
Chapter 23: Universal Types

System F (polymorphic lambda calculus)
Power of System F

Properties (Soundness, decidability,
paramertricity)

Abstraction

doubleNat = λf:Nat→Nat. λx:Nat. f (f x);
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x);
doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x);

Can we do abstraction over types so that we can apply to different types?

double = λX. λf:X→X. λx:X. f (f x)

Polymorphism

• Parametric polymorphism
– λx: T. x : T à T

• Ad-hoc polymorphism (overloading)
– 1 + 2
– 1.0 + 2.0
– “we “ + “you”

System F

• First discovered by Jean-Yves Girard (1972)
• Independently developed by John Reynolds (1974) as

polymorphic lambda calculus (or second order lambda
calculus)

• A natural extension of λà with a new form of abstract and
application over types:

Syntax and Evaluation

Types and Type Context

Typing

Ex.: Defining Polymorphic Functions

• id = λX. λx:X. x
– id : ∀X. X → X
– id [Nat] 0 è 0

• double = λX. λf:X→X. λa:X. f (f a)
– double : ∀X. (X→X) → X → X
– double [Nat] (λx:Nat. succ(succ(x))) 3 è 7

• selfApp = λx:∀X.X→X. x [∀X.X→X] x
– selfApp : (∀X. X→X) → (∀X. X → X)

• quadruple = λX. double [X→X] (double [X]);
– quadruple : ∀X. (X→X) → X → X

Ex.: Polymorphic Lists

• nil : ∀X. List X
• cons : ∀X. X → List X → List X
• isnil : ∀X. List X → Bool
• head : ∀X. List X → X
• tail : ∀X. List X → List X

Exercise: Can you write reverse?

map : ∀X. ∀Y. (X→Y) → List X → List Y
map = λX. λY. λf: X→Y.

(fix (λm: (List X) → (List Y). λl: List X.
if isnil [X] l then nil [Y]
else cons [Y] (f (head [X] l)) (m (tail [X] l))))

Ex.: Church Encoding

• Church encodings can be carried out in System F.

• CBool = ∀X.X→X→X;
– tru = λX. λt:X. λf:X. t;
– fls = λX. λt:X. λf:X. f;
– not = λb:CBool. λX. λt:X. λf:X. b [X] f t;

• !

• CNat = ∀X. (X→X) → X → X
– c0 = λX. λs:X→X. λz:X. z
– c1= λX. λs:X→X. λz:X. s z;
– csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z)
– cplus = λm:CNat. λn:CNat. λX. λs:X→X. λz:X.

m [X] s (n [X] s z)

Ex.: Encoding Lists

• List X = ∀R. (X→R→R) → R → R
– nil = λX. (λR. λc:X→R→R. λn:R. n) as ∀X. List X
– cons = λX. λhd:X. λtl:List X.

(λR. λc:X→R→R. λn:R. c hd (tl [R] c n)) as List X;
– isnil = λX. λl:List X.

l [Bool] (λhd:X. λtl:Bool. false) true
– head = λX. λl:List X.

l [X] (λhd:X. λtl:X. hd) (diverge [X] unit)
– sum : List Nat à Nat

sum = … definition without using fix …?

sum = λl: List Nat. l (λhd: Nat, λtl:Nat. hd + tl) 0
(sum = foldr (λhd: Nat, λtl:Nat. hd + tl) 0)

Ex.: Encoding Pair

• Pair X Y = λR. (X→Y→R) → R;
– pair : ∀X. ∀Y. X → Y → Pair X Y
– fst : ∀X. ∀Y. Pair X Y → X
– snd : ∀X. ∀Y. Pair X Y → Y

pair = λX. λY. λx:X. λy:Y. λR. λp. p x y

fst = λX. λY. λp. p [X] (λx. λy à x)
snd = λX. λY. λp. p [X] (λx. λy à y)

Basic Properties of System F

Very similar to those of the simply typed λ-calculus.

Theorem [Preservation]: If Γ ⊢ t : T and t→t′, then Γ
⊢ t′ : T.

Theorem [Progress]: If t is a closed, well-typed term,
then either t is a value or there is some t′ with t →t′.

Theorem [Normalization]: Well-typed System F terms
are normalizing (i.e., the evaluation of every well-
typed program terminates).

Erasure and Type Construction

Theorem [Wells, 1994]: It is undecidable whether, given a
closed term m of the untyped lambda-calculus, there is
some well-typed term t in System F such that erase(t) = m.

Partial Erasure and Type Construction

Theorem [Boehm 1985, 1989]: It is undecidable whether,
given a closed term s in which type applications are marked
but the arguments are omitted, there is some well-typed
System F term t such that erasep(t) = s.

Type reconstruction is as hard as higher-order unification.
(But many practical algorithms have been developed)

Erasure and Evaluation Order

Theorem: If erasev(t) = u, then either (1) both t and u are
normal forms according to their respective evaluation
relations, or (2) t → t′ and u → u′, with erasev(t′) = u′.

Keep type
abstraction

Fragments of System F

• Rank-1 (prenex) polymorphism
– type variables should not be instantiated with

polymorphic types

• Rank-2 polymorphism
– A type is said to be of rank 2 if no path from its root to

a ∀ quantifier passes to the left of 2 or more arrows.

(∀X.X→X)→Nat OK
Nat→((∀X.X→X)→(Nat→Nat)) OK
((∀X.X→X)→Nat)→Nat X

Type reconstruction for ranks 2 and lower is decidable, and
that for rank 3 and higher of System F is undecidable.

Parametricity

• Uniform behavior of polymorphic programs

CBool = ∀X.X→X→X;
tru = λX. λt:X. λf:X. t;
fls = λX. λt:X. λf:X. f;

(1)Tru and fls are the only two basic inhabitants of Cbool.

(2) Free Theorem:
e.g., for reverse: ∀X. List X -> List X, we have

map [X] [Y] f . reverse [List X] = reverse [List Y] . map [X] [Y] f

Homework

