Chapter 23: Universal Types

System F (polymorphic lambda calculus)

Power of System F

Properties (Soundness, decidability,

paramertricity)

Abstraction

```
doubleNat = \lambda f:Nat \rightarrow Nat. \lambda x:Nat. f(fx);
doubleRcd = \lambda f:\{l:Bool\} \rightarrow \{l:Bool\}. \lambda x:\{l:Bool\}. f(fx);
doubleFun = \lambda f:(Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat). \lambda x:Nat \rightarrow Nat. f(fx);
```


Can we do abstraction over types so that we can apply to different types?

double =
$$\lambda X$$
. $\lambda f: X \rightarrow X$. $\lambda x: X$. f (f x)

Polymorphism

• Parametric polymorphism

```
- \lambda x: T. x: T \rightarrow T
```

Ad-hoc polymorphism (overloading)

```
-1+2
```

$$-1.0 + 2.0$$

System F

- First discovered by Jean-Yves Girard (1972)
- Independently developed by John Reynolds (1974) as polymorphic lambda calculus (or second order lambda calculus)
- A natural extension of $\lambda \rightarrow$ with a new form of abstract and application over types:

$$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$$

$$\frac{\Gamma \vdash t_1 : \forall X. T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2] T_{12}}$$

Syntax and Evaluation

		ıtax	Syn
terms:		::=	t
variable	X		
abstraction	λx:T.t		
application	tt		
type abstraction	$\lambda X.t$		
type application	t[T]		
values:		::=	٧
abstraction value	λx:T.t		

type abstraction value

 $\lambda X.t$

$$\begin{array}{c} \text{\it Evaluation} & \text{\it t} \to \text{\it t}' \\ \\ \frac{t_1 \to t_1'}{t_1 \ t_2 \to t_1' \ t_2} & \text{\it (E-APP1)} \\ \\ \frac{t_2 \to t_2'}{v_1 \ t_2 \to v_1 \ t_2'} & \text{\it (E-APP2)} \\ \\ \text{\it (λx:T_{11}.t_{12}) $v_2 \to [x \mapsto v_2]$t_{12}$ (E-APPABS)} \\ \\ \frac{t_1 \to t_1'}{t_1 \ [T_2] \to t_1' \ [T_2]} & \text{\it (E-TAPP)} \\ \end{array}$$

 $(\lambda X.t_{12}) [T_2] \rightarrow [X \mapsto T_2]t_{12} (E-TAPPTABS)$

Types and Type Context

contexts: empty context term variable binding type variable binding

Typing

Typing
$$\Gamma \vdash t : T$$

$$\frac{\mathbf{x} : \mathsf{T} \in \Gamma}{\Gamma \vdash \mathbf{x} : \mathsf{T}} \tag{T-VAR}$$

$$\frac{\Gamma, x: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x: T_1 \cdot t_2 : T_1 \rightarrow T_2}$$
 (T-ABS)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_{11} \rightarrow \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 : \mathsf{T}_{12}} \qquad (\text{T-APP})$$

$$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$$
 (T-TABS)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \forall \mathsf{X}.\mathsf{T}_{12}}{\Gamma \vdash \mathsf{t}_1 \; [\mathsf{T}_2] : [\mathsf{X} \mapsto \mathsf{T}_2]\mathsf{T}_{12}} \quad (\text{T-TAPP})$$

Ex.: Defining Polymorphic Functions

- id = λX. λx:X. x
 id : ∀X. X → X
 id [Nat] 0 → 0
- double = λX . $\lambda f: X \rightarrow X$. $\lambda a: X$. f(f a)
 - double : $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X$
 - double [Nat] (λx :Nat. succ(succ(x))) 3 \rightarrow 7
- selfApp = $\lambda x: \forall X.X \rightarrow X. \ x \ [\forall X.X \rightarrow X] \ x$ - selfApp : $(\forall X. \ X \rightarrow X) \rightarrow (\forall X. \ X \rightarrow X)$
- quadruple = λX . double [X $\rightarrow X$] (double [X]);

Ex.: Polymorphic Lists

- nil: ∀X. List X
- cons : $\forall X. X \rightarrow List X \rightarrow List X$
- isnil : $\forall X$. List $X \rightarrow Bool$
- head : $\forall X$. List $X \to X$
- $tail : \forall X. List X \rightarrow List X$

```
map : \forall X. \ \forall Y. \ (X \rightarrow Y) \rightarrow \text{List } X \rightarrow \text{List } Y

map = \lambda X. \ \lambda Y. \ \lambda f: \ X \rightarrow Y.

(fix (\lambda m: (\text{List } X) \rightarrow (\text{List } Y). \ \lambda l: \text{List } X.

if isnil [X] I then nil [Y]

else cons [Y] (f (head [X] I)) (m (tail [X] I))))
```

Exercise: Can you write reverse?

Ex.: Church Encoding

Church encodings can be carried out in System F.

```
• CBool = \forall X.X \rightarrow X \rightarrow X;
       - tru = \lambda X. \lambda t: X. \lambda f: X. t;
       - fls = \lambda X. \lambda t: X. \lambda f: X. f;
       - not = \lambdab:CBool. \lambdaX. \lambdat:X. \lambdaf:X. b [X] f t;
• CNat = \forall X. (X \rightarrow X) \rightarrow X \rightarrow X
       - c0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z
       - c1= \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z:
       - csucc = \lambdan:CNat. \lambdaX. \lambdas:X\rightarrowX. \lambdaz:X. s (n [X] s z)
       - cplus = \lambdam:CNat. \lambdan:CNat. \lambdaX. \lambdas:X\rightarrowX. \lambdaz:X.
                          m [X] s (n [X] s z)
```


Ex.: Encoding Lists

```
• List X = \forall R. (X \rightarrow R \rightarrow R) \rightarrow R \rightarrow R
      - nil = \lambda X. (\lambda R. \lambda c: X \rightarrow R \rightarrow R. \lambda n: R. n) as \forall X. List X
      - cons = \lambda X. \lambda hd: X. \lambda tl: List X.
            (\lambda R. \lambda c: X \rightarrow R \rightarrow R. \lambda n: R. c hd (tl [R] c n)) as List X;
      - isnil = \lambda X. \lambda I:List X.
            I [Bool] (\lambdahd:X. \lambdatl:Bool. false) true
      - head = \lambda X. \lambda l:List X.
                           I[X](\lambda hd:X. \lambda tl:X. hd) (diverge [X] unit)
      - sum : List Nat → Nat
          sum = ... definition without using fix ...?
```

sum = λl : List Nat. l (λhd : Nat, λtl :Nat. hd + tl) O

(sum = foldr (λ hd: Nat, λ tl:Nat. hd + tl) 0)

Ex.: Encoding Pair

• Pair X Y = λR . $(X \rightarrow Y \rightarrow R) \rightarrow R$; - pair : $\forall X. \ \forall Y. \ X \rightarrow Y \rightarrow Pair \ X \ Y$ - fst : $\forall X$. $\forall Y$. Pair $X Y \rightarrow X$ - snd : $\forall X$. $\forall Y$. Pair $X Y \rightarrow Y$ pair = λX . λY . λx : X. λy : Y. λR . λp . $p \times y$ fst = λX . λY . λp . $p[X](\lambda x$. $\lambda y \rightarrow x)$ snd = λX . λY . λp . $p[X](\lambda x$. $\lambda y \rightarrow y)$

Basic Properties of System F

Very similar to those of the simply typed λ -calculus.

Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem [Progress]: If t is a closed, well-typed term, then either t is a value or there is some t' with $t \rightarrow t'$.

Theorem [Normalization]: Well-typed System F terms are normalizing (i.e., the evaluation of every well-typed program terminates).

Erasure and Type Construction

```
erase(\lambda x:T_1. t_2) = \lambda x. erase(t_2)

erase(t_1 t_2) = erase(t_1) erase(t_2)

erase(\lambda X. t_2) = erase(t_2)
```

Theorem [Wells, 1994]: It is undecidable whether, given a closed term m of the untyped lambda-calculus, there is some well-typed term t in System F such that erase(t) = m.

Partial Erasure and Type Construction

```
erase_p(x) = x

erase_p(\lambda x:T_1. t_2) = \lambda x:T_1. erase_p(t_2)

erase_p(t_1 t_2) = erase_p(t_1) erase_p(t_2)

erase_p(\lambda X. t_2) = \lambda X. erase_p(t_2)

erase_p(t_1 [T_2]) = erase_p(t_1) []
```

Theorem [Boehm 1985, 1989]: It is undecidable whether, given a closed term s in which type applications are marked but the arguments are omitted, there is some well-typed System F term t such that $erase_p(t) = s$.

Type reconstruction is as hard as higher-order unification. (But many practical algorithms have been developed)

Erasure and Evaluation Order

Keep type abstraction

```
erase_{\nu}(x) = x

erase_{\nu}(\lambda x:T_1. t_2) = \lambda x. erase_{\nu}(t_2)

erase_{\nu}(t_1 t_2) = erase_{\nu}(t_1) erase_{\nu}(t_2)

erase_{\nu}(\lambda X. t_2) = \lambda \_. erase_{\nu}(t_2)

erase_{\nu}(t_1 [T_2]) = erase_{\nu}(t_1) dummyv
```

Theorem: If erase_v(t) = u, then either (1) both t and u are normal forms according to their respective evaluation relations, or (2) t \rightarrow t' and u \rightarrow u', with erase_v(t') = u'.

Fragments of System F

- Rank-1 (prenex) polymorphism
 - type variables should not be instantiated with polymorphic types
- Rank-2 polymorphism
 - A type is said to be of rank 2 if no path from its root to a ∀ quantifier passes to the left of 2 or more arrows.

$$(\forall X.X \rightarrow X) \rightarrow Nat$$
 OK
Nat $\rightarrow ((\forall X.X \rightarrow X) \rightarrow (Nat \rightarrow Nat))$ OK
 $((\forall X.X \rightarrow X) \rightarrow Nat) \rightarrow Nat$ X

Type reconstruction for ranks 2 and lower is decidable, and that for rank 3 and higher of System F is undecidable.

Parametricity

Uniform behavior of polymorphic programs

```
CBool = \forall X.X \rightarrow X \rightarrow X;
tru = \lambda X. \lambda t: X. \lambda f: X. t;
fls = \lambda X. \lambda t: X. \lambda f: X. f;
```

- (1) Tru and fls are the only two basic inhabitants of Cbool.
- (2) Free Theorem: e.g., for reverse: ∀X. List X -> List X, we have

map [X] [Y] f . reverse [List X] = reverse [List Y] . map [X] [Y] f

Homework

23.5.1 THEOREM [PRESERVATION]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: EXERCISE [RECOMMENDED, $\star\star\star$].

23.5.2 Theorem [Progress]: If t is a closed, well-typed term, then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: Exercise [Recommended, $\star\star\star$].

