
Chapter 21: Metatheory of Recursive Types

Induction and Coinduction
Finite and Infinite Types/Subtyping

Membership Checking



21.1 Induction and Coinduction



Universal Set U

U: everything in the world

Type: a subset of U

Inductive/Coinductive
Definition



Generating Function

• Definition: A function F ∈ P(U) → P(U) is monotone
if X ⊆ Y implies F(X) ⊆ F(Y).

• Definition: Let F be monotone, and X be a subset 
of U. 
– X is F-closed if F(X) ⊆ X.
– X is F-consistent if X ⊆ F(X). 
– X is a fixed point of F if F(X) = X.



Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:

E1(∅) = {c} 
E1({a}) = {c} 
E1({b}) = {c} 
E1({c}) = {b, c}
E1({a,b}) = {c} 
E1({a, c}) = {b, c} 
E1({b, c}) = {a, b, c} 
E1({a, b, c}) = {a, b, c}

Q: Which subset is E1-closed, E1-consistent?



Knaster-Tarski Theorem (1955)

Theorem
• The intersection of all F-closed sets is the least 

fixed point of F. 
• The union of all F-consistent sets is the greatest 

fixed point of F.

Definition: The least fixed point of F is written µF. 
The greatest fixed point of F is written νF.



Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:

E1(∅) = {c} 
E1({a}) = {c} 
E1({b}) = {c} 
E1({c}) = {b, c}
E1({a,b}) = {c} 
E1({a, c}) = {b, c} 
E1({b, c}) = {a, b, c} 
E1({a, b, c}) = {a, b, c}

Q: What are µE1 and νE1?



Exercise: Suppose a generating function E2 on the 
universe {a, b, c} is defined by the following inference 
rules:

Q: Write out the set of pairs in the relation E2 
explicitly, as we did for E1 above. List all the E2-closed 
and E2-consistent sets. What are µE2 and νE2?



Principles of Induction/Coinduction

Corollary:
• Principle of induction: 

If X is F-closed, then µF ⊆ X. 
• Principle of coinduction: 

If X is F-consistent, then X ⊆ νF.

The induction principle says that any property whose characteristic set
is closed under F is true of all the elements of the inductively defined set µF.

The coinduction principle, gives us a method for establishing that 
an element x is in the coinductively defined set νF.



21.2 Finite and Infinite Types

To instantiate the general definitions of 
greatest fixed points and the coinductive

proof method with the specifics of 
subtyping.



Tree Type

Definition: A tree type (or, simply, a tree) is a partial function 
T ∈ {1,2}∗ ⇀ {→, ×,Top} satisfying the following constraints:
• T(•) is defined; 
• if T(π,σ) is defined then T(π) is defined; 
• if T(π) =→ or T(π) = × then T(π,1) and T(π,2) are defined; 
• if T(π) = Top then T(π,1) and T(π,2) are undefined.

T ::= Top
|  T à T
|  T x T



Definition: A tree type T is finite if dom(T) is finite. 
The set of all tree types is written T; the subset of 
all finite tree types is written Tf .

Exercise: Give a universe U and a generating 
function F ∈ P(U) → P(U) such that the set of finite 
tree types Tf is the least fixed point of F and the 
set of all tree types T is its greatest fixed point.

U: set of all trees
F(X) = {Top} ∪

{T1 ×T2 | T1, T2 ∈ X} ∪
{T1→T2 | T1, T2 ∈ X}.



21.3 Subtyping



Finite Subtyping

Definition: Two finite tree types S and T are in the 
subtype relation (“S is a subtype of T”) if (S,T) ∈ µSf , 
where the monotone function 

Sf ∈ P(T f ×T f ) → P(T f ×T f ) 

is defined by 

Sf(R) = { (T,Top) | T ∈ T f } 
∪ { (S1×S2, T1×T2) | (S1,T1), (S2,T2) ∈ R} 
∪ { (S1→S2, T1→T2) | (T1,S1), (S2,T2) ∈ R}.



Inference Rules

T <: Top 

S1 <: T1  S2 <: T2 
------------------
S1×S2 <: T1×T2

T1 <: S1 S2 <: T2 
-------------------
S1→S2 <: T1→T2



Infinite Subtyping

Definition: Two (finite or infinite) tree types S and T 
are in the subtype relation (“S is a subtype of T”) if 
(S,T) ∈ νS, where the monotone function 

S ∈ P(T ×T ) → P(T ×T ) 

is defined by 

S(R) = {(T,Top) | T ∈ T } 
∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R} 
∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.



Inference Rules

T <: Top 

S1 <: T1  S2 <: T2 
------------------
S1×S2 <: T1×T2

T1 <: S1 S2 <: T2 
-------------------
S1→S2 <: T1→T2





Transitivity

Definition: A relation R ⊆U×U is transitive
if R is closed under the monotone function 

TR(R) = {(x,y) | ∃z ∈ U. (x,z), (z,y) ∈ R},
i.e., if TR(R) ⊆ R.

Lemma: Let F ∈ P(U×U) →P(U×U) be a monotone 
function. If TR(F(R)) ⊆ F(TR(R)) for any R ⊆U×U, 
then νF is transitive.

Theorem: νS is transitive.



21.5 Membership Checking

Given a generating function F on some 
universe U and an element x ∈ U, check 

whether or not x falls in νF.



Invertible Generating Function

Definition: A generating function F is said to be 
invertible if, for all x ∈ U, the collection of sets

Gx ={X ⊆ U | x ∈ F(X)} 
either is empty or contains a unique member that is 
a subset of all the others.

We will consider invertible generating function in 
the rest of this chapter.



F-Supported/F-Ground

When F is invertible, we define:

Definition: An element x is F-supported if supportF(x)↓; 
otherwise, x is F- unsupported. An F-supported element is 
called F-ground if supportF(x) = ∅.

Exercise: What is supportS(x)?



Support Graph

• An Example of the support graph of E function on 
{a,b,c,d,e,f,g,h,i}

x is in the greatest fixed point iff no unsupported element is 
reachable from x in the support graph.

supported by

generated from



Greatest Fixed Point

Definition: Suppose F is an invertible generating 
function. Define the Boolean-valued function gfpF (or 
just gfp) as follows:

Theorem (Sound): 
1. If gfpF(X) = true, then X ⊆ νF. 
2. If gfpF(X) = false, then X ⊆ νF.

Theorem (Terminate): If reachableF(X) is finite, then 
gfpF(X) is defined. Consequently, if F is finite state, 
then gfpF(X) terminates for any finite X ⊆U.

/



More Efficient Algorithms



Inefficiency

Recomputation of “support” 

gfp({a})
= gfp({a, b, c}) 
= gfp({a, b, c, e, f ,g}) 
= gfp({a, b, c, e, f ,g, d}) 
= true

support(a) is recomputed four times!



A More Efficient Algorithm

Definition: Suppose F is an invertible generating 
function. Define the function gfpa as follows

Example:
Tail-recursion



Variation 1

Definition: A small variation on gfps has the 
algorithm pick just one element at a time from X 
and expand its support. The new algorithm is called 
gfps



Variation 2

Definition: Given an invertible generating function F, 
define the function gfpt as follows:



Regular Trees

If we restrict ourselves to regular types, 
then the sets of reachable states will be 

guaranteed to remain finite and the 
subtype checking algorithm will always 

terminate.



Regular Trees

Definition: A tree type S is a subtree of a tree type 
T if S = λσ. T(π,σ) for some π.

Definition: A tree type T ∈ T is regular if 
subtrees(T) is finite.

Examples:
• Every finite tree type is regular.
• T = Top x (Top x (Top x …)) is regular.
• T = B x (A x (B x (A x (A x (B x (A x (A x (A x (B 

…) is irregular.



Proposition: The restriction of the generating function S 
to regular tree types is finite state.

Proof: 
We need to show that for any pair (S,T) of regular tree 
types, the set reachable(S,T) is finite. 

Since reachable (S,T) ⊆ subtrees(S) ×subtrees(T); the 
latter is finite as S and T are regular.



µ-Types

Establishes the correspondence between 
subtyping on µ-expressions and the 

subtyping on tree types



µ-Types:

Definition: Let X range over a fixed countable set 
{X1,X2,...} of type variables. The set of raw µ-types 
is the set of expressions defined by the following 
grammar:

Definition: A raw µ-type T is contractive (and called 
µ-types) if, for any subexpression of T of the form 
µX.µX1...µXn.S, the body S is not X.   

Tm



Finite Notation for Infinite Tree Types

Definition: The function treeof , mapping closed µ-
types to tree types, is defined inductively as follows:





Subtyping Correspondence: 
µ-Types and Tree Types
Definition: Two µ-types S and T are said to be in 
the subtype relation if (S,T) ∈ νSm, where the 
monotone function Sm ∈ P(Tm×Tm)→P(Tm×Tm) is 
defined by:

Theorem: Let (S,T) ∈ Tm×Tm. Then (S,T) ∈ νSm iff
(treeof S, treesof T) ∈ νS.



Exercise: What is the support for Sm?



Subtyping Algorithm for µ-Types

Instantiating gfpt for subtyping relation on µ-Types.

Terminate?



Summary

• We study the theoretical foundation of type 
checkers (subtyping) for equi-recursive types.
– Induction/coinduction & proof principles
– Finite and Infinite Types/Subtyping
– Membership checking algorithm



Homework


