Chapter 22: Type Reconstruction (Type Inference)

Calculating a Principal Type for a Term
Constraint-based Typing
Unification and Principle Types
Extension with let-polymorphism

Type Variables and Type Substitution

• Type variable

X

 Type substitution: finite mapping from type variables to types.

$$\sigma = [X \rightarrow Bool, Y \rightarrow U]$$

$$dom(\sigma) = \{X, Y\}$$

$$range(\sigma) = \{Bool, U\}$$

Note: the same variables can be in both the domain and the range.

$$[X \rightarrow Bool, Y \rightarrow X \rightarrow X]$$

Application of type substitution to a type:

$$\begin{array}{ll} \sigma(\mathsf{X}) &=& \left\{ \begin{array}{ll} \mathsf{T} & \text{if } (\mathsf{X} \mapsto \mathsf{T}) \in \sigma \\ \mathsf{X} & \text{if } \mathsf{X} \text{ is not in the domain of } \sigma \end{array} \right. \\ \sigma(\mathsf{Nat}) &=& \mathsf{Nat} \\ \sigma(\mathsf{Bool}) &=& \mathsf{Bool} \\ \sigma(\mathsf{T}_1 \! \to \! \mathsf{T}_2) &=& \sigma \mathsf{T}_1 \to \sigma \mathsf{T}_2 \end{array}$$

Type substitution composition

$$\sigma \circ \gamma = \begin{bmatrix} \mathsf{X} \mapsto \sigma(\mathsf{T}) & \text{for each } (\mathsf{X} \mapsto \mathsf{T}) \in \gamma \\ \mathsf{X} \mapsto \mathsf{T} & \text{for each } (\mathsf{X} \mapsto \mathsf{T}) \in \sigma \text{ with } \mathsf{X} \notin dom(\gamma) \end{bmatrix}$$

Type substitution on contexts:

-
$$\sigma(x_1:T_1, ..., x_n:T_n) = (x_1:\sigma T_1, ..., x_n:\sigma T_n).$$

- Substitution on Terms:
 - A substitution is applied to a term t by applying it to all types appearing in annotations in t.
- Theorem [Preservation of typing under type substitution]: If σ is any type substitution and Γ \vdash t : T, then $\sigma\Gamma$ \vdash σ t : σ T.

Two Views of Type Variables

• View 1: "Are all substitution instances of t well typed?" That is, for every σ , do we have

$$\sigma\Gamma \vdash \sigma t : T$$
for some T?
- E.g., $\lambda f: X \rightarrow X$. $\lambda a: X$. $f (f a)$

Parametric polymorphism

• View 2. "Is some substitution instance of t well typed?" That is, can we find a σ such that

Type reconstruction

Type Reconstruction

Definition: Let Γ be a context and t a term. A solution for (Γ,t) is a pair (σ,T) such that $\sigma\Gamma \vdash \sigma t : T$.

$$\frac{x:T \in \Gamma}{\Gamma \vdash x:T} \qquad (T-VAR)$$

$$\frac{\Gamma, x:T_1 \vdash t_2:T_2}{\Gamma \vdash \lambda x:T_1.t_2:T_1 \rightarrow T_2} \qquad (T-ABS)$$

$$\frac{\Gamma \vdash t_1:T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2:T_{11}}{\Gamma \vdash t_1:t_2:T_{12}} \qquad (T-APP)$$

Constraint-based Typing

The constraint typing relation

$$\Gamma \vdash \dagger : T \mid_{\mathsf{X}} \mathsf{C}$$

is defined as follows.

$$\frac{x : T \in \Gamma}{\Gamma \vdash x : T \mid_{\varnothing} \{\}}$$
 (CT-VAR)
$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2 \mid_{X} C}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2 \mid_{X} C}$$
 (CT-ABS)
$$\Gamma \vdash t_1 : T_1 \mid_{X_1} C_1 \quad \Gamma \vdash t_2 : T_2 \mid_{X_2} C_2$$

$$X_1 \cap X_2 = X_1 \cap FV(T_2) = X_2 \cap FV(T_1) = \varnothing$$

$$X \notin X_1, X_2, T_1, T_2, C_1, C_2, \Gamma, t_1, \text{ or } t_2$$

$$C' = C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X\}$$

$$\Gamma \vdash t_1 t_2 : X \mid_{X_1 \cup X_2 \cup \{X\}} C'$$
(CT-APP)

Exercise: Construct C from the term $\lambda x:X$, $\lambda y:Y$, $\lambda z:Z$. x z (y z)

• Extended with Boolean Expression

```
\Gamma \vdash \mathsf{true} : \mathsf{Bool} \mid_{\varnothing} \{\} \qquad (\mathsf{CT-True})
\Gamma \vdash \mathsf{false} : \mathsf{Bool} \mid_{\varnothing} \{\} \qquad (\mathsf{CT-False})
\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \mid_{\mathcal{X}_1} C_1
\Gamma \vdash \mathsf{t}_2 : \mathsf{T}_2 \mid_{\mathcal{X}_2} C_2 \qquad \Gamma \vdash \mathsf{t}_3 : \mathsf{T}_3 \mid_{\mathcal{X}_3} C_3
\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3 \text{ nonoverlapping}
C' = C_1 \cup C_2 \cup C_3 \cup \{\mathsf{T}_1 = \mathsf{Bool}, \mathsf{T}_2 = \mathsf{T}_3\}
\Gamma \vdash \mathsf{if} \; \mathsf{t}_1 \; \mathsf{then} \; \mathsf{t}_2 \; \mathsf{else} \; \mathsf{t}_3 : \mathsf{T}_2 \quad |_{\mathcal{X}_1 \cup \mathcal{X}_2 \cup \mathcal{X}_3} C' 
(\mathsf{CT-IF})
```


Definition: Suppose that $\Gamma \vdash t : S \mid C$. A solution for (Γ,t,S,C) is a pair (σ,T) such that σ satisfies C and $\sigma S = T$.

Recall:

Definition: Let Γ be a context and t a term. A solution for (Γ,t) is a pair (σ,T) such that $\sigma\Gamma \vdash \sigma t : T$.

What are the relation between these two solutions?

Theorem [Soundness of constraint typing]: Suppose that $\Gamma \vdash t : T \mid C$. If (σ,τ) is a solution for (Γ,t,T,C) , then it is also a solution for (Γ,t) .

Proof. By induction on constraint typing derivation.

Theorem [Completeness of constraint typing]:

Suppose $\Gamma \vdash t : S \mid_X C$.

If (σ,T) is a solution for (Γ,t) and $dom(\sigma) \cap X = \emptyset$, then there is some solution (σ',T) for (Γ,t,S,C) such that $\sigma' \setminus X = \sigma$.

Proof: By induction on the given constraint typing derivation.

Unification

• Idea from Hindley (1969) and Milner (1978) for calculating "best" solution to constraint sets.

Definition: A substitution σ is less specific (or more general) than a substitution σ' , written $\sigma \sqsubseteq \sigma'$, if

$$\sigma' = \gamma \circ \sigma$$

for some substitution γ .

Definition: A principal unifier (or sometimes most general unifier) for a constraint set C is a substitution σ that satisfies C and such that $\sigma \sqsubseteq \sigma'$ for every substitution σ' satisfying C.

Exercise: Write down principal unifiers (when they exist) for the following sets of constraints:

- $\{X = Nat, Y = X \rightarrow X\}$
- $\{Nat \rightarrow Nat = X \rightarrow Y\}$
- $\{X \rightarrow Y = Y \rightarrow Z, Z = U \rightarrow W\}$
- $\{Nat = Nat \rightarrow Y\}$
- $\{Y = Nat \rightarrow Y\}$
- {}

Unification Algorithm

```
unify(C)
             = if C = \emptyset, then []
                      else let \{S = T\} \cup C' = C in
                          if S = T
                                                               No cyclic
                             then unify(C')
                          else if S = X and X \notin FV(T)
                             then unify([X \mapsto T]C') \circ [X \mapsto T]
                          else if T = X and X \notin FV(S)
                             then unify([X \mapsto S]C') \circ [X \mapsto S]
                          else if S = S_1 \rightarrow S_2 and T = T_1 \rightarrow T_2
                             then unify(C' \cup \{S_1 = T_1, S_2 = T_2\})
                          else
                             fail
```


Theorem: The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise returning a principal unifier.

Proof.

Termination: define degree of C = (number of distinct type variables, total size of types).

Unify(C) returns a unifier: induction on the number of recursive calls of unify. (Fact: σ unifies [X -> T]D, then $\sigma \circ [X->T]$ unifies $\{X = T\} \cup D\}$

It returns a principle unifier: induction on the number of recursive calls.

Principle Types

 If there is some way to instantiate the type variables in a term, e.g.,

$$\lambda x: X. \ \lambda y: Y. \ \lambda z: Z. \ (x z) \ (y z)$$

so that it becomes typable, then there is a most general or principal way of doing so.

Unification Algorithm

Theorem: It is decidable whether (Γ,t) has a solution.

Implicit Type Annotation

Type reconstruction allows programmers to completely omit type annotations on lambda-abstractions.

$$\frac{X \notin \mathcal{X} \qquad \Gamma, x: X \vdash t_1 : T \mid_{\mathcal{X}} C}{\Gamma \vdash \lambda x. t_1 : X \rightarrow T \mid_{\mathcal{X} \cup \{X\}} C}$$
(CT-ABSINF)

Let-Polymorphism

• Code Duplication:

```
let doubleNat = \lambda f:Nat \rightarrow Nat. \lambda a:Nat. f(f(a)) in let doubleBool = \lambda f:Bool \rightarrow Bool. \lambda a:Bool. f(f(a)) in let a = doubleNat (\lambda x:Nat. succ (succ x)) 1 in let b = doubleBool (\lambda x:Bool. x) false in ...
```


One Attempt

```
let double = \lambda f: X \rightarrow X. \lambda a: X. f(f(a)) in let a = double (\lambda x: Nat. succ (succ <math>x)) 1 in let b = double (\lambda x: Bool. <math>x) false in ...
```

This is not typable, since double can only be instantiated once.

 Solution: Unfolding "let" (perform a step of evaluation of let)

$$\frac{\Gamma \vdash [x \mapsto t_1]t_2 : T_2}{\Gamma \vdash let \ x=t_1 \ in \ t_2 : T_2} \tag{T-LETPOLY}$$

$$\frac{\Gamma \vdash [\mathsf{x} \mapsto \mathsf{t}_1]\mathsf{t}_2 : \mathsf{T}_2 \mid_{\mathcal{X}} C}{\Gamma \vdash \mathsf{let}\; \mathsf{x=t}_1 \; \mathsf{in}\; \mathsf{t}_2 : \mathsf{T}_2 \mid_{\mathcal{X}} C} \tag{CT-LETPOLY}$$

```
let double = \lambda f. \lambda a. f(f(a)) in
let a = double (\lambda x:Nat. succ (succ x)) 1 in
let <math>b = double (\lambda x:Bool. x) false in ...
```

Typable!

• Issue 1: what happens when the let-bound variable does not appear in the body:

let $x = \langle utter garbage \rangle$ in 5

$$\frac{\Gamma \vdash [\mathsf{x} \mapsto \mathsf{t}_1] \mathsf{t}_2 : \mathsf{T}_2 \qquad \frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1}{\Gamma \vdash \mathsf{let} \; \mathsf{x} = \mathsf{t}_1 \; \mathsf{in} \; \mathsf{t}_2 : \mathsf{T}_2} \tag{T-LETPOLY}$$

- Issue 2: Avoid re-typechecking when a let-variable appear many times in let x=t1 in t2.
 - 1. Find a principle type T1 of t1.
 - 2. Generalize T1 to a schema ∀X1...Xn.T1.
 - 3. Extend the context with $(x, \forall X1...Xn.T1)$.
 - 4. Each time we encounter an occurrence of x in t2, look up its type scheme ∀X1...Xn.T1, generate fresh type variables Y1...Yn to instantiate the type scheme, yielding [X1 -> Y1,..., Xn -> Yn]T1, which we use as the type of x

Homework

22.5.5 EXERCISE [RECOMMENDED, *** +]: Combine the constraint generation and unification algorithms from Exercises 22.3.10 and 22.4.6 to build a type-checker that calculates principal types, taking the recombase checker as a starting point. A typical interaction with your typechecker might look like:

Type variables with names like X_0 are automatically generated.

