
编程语言的设计原理
Design Principles of 

Programming Languages

Zhenjiang Hu, Haiyan Zhao, 

胡振江 赵海燕

Peking University, Spring, 2022



Practice in Class

arith, fullsimple,  fullref



Structure of package 

Scan tokes 
(lexer.mll)

Parse terms 
(parser.mly)

Evaluate 
each terms 

(eval in 
core.ml)

Print the 
values 

(printtm in 
syntax.ml)

main.ml drives the whole process

2022/3/23 Design Principle of Programming Language 3



Structure of package 

Info:  
a data type recording the position of the term in the source file

syntax. ml defines the terms

2022/3/23 Design Principle of Programming Language 4



Structure of package 

let rec isnumericval t = match t with
TmZero(_) → true
| TmSucc(_,t1) → isnumericval t1 
| _ → false

2022/3/23 Design Principle of Programming Language 5



Structure of package 

• eval in core.ml

• eval1:  perform a single step reduction

2022/3/23 Design Principle of Programming Language 6



Some abbreviations

2022/3/23 Design Principle of Programming Language 7

• UCID = upper case identifier
• LCID = lower case identifier
• ty = type
• tm = term
• LCURLY = “{“
• RCURLY = “}”
• USCORE = “_”



Commands
• Each line of the source file is parsed as a command
─ type command =  | Eval of info * term 
─ New commands will be added later

• Main routine for each file
let process_file f  =

alreadyImported := f :: !alreadyImported;
let cmds = parseFile f in
let g  c =  

open_hvbox 0;
let results = process_command c in

print_flush();
results

in
List.iter g  cmds

2022/3/23 Design Principle of Programming Language 8



Homework for 3/9 

• Please  get familiar with OCaml and its utilities 
• Please  download the implementation package of the TAPL, and digest the 

source codes in archives of arith,  tyarith, untype.  
• Please give your implementation for Chap. 4
─ Submit your code as a compressed file with one of the above names
─ Your submission should contain file test.f that contains exactly the 

expressions to be tested
─ TA will perform the following two commands to verify your submission:

• make
• ./f test.f

2022/3/23 Design Principle of Programming Language 9



Exercise arith.simple_use

• Using arith to write the following equation
─ Return five if two is not zero, otherwise return nine

─ Hint: read the code in parser.mly

2022/3/23 Design Principle of Programming Language 10



Exercise arith.size
• Make the evaluation computes the size of a term (3.3.2) instead of 

reducing the term, and test it on the original test.f
─ Hint:

• pr:  string->unit  prints a string to the screen
• string_of_int : int->string converts an integer into a string
• Remember to change both .ml and .mli files

2022/3/23 Design Principle of Programming Language 11



Big-step vs small-step
• Big-step is usually easier to understand
─ called “natural semantics” in some articles

• Big-step often leads to simpler proof
• Big-step cannot describe computations that do not produce a value
─ Non-terminating computation
─ “Stuck” computation

2022/3/23 Design Principle of Programming Language 12



Exercise arith.big-step
• Change the evaluation to use big-step semantics, and compute the 

following expressions:
─ true;
─ if false then true else false;
─ if 0 then 1 else 2;
─ if true then (succ false) else 2;
─ 0;
─ succ (pred 0);
─ iszero (pred (succ (succ 0)));

2022/3/23 Design Principle of Programming Language 13



fullsimple
• Implementing all extensions in Chapter 11
• Allow different types of command:
─ Evaluation: type-checking and reducing a term
─ Bindings

• Variable binding:   a:Int;
• Type variable binding: T;
• Term abbreviation binding: t = succ 0;
• Type abbreviation binding: T = Nat -> Nat;

• Types can be used without declaration (uninterpreted types)
x:X
(lambda a:X. a) x

2022/3/23 Design Principle of Programming Language 14



Review: nameless representation
• What is the nameless representation of the following term?

𝜆𝑥. 𝑥 (𝜆𝑦. 𝑥 𝑦)

2022/3/23 Design Principle of Programming Language 15

𝜆. 0 (𝜆. 1 0)



Fullsimple, terms
type term = 

TmVar of info * int * int
| TmAbs of info * string * ty * term 
| TmApp of info * term * term
| …

• Using nameless representation of terms
• The second int for TmVar is used for debugging
─ =  the number of items in the context

• The “string” in TmAbs is used for printing

2022/3/23 Design Principle of Programming Language 16



Example: printing terms
and printtm_ATerm outer ctx t = match t with 

| TmVar(fi, x, n) ->
if ctxlength ctx = n then

pr (index2name fi ctx x) 
else

pr ("[bad index: " ^ …
| TmAbs(fi, x, tyT1, t2) ->

(let (ctx',x') = (pickfreshname ctx x) in
obox(); pr "lambda ";
pr x'; pr ":"; printty_Type false ctx tyT1; pr "."; …
printtm_Term outer ctx' t2; …

2022/3/23 Design Principle of Programming Language 17



Review: context
• What contexts are used in our course?
─ Mapping names to integers in 

nameless representation
─ Σ: mapping variables to types

• Can be combined into one
• New contexts in the implementation
─ Type variable binding: marking type 

variables
─ Term abbreviation binding: Mapping 

variables to terms (and their types)
─ Type abbreviation binding: Mapping type 

variables to terms
2022/3/23 Design Principle of Programming Language 18

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option) | 
TyAbbBind of ty

type context = (string * binding) list



Auxiliary functions for nameless representation
• name2index

info->context ->string->int
return the index of a name

• index2name
info->context ->int->string
inverse of the above

• pickfreshname
context->string ->(context, string)
generate a fresh name using the second 
parameter as hint

2022/3/23 Design Principle of Programming Language 19

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option) | 
TyAbbBind of ty

type context = (string * binding) list



Exercise fullsimple.nameless
• Construct a term t that is evaluated a term t’ in fullsimple, where t’ is 

different from t via only alpha-renaming (i.e., no beta-reduction)

2022/3/23 Design Principle of Programming Language 20



Exercise fullsimple.match
• Add pattern matching for tuples, and test on the following 

expressions
─ let {x, y, z} = {true, 1, {2}} in z;
─ let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;
─ let {x, y, z} = let x = 1 in {true, x, {2}} in z;
─ lambda x:Nat. let {x, y} = {true, 1} in x;
─ let x = 0 in let {y, z} = {1, 2} in x;
─ let {y, z} = {1, 2} in let y = 3 in y;

• Part of the code is already provided to you in the following two pages

2022/3/23 Design Principle of Programming Language 21



Partial code for fullsimple.match
• Adding the following line to “type term =” in syntax.ml
─ | TmPLet of info * string list * term * term

• Adding the following lines after line 235 in parser.mly
─ | LET Pattern EQ Term IN Term

{ fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y -> addname x y) ctx $2)) }

─ Pattern :
LCURLY MetaVars RCURLY
{ $2 }
| LCURLY RCURLY
{ [] }

• Add the following line to tminfo in syntax.ml
─ | TmPLet(fi,_,_,_) -> fi

2022/3/23 Design Principle of Programming Language 22



Partial code for fullsimple.match
• Adding the following lines to “printtm_Term” in syntax.ml

| TmPLet(fi, xs, t1, t2) ->
obox0();
pr "let {";
let rec print xs =
match xs with

x::x'::rest -> pr x; pr ","; print (x'::rest);
| x::[] -> pr x;
| [] -> pr ""; in

print xs;
pr "} = ";
printtm_Term false ctx t1;
print_space(); pr "in"; print_space();
let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in
printtm_Term false ctx' t2;
cbox()

2022/3/23 Design Principle of Programming Language 23


