
编程语言的设计原理
Design Principles of

Programming Languages

Zhenjiang Hu, Haiyan Zhao,

胡振江 赵海燕

Peking University, Spring, 2022

Recapitulation

Reference

Syntax
We added to λ→ (with Unit) syntactic forms for creating, dereferencing,
and assigning reference cells, plus a new type constructor Ref.

Evaluation

Evaluation becomes a relation with the states of store:
t | µ ⟶ t′ | µ′

Typing
Typing becomes a four-place relation: Γ | Σ ⊢ t ∶ T

Preservation
Theorem: if
Γ | Σ ⊢ t: T
Γ | Σ ⊢ 𝜇
t | 𝜇 ⟶ t"| µ′

then,		for	some Σ" ⊇ Σ,
Γ | Σ′ ⊢ t′: T
Γ | Σ′ ⊢ 𝜇′.

Progress
Theorem:

Suppose t is a closed, well-typed term, i.e.,
∅ | Σ ⊢ t: T for some T and Σ

Then either t is a value or else, for any store 𝜇 such that ∅ | Σ ⊢ 𝜇,
there is some term t′ and store 𝜇′ with t | 𝜇 ⟶ t′ | 𝜇′.

Chapter 14:

Exceptions
Why exceptions

Raising exceptions (aborting whole program)
Handling exceptions

Exceptions carrying values

Exceptions

Why exceptions?
Real world programming is full of situations where a function needs to
signal to it caller that it is unable to perform its task for :
─ Division by zero
─ Arithmetic overflow
─ Array index out of bound
─ Lookup key missing
─ File could not be opened
─ ……

Most programming languages provide some mechanism for interrupting
the normal flow of control in a program to signal some exceptional
condition (& the transfer of control flow)

Why exceptions?
type ′𝛼 list = None | Some of ′𝛼

let head l = match l with
[] -> None

| x::_ -> Some (x);;

Note that it is always possible to program without exceptions :
– instead of raising an exception, return None
– instead of returning result 𝑥 normally, return Some(x)

Why exceptions?
type ′𝛼 list = None | Some of ′𝛼
let head l = match l with

[] -> None
| x::_ -> Some (x);;

What is the result of type inference?
val head: ′α list -> ′α Option = <fun>

What we expect
val head: ′α list -> ′α = <fun>
let head l = match l with

[] -> raise Not_found
| x::_ -> x;;

Why exceptions?
If we want to wrap every function application in a case to find out
whether it returned a result or an exception?

It is much more convenient to build this mechanism into the language,
and provide mechanism for interrupting the normal flow of control in a
program to signal some exceptional condition (& the transfer of control
flow).

Varieties of non-local control
There are many ways of adding “non-local control flow”
─ exit(1)
─ goto
─ setjmp/longjmp
─ raise/try (or catch/throw) in many variations
─ callcc / continuations
─ more esoteric variants (cf. many Scheme papers)

that allow programs to effect non-local “jumps” in the flow of control

Let’s begin with the simplest of these.

Raising exceptions
(aborting whole program)

An “abort” primitive in 𝜆→
Raising exceptions (but not catching them), which cause the abort of
the whole program

Evaluation

Syntactic forms

Typing

Typing errors
Note that the typing rule for error allows us to give it any type T.

This means that both
𝑖𝑓 𝑥 > 0 𝑡ℎ𝑒𝑛 5 𝑒𝑙𝑠𝑒 𝑒𝑟𝑟𝑜𝑟

and
𝑖𝑓 𝑥 > 0 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒 𝑒𝑙𝑠𝑒 𝑒𝑟𝑟𝑜𝑟

will typecheck

What if we had booleans and numbers in the language?

Aside: Syntax-directedness
Note: this rule

has a problem from the point of view of implementation :

it is not syntax directed

Aside: Syntax-directed rules
When we say a set of rules is syntax-directed we mean two things:
1. There is exactly one rule in the set that applies to each syntactic

form (in the sense that we can tell by the syntax of a term which rule
to use)
─ e.g., to derive a type for t1 t2, we must use T-App

2. We don't have to “guess" an input (or output) for any rule
─ e.g., to derive a type for t1 t2, we need to derive a type for t1

and a type for t2

Aside: Syntax-directedness
Note: this rule

has a problem from the point of view of implementation : it is not syntax
directed

This will cause the Uniqueness of Types theorem to fail

For purposes of defining the language and proving its type safety, this
is not a problem — Uniqueness of Types is not critical

Let's think a little about how the rule might be fixed ...

An alternative: Ascription
Can’t we just decorate the error keyword with its intended type, as we
have done to fix related problems with other constructs?

An alternative : Ascription
Can’t we just decorate the error keyword with its intended type, as we
have done to fix related problems with other constructs?

Unfortunately, this doesn't work!
e.g. assuming our language also has numbers and booleans:

succ if (error as Bool then 3 else 8)
⟶ succ (error as Bool)

Another alternative: Variable type
In a system with universal polymorphism (like OCaml), the
variability of typing for error can be dealt with by assigning it a
variable type ?

Γ ⊢ error ∶ "α (T-ERROR)

Another alternative: Variable type
In a system with universal polymorphism (like OCaml), the variability of
typing for error can be dealt with by assigning it a variable type!

Γ ⊢ error ∶ !α (T-ERROR)

In effect, we are replacing the uniqueness of typing property by a
weaker (but still very useful) property called most general typing
– i.e., although a term may have many types, we always have a

compact way of representing the set of all of its possible types

Yet another alternative : minimal type
Alternatively, in a system with subtyping (which will be discussed in
chapter 15) and a minimal Bot type, we can give error a unique type:

Yet another alternative : minimal type
Alternatively, in a system with subtyping (which will be discussed in
chapter 15) and a minimal Bot type, we can give error a unique type:

Note :
What we've really done is just pushed the complexity of the old error
rule onto the Bot type !

For now...
Let’s stick with the original rule

and live with the resulting non-determinism of the typing relation

Type safety
Property of preservation?

The preservation theorem requires no changes when we add error:
if a term of type T reduces to 𝑒𝑟𝑟𝑜𝑟, that’s fine, since 𝑒𝑟𝑟𝑜𝑟 has every
type T

Type safety
Property of preservation?

The preservation theorem requires no changes when we add error: :
if a term of type T reduces to error, that’s fine, since error has every
type T.

Whereas,
Progress requires a little more care

Progress
First, note that we do not want to extend the set of values to include
error , since this would make our new rule for propagating errors
through applications

overlap with our existing computation rule for applications:

e.g, the term
λ x: Nat. 0 error

could evaluate to either 0 (which would be wrong) or error (which is
what we intend).

Progress
Instead, we keep 𝐞𝐫𝐫𝐨𝐫 as a non-value normal form, and refine the
statement of progress to explicitly mention the possibility that terms
may evaluate to 𝑒𝑟𝑟𝑜𝑟 instead of to a value

Theorem [Progress]:
Suppose t is a closed, well-typed normal form.
Then either t is a value or 𝑡 = 𝑒𝑟𝑟𝑜𝑟.

Handling exceptions

Catching exceptions
syntax

Evaluation

Typing

Exceptions
carrying values

Exceptions carrying values
When something unusual happened, it’s useful to send back some
extra information about which unusual thing has happened so that the
handler can take some actions depending on this information.

Exceptions carrying values
When something unusual happened, it’s useful to send back some
extra information about which unusual thing has happened so that the
handler can take some actions depending on this information.

Atomic term error is replaced by a term constructor
raise 𝑡

where 𝑡 is the extra information that we want to pass to the exception
handler

Evaluation

Evaluation

Typing
To typecheck raise expressions, we need to choose a type for the
values that are carried along with exceptions, let’s call it T#$%

%⊢'":)#$%
%⊢*+,-. '" ∶)

(T-RAISE)

%⊢'" ∶) %⊢'& ∶)#$%⟶)
%⊢'*1 '"2,'3 '& ∶)

（T-TRY）

What is T456 ?
Further, we need to decide what type to use as T#$%
There are several possibilities.
1. Numeric error codes: T#$% = Nat (as in Unix)
2. Error messages: T#$% = String
3. A predefined variant type:

4. An extensible variant type (as in Ocaml)
5. A class of “throwable objects” (as in Java)

Recapitulation：Error handling

Recapitulation：Exceptions carrying values

Recapitulation
• Raising exception is more than an error mechanism: it’s a

programmable control structure
─ Sometimes a way to quickly escape from the computation.
─ And allow programs to effect non-local “jumps” in the flow of control by
setting a handler during evaluation of an expression that may be invoked by
raising an exception.

─ Exceptions are value-carrying in the sense that one may pass a value to the
exception handler when the exception is raised.

─ Exception values have a single type, T!"# , which is shared by all exception
handler.

Recapitulation
• As an example, exceptions are used in OCaml as a control

mechanism, either to signal errors, or to control the flow of execution.
─ When an exception is raised, the current execution is aborted, and control is
thrown to the most recently entered active exception handler, which may
choose to handle the exception, or pass it through to the next exception
handler.

─ T!"# is defined to be an extensible data type, in the sense that new
constructors may be introduced using exception declaration, with no
restriction on the types of value that may be associated with the constructor.

HW for chap14
• Read through chap 14
• Do exercise 14.3.1

