
Chapter 3: Untyped Arithmetic Expressions

A small language of numbers and Booleans
Basic aspects of programming languages



Introduction

Grammar
Programs
Evaluation



Grammar (Syntax) 

t ::=
true
false
if t then t else t 
0
succ t
pred t

iszero t

terms: 
constant true 
constant false 
conditional 
constant zero 
successor 
predecessor 
zero test

t: meta-variable (non-terminal symbol)



Programs and Evaluations

• A program in the language is just a term built 
from the forms given by the grammar.

if false then 0 else 1         (1 = succ 0)
à1 

iszero (pred (succ 0)) 
à true



Syntax

Many ways of defining syntax (besides 
grammar)



Terms, Inductively

The set of terms is the smallest set T such that 
1. {true, false, 0} ⊆ T;
2. if t1 ∈ T, then {succ t1, pred t1, iszero t1} ⊆ T;
3. if t1 ∈ T, t2 ∈ T, and t3 ∈ T, 

then if t1 then t2 else t3 ∈ T. 



Terms, by Inference Rules

The set of terms is defined by the following rules: 

Inference rules = Axioms + Proper rules



Terms, Concretely

For each natural number i, define a set Si as 
follows:

Finally, let 



Induction on Terms

Inductive definitions
Inductive proofs



Inductive Definitions

The set of constants appearing in a term t, written 
Consts(t), is defined as follows: 



Inductive Definitions

The size of a term t, written size(t), is defined as 
follows: 



Inductive Definitions

The depth of a term t, written depth(t), is defined 
as follows: 



Inductive Proof

Lemma. The number of distinct constants in a 
term t is no greater than the size of t:

| Consts(t) | ≤ size(t)

Proof. By induction over the depth of t. 
– Case t is a constant
– Case t is pred t1, succ t1, or iszero t1
– Case t is if t1 then t2 else t3



Inductive Proof

Theorem [Structural Induction]
If, for each term s, 

given P (r) for all immediate subterms r of s 
we can show P(s), 

then P (s) holds for all s. 



Semantic Styles

Three basic approaches



Operational Semantics

• Operational semantics specifies the behavior of 
a programming language by defining a simple 
abstract machine for it. 

• An example (often used in this course): 
– terms as states
– transition from one state to another as simplification
– meaning of t is the final state starting from the state 

corresponding to t



Denotational Semantics

• Giving denotational semantics for a language 
consists of 
– finding a collection of semantic domains, and then
– defining an interpretation function mapping terms 

into elements of these domains. 

• Main advantage: It abstracts from the gritty 
details of evaluation and highlights the essential 
concepts of the language. 



Axiomatic Semantics

• Axiomatic methods take the laws (properties) 
themselves as the definition of the language. 
The meaning of a term is just what can be 
proved about it. 

– They focus attention on the process of reasoning 
about programs. 

– Hoare logic: define the meaning of imperative 
languages



Evaluation

Evaluation relation 
(small-step/big-step)

Normal form
Confluence and termination



Evaluation on Booleans



One-step Evaluation Relation

• The one-step evaluation relation → is the 
smallest binary relation on terms satisfying the 
three rules in the previous slide. 

• When the pair (t,t′) is in the evaluation relation, 
we say that “t → t′ is derivable.” 



Derivation Tree

“if t then false else false → if u then false else false” is 
witnessed by the following derivation tree: 

where



Induction on Derivation

Theorem [Determinacy of one-step evaluation]: 
If t → t′ and t → t′′, then t′ = t′′. 

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, 
then t has the form if true then t2 else t3.
It can be shown that there is only one way to reduce such t.

…



Normal Form

• Definition: A term t is in normal form if no 
evaluation rule applies to it.

• Theorem: Every value is in normal form.

• Theorem: If t is in normal form, then t is a value. 
– Prove by contradiction (then by structural induction).



Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation 
→∗ is the reflexive, transitive closure of one-
step evaluation. 

• Theorem [Uniqueness of normal forms]: If t →∗
u and t →∗ u′, where u and u′ are both normal 
forms, then u = u′. 

• Theorem [Termination of Evaluation]: For every 
term t there is some normal form t′ such that t 
→∗ t′. 



Big-step Evaluation



Extending Evaluation to Numbers



Stuckness

• Definition: A closed term is stuck if it is in 
normal form but not a value. 

• Examples:
succ true
succ false
if zero then true else false



Summary

• How to define syntax?
– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?
– Operational, Denotational, Axomatic

• How to define evaluation relation (operational 
semantics)?
– Small-step/Big-step evaluation relation
– Normal form
– Confluence/termination



Homework

• Do Exercise 3.5.16 in Chapter 3.


