RIEESANSITRIE
Design Principles of
Programming Languages

Zhenjiang Hu, Halyan Zhao,
AR e
Peking University, Spring, 2022

Practice in Class

arith, fullsimple, fullref

Structure of package

%I
3R

UNI P

dI1s8>

.189%.

main.ml drives the whole process

Scan tokes Parse terms

(lexer.mll) (parser.mly)

Evaluate
each terms

(eval In
core.ml)

2022/3/23 Design Principle of Programming Language

Print the
values

(printtm Iin
syntax.ml)

Structure of package

syntax. ml defines the terms

type term =

TmTrue of info

TmFalse of info

TmIf of info * term * term * term
TmZero of 1info

TmSucc of info * term

TmPred of info * term

TmIsZero of info * term

Info.
a data type recording the position of the term in the source file

2022/3/23 Design Principle of Programming Language 4

Structure of package

let rec isnumericval t = match t with
TmZero(_) — true
| TmSucc(_,t1) — isnumericval t1
| —false

2022/3/23 Design Principle of Programming Language 5

Structure of package

« eval in core.ml

let rec eval t =

——————————

try let t’ =-eva11 E

——————————

with ! NoRu1eApp11es‘=—» E

————————————————————————

« evall: perform a single step reduction

2022/3/23 Design Principle of Programming Language 6

Some abbreviations

« UCID = upper case identifier
« LCID = lower case identifier
* ty =type

e tm=term

« LCURLY ="

« RCURLY ="

« USCORE=""

2022/3/23

Design Principle of Programming Language

Commands

« Each line of the source file is parsed as a command
— type command = | Eval of info * term
— New commands will be added later

* Main routine for each file
let process_file f =
alreadylmported := f :: lalreadylmported;
let cmds = parseFile fin
letg c=
open_hvbox 0O;
let results = process command cin
print_flush();
results
in
List.iter g cmds

2022/3/23 Design Principle of Programming Language

Homework for 3/9

* Please get familiar with OCaml and its utilities
 Please download the implementation package of the TAPL, and digest the
source codes in archives of arith, tyarith, untype.
* Please give your implementation for Chap. 4
— Submit your code as a compressed file with one of the above names
— Your submission should contain file test.f that contains exactly the
expressions to be tested
— TA will perform the following two commands to verify your submission:

make
It test.f

2022/3/23 Design Principle of Programming Language

Exercise arith.simple_use

» Using arith to write the following equation
— Return five if two is not zero, otherwise return nine

— Hint: read the code in parser.mly

2022/3/23 Design Principle of Programming Language 10

Exercise arith.size

« Make the evaluation computes the size of a term (3.3.2) instead of
reducing the term, and test it on the original test.f

— Hint:
e pr: string->unit prints a string to the screen

« string_of int : int->string converts an integer into a string
« Remember to change both .ml and .mli files

2022/3/23 Design Principle of Programming Language 11

Big-step vs small-step

» Big-step is usually easier to understand
— called “natural semantics” in some articles

+ Big-step often leads to simpler proof
* Big-step cannot describe computations that do not produce a value

— Non-terminating computation
— “Stuck” computation

2022/3/23 Design Principle of Programming Language 12

Exercise arith.big-step

« Change the evaluation to use big-step semantics, and compute the
following expressions:

— true;

— If false then true else false;

— if 0 then 1 else 2;

— if true then (succ false) else 2;
— 0

— succ (pred 0);

— iszero (pred (succ (succ 0)));

2022/3/23 Design Principle of Programming Language 13

fullsimple

* Implementing all extensions in Chapter 11
+ Allow different types of command:
— Evaluation: type-checking and reducing a term
— Bindings
« Variable binding: a:lnt;
* Type variable binding: T,
« Term abbreviation binding: t = succ O;
« Type abbreviation binding: T = Nat -> Nat;
* Types can be used without declaration (uninterpreted types)
X: X
(lambda a:X. a) x

2022/3/23 Design Principle of Programming Language 14

Review: nameless representation

* What is the nameless representation of the following term?
Ax. x (Ay. x y)

2.0 (1. 10)

2022/3/23 Design Principle of Programming Language 15

Fullsimple, terms

type term =

TmVar of info * int * int
TmADbs of info * string * ty * term
TmApp of info * term * term

* Using nameless representation of terms

* The second int for TmVar is used for debugging
— = the number of items in the context

* The “string” in TmADs is used for printing

2022/3/23 Design Principle of Programming Language 16

Example: printing terms

and printtm_ATerm outer ctx t = match t with
| TmVar(fi, x, n) ->
iIf ctxlength ctx = n then
pr (index2name fi ctx x)
else
pr ("[bad index: " A ...
| TmAbs(fi, x, tyT1, t2) ->
(let (ctx',x") = (pickfreshname ctx x) in
obox(); pr "lambda ";
pr x'; pr":"; printty _Type false ctx tyT1; pr "."; ...
printtm_ Term outer ctx' t2; ...

2022/3/23 Design Principle of Programming Language 17

Review: context

 \WWhat contexts are used in our course?
— Mapping names to integers in

nameless representation

_ _ type binding =
— 2. mapping variables to types NameBind
« Can be combined into one TyVarBind
. . . VarBind of t
» New contexts in the implementation ar=ing oty |
_ o _ TmAbbBInd of term * (ty option) |
— Type variable binding: marking type TyAbbBInd of ty
variables

type context = (string * binding) list

— Term abbreviation binding: Mapping
variables to terms (and their types)

— Type abbreviation binding: Mapping type
variables to terms

2022/3/23 Design Principle of Programming Language 18

Auxiliary functions for nameless representation

* name2index
iInfo->context ->string->int

return the index of a name

type binding =
* index2name -NafmeBina-
_ _ _ TyVarBind
> ->int->
info->context ->int->string VarBind of ty
inverse of the above TmAbbBiInd of term * (ty option) |

» pickfreshname TyAbbBind of ty

context->string ->(context, string) type context = (string * binding) list

generate a fresh name using the second
parameter as hint

2022/3/23 Design Principle of Programming Language 19

Exercise fullsimple.nameless

« Construct a term t that is evaluated a term t’ in fullsimple, where t’is
different from f via only alpha-renaming (i.e., no beta-reduction)

2022/3/23 Design Principle of Programming Language 20

Exercise fullsimple.match

« Add pattern matching for tuples, and test on the following
expressions

— let {x, y, z} = {true, 1, {2}} in z;

— let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;
— let {x, y, z} =let x =1 in {true, X, {2}} in z;

— lambda x:Nat. let {x, y} = {true, 1} in X;
—letx=0inlet{y, z} = {1, 2} in x;

—let{y,z}={1,2}inlety =3 iny;
« Part of the code is already provided to you in the following two pages

2022/3/23 Design Principle of Programming Language 21

Partial code for fullsimple.match

« Adding the following line to “type term =" in syntax.ml
— | TmPLet of info * string list * term * term

* Adding the following lines after line 235 in parser.mly

— | LET Pattern EQ Term IN Term
{ fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y -> addname x y) ctx $2)) }
— Pattern :

LCURLY MetaVars RCURLY

{$2}
| LCURLY RCURLY

{0}
* Add the following line to tminfo in syntax.ml

— | TmPLet(fi, , ,)->fi

2022/3/23 Design Principle of Programming Language 22

Partial code for fullsimple.match

« Adding the following lines to “printtm_Term” in syntax.mi
| TmPLet(fi, xs, t1, t2) ->
obox0();
pr"let {";
let rec print xs =
match xs with
x::x'";rest -> prx; pr","; print (x"::rest);

| x::[] -> pr x;
| 0->pr ™ in
print xs;
pr Il}] ll;

printtm_Term false ctx t1;

print_space(); pr "in"; print_space();

let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in
printtm_Term false ctx' {2;

cbox()

2022/3/23 Design Principle of Programming Language 23

