Chapter 22: Type Reconstruction (Type Inference)

Calculating a Principal Type for a Term
Constraint-based Typing
Unification and Principle Types
Extension with let-polymorphism




Type Variables and Type Substitution

e Type variable

X

e Type substitution: finite mapping from type
variables to types.

o =[X=> Bool, Y = U]

dom(o) = {X, Y}
range(c) = {Bool, U}

Note: the same variables can be in both the domain and the range.
[X = Bool, Y & X—X]




e Application of type substitution to a type:

& (0 _ {T if X—T)€o
X if X is not in the domain of o
o (Nat) = Nat
o (Bool) = Bool
o(Ti—-T2) = oT;—-0T>

® Type substitution composition

ey X— o(T) foreach (X—T) ey
Y= x=T for each (X — T) € o with X ¢ dom(y)




Type substitution on contexts:
- o(x;:Ty, oo X2 Tp) = (Xp20Ty, ..., Xq:0T ).

Substitution on Terms:

- A substitution is applied to a term t by applying it to
all types appearing in annotations in t.

Theorem [Preservation of typing under type
substitution]: If o is any type substitution and T
Ft:T, then ol + ot : oT.




Two Views of Type Variables

e View 1: “Are all substitution instances of 1t well
typed?” That is, for every o, do we have

o HFot:T

for some T?
- E.g., Af:X—>X. Aa:X. f (f a)

Parametric
polymorphism

. 0O

e View 2. “Is some substitution instance of 1t well
typed?” That is, can we find a o such that

ol ot : T

for some T? O
- E.g., AfiY. Aa:X. f (f a)

Type
reconstruction




Type Reconstruction

Definition: Let I be a context and t a term. A
solution for (I',1) is a pair (o,T) such that

ol - ot : T.

x:TeTl (T-VAR)
'x:T
[ x:Ty —t2 : T»
[-Ax:Ti.to @ Ti—To HABS)
'ty : T11—-T [t : T
1 11— 112 2 11 (T-APP)
'ty to: Ty2




EXAMPLE: LetI'=f:X,a:Yand t = f a. Then

([X — Y—Nat], Nat) ([X—=Y-=2Z], 2)
([X—=Y-=2Z, Z+~ Nat], Z) ([X = Y—=Nat—Nat], Nat—Nat)
([X — Nat—Nat, Y — Nat], ‘Nat)

are all solutions for (T, t).




Constraint-based Typing

The constraint typing relation
F'-t:T |X C
is defined as follows.

x:Tel
(CT-VAR)
F'ex:T |g {}
[x:Ty-t T |x C
(CT-ABS)

'FAx:Ty.t2 t: T =T |[x C
't : T Ix, G [t Ty |x, G
X1NXo=X1nNnFVT2) =XonNnFVTy) =0
X& Xy, Xo, Ty, T2, Gy, Co, T, £y, Or t2
C'=CLuCuUiT, =Tr—X}
=1t t2 ' X |Ix;uxeuixy C

(CT-Aprp)

Exercise: Construct C from the term Ax:X, Ay:Y, Az:Z. x z (y z)




e Extended with Boolean Expression

[~ true : Bool |z {} (CT-TRUE)
[+ false : Bool |z {} (CT-FALSE)

=ttt Ty Ix, G4
't : Ty |)(2 o I'—1t3 : T3 |X3 C3
X1, X2, X3 nonoverlapping
C' = CGCuGuCuiT = BOO],TQ = T3}
[Fift; thentyelset; : To |x,uxoux; C
(CT-IF)




Definition: Suppose that T' + t: S| C. A solution for
(I',t,5,C) is a pair (0,T) such that o satisfies C and ¢S
= T.

Recall:

Definition: Let I be a context and t a term. A
solution for ([',1) is a pair (o,T) such that ol + ot : T.

What are the relation between these two solutions?




Theorem [Soundness of constraint typing]: Suppose

that T -t : T | C. If (o,1) is a solution for (T,1,T,C),
then it is also a solution for (T,t).

Proof. By induction on constraint typing derivation.




Theorem [Completeness of constraint typing]:
Suppose I' - t : S | C.

If (0,T) is a solution for (I' ,t) and dom(c) N X = @,
then there is some solution (o',T) for (I" ,t,S,C) such
that o’'\X = o.

Proof: By induction on the given constraint typing
derivation.




Unification

e Idea from Hindley (1969) and Milner (1978) for
calculating "best” solution to constraint sets.

Definition: A substitution o is less specific (or more

general) than a substitution o’, written o C o/, if
oc'=y © o0

for some substitution v.

Definition: A principal unifier (or sometimes most
general unifier) for a constraint set C is a

substitution o that satisfies C and such that o E ¢’
for every substitution o' satisfying C.




Exercise: Write down principal unifiers (when they
exist) for the following sets of constraints:

e {X =Nat, Y = X—>X}

e {Nat—Nat = X—Y}

o {X—>Y =Y—-Z, Z = U->W}
e {Nat = Nat—Y}

e {Y = Nat—Y}

o {}




Unification Algorithm

unify(C) = if C = @, then [ ]
elselet {S=T}uC’' =Cin
HS="T
then unify(C")
elseif S = Xand X ¢ FV(T)
then unify([X — T]C’) o [X — T]
elseif T=Xand X ¢ FV(S)
then unify([X — S]C") o [X — S]
elseif S=51—-S,and T=T,-T>
then unify(C’ U {S1 =Ty, S2 =Tz})
else
fail

No cyclic




Theorem: The algorithm unify always terminates,
failing when given a non-unifiable constraint set as
input and otherwise returning a principal unifier.

Proof.

Termination: define degree of C = (number of distinct type variables,
total size of types).

Unify(C) returns a unifier: induction on the number of recursive calls of
unify. (Fact: o unifies [X -> TID, then o © [X->T] unifies {X = T}UD)

It returns a principle unifier: induction on the number of recursive calls.




Principle Types

e If there is some way to instantiate the type
variables in a term, e.g.,

Ax:X. Ay:Y. Az:Z. (x z) (y z)
so that it becomes typable, then there is a most
general or principal way of doing so.

A\

Unification Algorithm

Theorem: It is decidable whether (I',1) has a solution.




Implicit Type Annotation

Type reconstruction allows programmers to

completely omit type annotations on lambda-

abstractions.

X¢& X ILx: Xt : T |[x C
[ AXx.t) : X=T |,\'U{x; C

(CT-ABSINF)




Let-Polymorphism

e Code Duplication:

et doubleNat = Af:Nat—Nat. Aa:Nat. f(f(a)) in
et doubleBool = Af:Bool—Bool. Aa:Bool. f(f(a)) in
et a = doubleNat (Ax:Nat. succ (succ x)) 1 in

et b = doubleBool (Ax:Bool. x) false in ...




e One Attempt

et double = Af:X—X. Aa:X. f(f(a)) in
et a = double (Ax:Nat. succ (succ x)) 1 in
et b = double (Ax:Bool. x) false in ...

This is not typable, since double can only be instantiated once.




e Solution: Unfolding “let” (perform a step of
evaluation of let)

= [x— 1ttt : To

T-LETPOLY
' let x=t; inty : T» ( )

' x— 1]ty : To |x C
[ letx=t;inty : Ty |x C

(CT-LETPOLY)

let double = Af. Aa. f(f(a)) in
let a = double (Ax:Nat. succ (succ x)) 1 in
let b = double (Ax:Bool. x) false in ...

Typable!




e Issue 1: what happens when the let-bound

variable does not appear in the body:

let x = <utter garbage> in 5

\ 4

=[xttty : To I'=t; : T,
' Tet x=t; inty : To

(T-LETPOLY)




e Issue 2: Avoid re-typechecking when a let-variable
appear many times in let x=11 in t2.

Find a principle type T1 of tl.
Generalize Tl to a schema VX1...Xn.Tl.
Extend the context with (x, VX1...Xn.T1).

Each time we encounter an occurrence of x in t2, look up
its type scheme VX1...Xn.T1, generate fresh type variables
Y1...Yn to instantiate the type scheme, yielding [X1 ->
Y1,.. ., Xn -> Yn]T1, which we use as the type of x

~Q wop -




Homework

22:5:5

EXERCISE [RECOMMENDED, *** -+|: Combine the constraint generation and
unification algorithms from Exercises 22.3.10 and 22.4.6 to build a type-
checker that calculates principal types, taking the reconbase checker as a
starting point. A typical interaction with your typechecker might look like:

AXEX: X

» <fun> : X = X
Az:ZZ. Ay:YY. z (y true);

» <fun> @ (?Xp—7?X;) — (Bool—-7Xy) — 7?X;
Aw:W. if true then false else w false;

» <fun> : (Bool—Bool) — Bool

Type variables with names like ?X, are automatically generated. O




