}{m : ℕ} → 
(n : ℕ) → n < m ≡ tt → 𝕍 A m → A

nth𝕍 0 _ (x :: _) = x
nth𝕍 (suc n) p (_ :: xs) = nth𝕍 n p xs
nth𝕍 (suc n) () []
nth𝕍 0 () []

repeat𝕍 : ∀ {ℓ} {A : Set ℓ} → (a : A)(n : ℕ) → 𝕍 A n
repeat𝕍 a 0 = []
repeat𝕍 a (suc n) = a :: (repeat𝕍 a n)



Binary Search Trees
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Relations
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module relations {ℓ ℓ' : level}{A : Set ℓ} 
(_≥A_ : A → A → Set ℓ') where

reflexive : Set (ℓ ⊔ ℓ')
reflexive = ∀ {a : A} → a ≥A a

transitive : Set (ℓ ⊔ ℓ')
transitive = ∀ {a b c : A} → a ≥A b → b ≥A c → a ≥A c



Boolean Relations
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module bool-relations {ℓ : level}{A : Set ℓ} (_≤A_ : A → A → 𝔹) where

open import relations (λ a a' → a' ≤A a ≡ tt) public using
(reflexive ; transitive)

total : Set ℓ
total = ∀ {a b : A} → a ≤A b ≡ ff → b ≤A a ≡ tt

total-reflexive : total → reflexive
total-reflexive tot {a} with keep (a ≤A a)
total-reflexive tot {a} | tt , p = p
total-reflexive tot {a} | ff , p = tot p

_iso𝔹_ : A → A → 𝔹
d iso𝔹 d' = d ≤A d' && d' ≤A d

iso𝔹-intro : ∀{x y : A} → x ≤A y ≡ tt → y ≤A x ≡ tt → x iso𝔹 y ≡ tt
iso𝔹-intro p1 p2 rewrite p1 | p2 = refl



Binary Search Trees

9

open import bool-relations using (transitive ; total)

module bst (A : Set) 
(_≤A_ : A → A → 𝔹)
(≤A-trans : transitive _≤A_)
(≤A-total : total _≤A_) where

data bst : A → A → Set where
bst-leaf : ∀ {l u : A} → l ≤A u ≡ tt → bst l u
bst-node : ∀ {l l' u' u : A}(d : A) → 

bst l' d → bst d u' → 
l ≤A l' ≡ tt → u' ≤A u ≡ tt → 
bst l u



Searching for an Element in a Binary Search Tree
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bst-search : ∀{l u : A}(d : A) → 
bst l u → maybe (Σ A (λ d' → d iso𝔹 d' ≡ tt))

bst-search d (bst-leaf _) = nothing
bst-search d (bst-node d' L R _ _) with keep (d ≤A d')
bst-search d (bst-node d' L R _ _) | tt , p1 with keep (d' ≤A d) 
bst-search d (bst-node d' L R _ _) 

| tt , p1 | tt , p2 = just (d' , iso𝔹-intro p1 p2)
bst-search d (bst-node d' L R _ _) 

| tt , p1 | ff , p2 = bst-search d L
bst-search d (bst-node d' L R _ _) 

| ff , p1 = bst-search d R



Sigma Types
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A Σ-type is a generalization of the usual Cartesian product 
type A × B, and is often referred to as a dependent sum
type.

data Σ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where
_,_ : (a : A) → (b : B a) → Σ A B

_×_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A × B = Σ A (λ x → B)



Sigma Types: Nonzero Nat
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ℕ⁺ : Set
ℕ⁺ = Σ ℕ (λ n → iszero n ≡ ff)

suc⁺ : ℕ⁺ → ℕ⁺ 
suc⁺ (x , p) = (suc x , refl)

_+⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(x , p) +⁺ (y , q) = x + y , iszerosum2 x y p

_*⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(x , p) *⁺ (y , q) = (x * y , iszeromult x y p q)



Why Sigma and Pi?

• Σ-types (dependent sum type) can be thought of 
as generalizing disjoint unions 
A  ⊎ B:

({0}×A) ∪ ({1}× B)

• Dependent function type: (x:A) → B
(or written  mathematically as Πx : A. B ) is 
another generalization of Cartesian products.
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Homework

20.1. Using the vector type V in a nested fashion, fill in the hole below to define 
a type for matrices of natural numbers, where the type lists the dimensions of 
the matrix:

_by_matrix : N → N → Set 
n by m matrix = ?

20.2. Define the following basic operations on matrices, using the definition 
you propose in the previous problem. You should first figure out the types of 
the operations, of course, and then write code for them (possibly using helper 
functions). 
(a) zero-matrix, which takes in the desired dimensions and produces a matrix 

of those dimensions, where every value in the matrix is zero.
(not finished yet, see next page)
(问题还没结束，下页继续）
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Homework

(b) matrix-elt, which takes in an n by m matrix and a row and column index 
within those bounds, and returns the element stored at that position in the 
matrix.  
(c) diagonal-matrix, which takes in an element d and a dimension n, and re-
turns the n by n matrix which has zero everywhere except d down the diagonal 
of the matrix. Use this to define a function

identity-matrix
returning a diagonal matrix where the diagonal is 1.
(d) transpose, which turns an n by m matrix into a m by n matrix by switching 
the rows and columns.
(e) _._, the dot product of two vectors.
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