
Chapter 19: Case Study: Featherweight Java

Syntax
Typing

Evaluation
Properties



What is Object-Oriented Programming

• Multiple representations
– Object (instances)

• Encapsulation
– Internal representation/implementation is hidden

• Subtyping
– Object interface

• Inheritance
– Class, subclass, superclass

• Open recursion.
– Self (this)

Chapter 19: direct treatment (treat objects as primitive) of a core 
object-oriented language based on Java (rather than encoding 
the features in lambda-calculus with subtyping, records, and 
references in Chapter 18.)



FJ: Featherweight Java

• Proposed by Igarashi, Pierce, and Wadler (1999) 
• A minimal core calculus for modeling Java’s type 

system
• The goal in designing FJ was to make its proof of 

type safety as concise as possible, while still 
capturing the essence of the safety argument for 
the central features of full Java.

We used FJ in our paper:
Jun Li, Chenglong Wang, Yingfei Xiong, Zhenjiang Hu, SWIN: Towards 
Type-Safe Java Program Adaptation between APIs, ACM SIGPLAN 2015 
Workshop on Partial Evaluation and Program Manipulation (PEPM 2015), 
Mumbai, India, January 13-14, 2015. pp.91-102.



An FJ Program

((Pair) (new Pair(new Pair(new A(),new B()), new A()).fst).snd



Nominal and Structural Type Systems

• Type names: fundamental stylistic difference 
between FJ (and Java) and the typed lambda-
calculi.

Ø Nominal type systems:
– Types are always named.
– Typechecker mostly manipulates names, not structures.
– Subtyping is declared explicitly by programmer.

Ø Structural type systems:
– What matters about a type (for typing, subtyping, etc.) 

is just its structure.
– Names are just convenient (but inessential) abbreviations.



Syntax



Subtyping



Auxiliary Functions



Evaluation



Typing



Properties



Homework

Please submit electronically.


