Chapter 19: Case Study: Featherweight Java

Syntax
Typing
Evaluation
Properties

What 1s Object-Oriented Programming

Multiple representations

- Object (instances)

Encapsulation

- Internal representation/implementation is hidden
Subtyping

- Object interface

Inheritance
- Class, subclass, superclass

Open recursion.
- Self (this)

Chapter 19: direct treatment (treat objects as primitive) of a core
object-oriented language based on Java (rather than encoding
the features in lambda-calculus with subtyping, records, and
references in Chapter 18.)

FJ: Featherweight Java

® Proposed by Igarashi, Pierce, and Wadler (1999)

e A minimal core calculus for modeling Java's type
system

® The goal in designing FJ was to make its proof of
type safety as concise as possible, while still
capturing the essence of the safety argument for
the central features of full Java.

We used FJ in our paper:

Jun Li, Chenglong Wang, Yingfei Xiong, Zhenjiang Hu, SWIN: Towards
Type-Safe Java Program Adaptation between APIs, ACM SIGPLAN 2015
Workshop on Partial Evaluation and Program Manipulation (PEPM 2015),
Mumbai, India, January 13-14, 2015. pp.91-102.

An FJ Program

class A extends Object { A() { super(); } }
class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;
// Constructor:
Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }
// Method definition:
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); } }

((Pair) (new Pair(new Pair(new A(),new B()), new A()).fst).snd

Nominal and Structural Type Systems

e Type names: fundamental stylistic difference
between FJ (and Java) and the typed lambda-
calculi.

NatPair = {fst:Nat, snd:Nat};

» Nominal type systems:
- Types are always named.

- Typechecker mostly manipulates names, not structures.
- Subtyping is declared explicitly by programmer.

» Structural type systems:

- What matters about a type (for typing, subtyping, etc.)
is just its structure.

- Names are just convenient (but inessential) abbreviatiofi§

Syntax

Syntax
CL class declarations:

class C extends C {C f; KM}

K = constructor declarations:
C(CF) {super(f); this.f=f;}

M o= method declarations:
Cm(CX) {return t:}

1 o= terms:
X variable
t.f field access
t.m(t) method invocation
hew C(t) object creation
Ot cast
vV o= values:

hew C(V) object creation

Subtyping

Subtyping C<:D
C<: C
C<:D D<: E
C<IE
CT(C) = class Cextends D {...}
C<:D

Auxiliary Functions

Field lookup fields(C) =C f

fields(Object) = o

CT(C) = class C extends D {C f; KM}
fields(D) =D @
fields(C) =Dg,Cf

Method type lookup mtype(m,C) = C—C

CT(C) = class C extends D {C f; KM}
Bm(BX) {returnt;}eM

mtype(m,C) = B—B
CT(C) = class C extends D {C f; KM}
m is not defined in M
mtype(m,C) = mtype(m,D)

Method body lookup mbody(m,C) = (X, t)

CT(C) = class C extends D {C f; KM}
Bm(BX) {returnt;} eM

mbody(m,C) = (X, t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m,C) = mbody(m,D)

Valid method overriding | override(m, D, C—Co)

mtype(m,D) = D—Dg implies C = D and Co = Dy

override(m, D, C—Cp)

Evaluation

Evaluation t—t/

fields(C) =C f
(new C(V)).fj — v;
mbody(m,C) = (X, to)
(new C(V)) .m(u)
— [X = u, this — new C(V)]to
C<:D
(D) (nhew C(V)) — new C(V)
to — to
to.f— t;y.f

(E-PROJNEW)

(E-INVKNEW)

(E-CASTNEW)

(E-FIELD)

to — t

to.m(t) — ty.m(Y)
ti — t;

vo.m(V, t;j, t)
— vo.m(V, t;, T)

ti — t;
new C(v, t;, t)
— new C(V, t;, t)

to — t
(Oto — (Ot

(E-INVK-RECV)

(E-INVK-ARG)

(E-NEW-ARG)

(E-CAST)

Typing

' (Oto: C

Term in Fr'—t:C -ty :D C<:D C+D
oping (T-DCAST)
x:CeTl I'-(Otp: C
— (T-VAR)
'ex:C Tto:D C#&D D&C
I'-tg:C jields(Co) =C f stupid warning
0:C i 0 (T-FIELD) TGN (T-SCAST)
I'-to.fi: G 0 -

I'-1to: Co Method typing MOK in C
mtype(m_,Co) iD_'E X :C,this:C+ to : Eg Eo <: Co
Fr'—t:C C<:D _

_ (T-INVK) CT(C) = cl ass C extsnds D{...}
I'to.m(t) : C override(m, D, C—Cp)
fields(C) =D f Com (CX) {returnto;}0K1inC
rrl_ t:c c _C < :CD (T-NEw) | Class typing C OK
t) . _ _

~ new C(D) K=c(g, CH
-ty :D D<:C a) - ‘e F— F-

0 (T-UCAST) | {super_(g), th1s.f f;}
fields(D) =D g MOK in C

class C extends D {C f; K M} OK

Properties

THEOREM [PRESERVATION]: f Tt : Candt — t’,thenT +~ t’ : C' for some
C < C. O

THEOREM [PROGRESS]: Suppose t is a closed, well-typed normal form. Then
either (1) t is a value, or (2) for some evaluation context E, we can express t

as t = E[(C) (newD(V))], with D «: C. O

]
E.f

E.m(t)
v.m(V,E,t)
nhew C(V,E,t)
(OE

Homework

18.11.1 EXERCISE [RECOMMENDED, **x|: Use the fullref checker to implement the
following extensions to the classes above:

1. Rewrite instrCounterClass so that it also counts calls to get.

2. Extend your modified instrCounterClass with a subclass that adds a
reset method, as in §18.4.

3. Add another subclass that also supports backups, as in §18.7. O

Please submit electronically.

