miZasATRIE
Design Principles of
Programming Languages

Zhenjiang Hu, Halyan Zhao,
AR e
Peking University, Spring, 2022

Recap

« Core messages in the previous lecture

— (Untyped) programming languages are defined by syntax and
semantics

— Syntax is often specified by grammars
o Inductively vs structural induction

— Semantics can be specified in three ways, and this book chooses
operational semantics expressed as evaluation rules

— Big step vs small step semantics

2022/3/9 Design Principles of Programming Language 2

Abstract Machines

* An abstract machine consists of:
— a set of states
— a transition relation on states, written —
“t — t'”isread as “t evaluates to t' in one step”.

» A state records all the information in the abstract machine at a given
moment.

— e.g., an abstract-machine-style description of a conventional
microprocessor would include the program counter, the contents of the
registers, the contents of main memory, and the machine code
program being executed.

2022/3/9 Design Principles of Programming Language 3

Operational semantics for Booleans

« Syntax of terms and values

2022/3/9

T

true
false

1FE . then T alse b

true
false

Design Principles of Programming Language

terms
constant true
constant false
conditional

values
true value
false value

Evaluation relation for Booleans

« The evaluation relation t — t' is the smallest relation closed under
the following rules:

if true then ty else t3 — to (E-IFTRUE)
if false then ty else t3 — t3 (E-IFFALSE)
t] — t)
. , (E-IF)
1f €1 then t2 else t3 — 1f t; then to else t3

2022/3/9 Design Principles of Programming Language 5

Evaluation relation for Booleans

« Computation rules
if true then ty else t3 — to (E-IFTRUE)

if false then ty else t3 — t3 (E-IFFALSE)
« Congruence rules

: /

E-IF
if t; then ts else t3 — if t’l then t; else tg()

« Computation rules perform “real” computation steps

« Congruence rules determine where computation rules can be applied
next

2022/3/9 Design Principles of Programming Language 6

Evaluation relation for Booleans

— IS the smallest two-place relation closed under the following rules:
((if true then t) else t3),t2) € —

((if false then ty else t3),t3) € —

M

——

(tl. t/l)
1f t; then to else t3), (1f t" then tr else t3 c —
1

The notation t — t’ is short-hand for (t.t') € —.

If the pair (t,t’) is an evaluation relation, then the evaluation statement or
judgement t — t' is said to be derivable

2022/3/9 Design Principles of Programming Language 7

Derivation

« “Justification” for a particular pair of terms that are in the evaluation
relation in the form of a tree.

E-IFTRUE

s — false
E-IF

E—21
E-IF

1f t then false else false — 1f u then false else false

— These trees are called derivation trees (or just derivations).
— The final statement in a derivation is its conclusion.

— We say that the derivation is a witness for its conclusion (or a proof of
its conclusion) — it records all the reasoning steps that justify the
conclusion.

2022/3/9 Design Principles of Programming Language 8

Induction on Derivation

E-IFTRUE
s — false
E-IF

L—u

E-IF
1f t then false else false — 1f u then false else false

Write proofs about evaluation “by induction on derivation trees.”

Given an arbitrary derivation D with conclusion t — t', we assume the
desired result for its immediate sub-derivation (if any) and proceed by
a case analysis of the final evaluation rule used in constructing the
derivation tree.

2022/3/9 Design Principles of Programming Language 9

Chapter 5:
The Untyped Lambda Calculus

What is lambda calculus for ?
Basics: Syntax and Operational semantics
Programming in the Lambda Calculus
Formalities (formal definitions)

Story of Turing and Church

Alonzo Church Alan Turing
Lambda Calculus Turing Machine

2022/3/9 Design Principles of Programming Language 11

What is Lambda calculus for?

* A core calculus (used by Landin) for

— capturing the language’s essential mechanisms, with a collection
of convenient derived forms whose behavior is understood by
translating them into the core.

— modeling programming language, as the foundation of many real-
world programming language designs (including ML, Haskell,
Scheme, Lisp, ...) , and being central to contemporary computer
science.

2022/3/9 Design Principles of Programming Language 12

Lambda calculus

« Aformal system devised by Alonzo Church in the 1930’s as a model
for computability

— all computation is reduced to the basic operations of function
abstraction and application.

* Avery simple but very powerful language based on pure abstraction
— Turing complete
— higher order (functions as data)

2022/3/9 Design Principles of Programming Language 13

Basics

Syntax
Scope
Operational semantics

Syntax

 The lambda calculus (or A-calculus) embodies this kind of function
definition and application in the purest possible form.

§ T terms
X variable
B b o abstraction
ol 7 application

* Terminology:
— terms in the pure A-calculus are often called A-terms
— terms of the form Ax. t are called A-abstractions or just abstractions

2022/3/9 Design Principles of Programming Language 15

Syntactic conventions

* The A-calculus provides only one-argument functions, all multi-
argument functions must be written in curried style.

* The following conventions make the linear forms of terms easier to
read and write:

— Application associates to the left
e.g., tuvmeans (fu)v,nott(uv)

— Bodies of A- abstractions extend as far to the right as possible
e.g., Ax. Ay. x ymeans Ax. (Ay. x y), not Ax. (Ay. x) y

2022/3/9 Design Principles of Programming Language 16

Abstract Syntax Trees

 (st)u (orsimply written as st u)

apply

7

apply -

/N

2022/3/9 Design Principles of Programming Language 17

Abstract Syntax Trees

* AX (Ay. ((xXy) X))
(or simply written as AX. Ay. Xy X))
AX

Ay

apply

/ N\

apply X

N\

2022/3/9 Design Principles of Programming Language 18

Scope

 An occurrence of the variable x is said to be bound when it occurs in
the body t of an abstraction Ax.t, i.e.,

— the A-abstraction term Ax.t binds the variable x, and the scope of
this binding is the body t.

— Ax IS a binder whose scope is t.

— a binder can be renamed as necessary
 so-called: alpha-renaming
*e.g., AX.Xx=Ay.y,

2022/3/9 Design Principles of Programming Language 19

Scope

* An occurrence of x is free if it appears in a position where it is not bound
by an enclosing abstraction on x.

— a term with no free variable is said to be closed.
— closed terms are also called combinators.
« EXxercises: Find free variable occurrences from the following terms:

— XY,

— AX.X

— AYy. XYy

— (AX.X) X

— (AX.X) (AY.y X)
— (AX.X) (AX.X)
— (AX.(Ay.xy))y

2022/3/9 Design Principles of Programming Language 20

Values

- e — values
AX.t abstraction value

2022/3/9 Design Principles of Programming Language 21

Operational Semantics

Beta-reduction: the only computation (substitution)

Hr &= v

(AX. t12) t2 —':[X — tz]:tlz.

— the term obtained by replacing all free occurrences of x in t,, by t,

— a term of the form (Ax.t) v — a A-abstraction applied to a value — is
called a redex (short for “reducible expression”).

Examples:
(AX.X)y 2V

(AX. X (AX X)) (ur) =2 ur(AX. x)

2022/3/9 Design Principles of Programming Language 22

Operational Semantics

* [f the function Ax.tis applied to t,, we substitute all free occurrences
of x in twith t,.

— If the substitution would bring a free variable of t, in an expression
where this variable occurs bound, we rename the bound variable
before performing the substitution.

(AX. t12) th) — [Xx — to]t1o,

« Examples:
(AX.X) (AX.X) 2> 7?
(AX.(AY.XY))y = ?
(AX.(AY.(X (AX.X Y)Yy =2 ?

2022/3/9 Design Principles of Programming Language 23

Evaluation Strategies

* Full beta-reduction
— any redex may be reduced at any time.
* e.g., Id=Ax.x
— we can apply full beta reduction to any of the following underlined
redexes:
1d (1d (Az. 1d.z2))
id CCiatAZ. 1d 2)))
id (i1d (Az. 1d 2))

Note: /ambda calculus is confluent under full beta-reduction.
Ref. Church-Rosser property.

2022/3/9 Design Principles of Programming Language 24

Evaluation Strategies

 The normal order strategy
— The leftmost, outmost redex is always reduced first.

 try to reduce always the leftmost expression of a series of applications, and
continue until no further reductions are possible

— the evaluation relation under this strategy is actually a partial
function: each term t evaluates in one step to at most one term ¢’

1d Cid (Az. 1d Z))
— 1d(1\z 1dz)
— AzZ. 1dz;

v

2022/3/9 Design Principles of Programming Language 25

Evaluation Strategies

* call-by-name strategy

— a more restrictive normal order strategy, allowing no reduction
Inside abstraction.

1d (1d CAZ- i‘d Z))
— id¥Az. id 2):
— Az.1d z

-/

— stop before the last and regard Az. id z as a normal form

2022/3/9 Design Principles of Programming Language 26

Evaluation Strategies

 call-by-value strategy
— only outermost redexes are reduced and
— where a redex is reduced only when its right-hand side has already
been reduced to a value
* value: a term that cannot be reduced any more.

1d (3d (Az. 1dz))
— 1d (Az. 1d 2)
— Az.1d z

L

2022/3/9 Design Principles of Programming Language 27

Evaluation Strategies

 call-by-value strategy

— strict in the sense that the arguments to functions are always
evaluated, whether or not they are used by the body of the function.

— reflects standard conventions found in most mainstream languages.

2022/3/9 Design Principles of Programming Language 28

Operational Semantics

« Computation rule

(A\x.t12) Vo — [x — v2]t1o (E-APPARBS)

- Congruence rules

t; — t]
- (E-ApP1)
Ll Go—* by B
t) — t-
Z (E-APP2)
: /
Vi To — V1 Ty

2022/3/9 Design Principles of Programming Language 29

Lambda Calculus

* Once we have /l-abstraction and application, we can throw away all
the other language primitives and still have left a rich and powerful

programming language.
« Everything is a function
— Variables always denote functions
— Functions always take other functions as parameters
— The result of a function is always a function

2022/3/9 Design Principles of Programming Language

30

Abstractions over Functions

 Consider the A-abstraction
g = Af. f (f (succ 0))

— the parameter variable fis used in the function position in the body of g.
— terms like g are called higher-order functions.

— If we apply g to an argument like p/us3, the “substitution rule” yields a
nontrivial computation:

g plus3

= (AT (O C(aiige €))1) (O
1.8 CAX:; Suce (siiee (5uee x)))

(CAx. suce (succ (sice x))) (suec O))
e £Ax: suec (sace (sueec x)))

(aunec (succ (=ncec (shice 0))))

2022/3/9 l.e. succ (succ fgucg, (suce (succ Ceyse (succ 0)))))) 31

succ (succ (succ x)))

Programming
in the Lambda Calculus

Multiple Arguments
Church Booleans
Pairs
Church Numerals
Recursion

Multiple Arguments

 A-calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

f(x,y)=t
currying

fx)y=t
A-encoding

f=A. Ay. t

2022/3/9 Design Principles of Programming Language 33

Multiple Arguments

* |In general, Ax. Ay. tis a function that, given a value v for x, yields a
function that, given a value u for y, yields t with v in place of x and u
in place of y.

— i.e., Ax. Ay. tis a two-argument function.

» A-abstraction that does nothing but immediately yields another
abstraction — is very common in the A-calculus.

2022/3/9 Design Principles of Programming Language 34

Church Booleans

« Boolean values can be encoded as:
tru = At. Af. t

fls = At. Af f
tru v w
= (At.Af.t) v w by definition
— (Af. v) w reducing the underlined redex
— vV reducing the underlined redex
fls v w
= (At.Af.f) v w by definition
— (Af. f) w reducing the underlined redex
— W reducing the underlined redex

2022/3/9 Design Principles of Programming Language 35

Church Booleans

* Boolean conditional and operators can be encoded as:
test=Al. Am. An. I mn

test truvw
(AT. Am. An. 1 mn) truvw by definition

— (Am. An. trumn) vw reducing the underlined redex
— (An. truvn) w reducing the underlined redex
— truvw reducing the underlined redex
= (AE.AT.E) ¥ W by definition

— (Af. V) w reducing the underlined redex
— V reducing the underlined redex

2022/3/9 Design Principles of Programming Language 36

Church Booleans

* How to define not?

— a function that, given a boolean value v, returns fls if v is tru and
tru if v is fls.

o = .Abs b FlS tru

2022/3/9 Design Principles of Programming Language 37

Church Booleans

« Boolean conditional

— and is a function that, given two boolean values v and w, returns w
if vis tru and fls if vis fls.

— thus and v w yields tru if both v and w are tru, and fls if either v or
w IS fls.

* and operators can be encoded as:

and = Ab. Ac. b cfls

2022/3/9 Design Principles of Programming Language 38

Church Booleans

« How to define or ?

or = Aa.Ab.atrub

2022/3/9 Design Principles of Programming Language 39

Church Numerals

* Encoding Church numerals

— Basic idea: represent the number n by a function that “repeats
some action n times.”

Ca = AS. A2 D

G = Ae. RAZ. 82

o= AS. AZ. 8 (8 .2)

B3 = AEL N2Ze s kE2))

— each number n is represented by a ferm cn» taking two arguments,
s and z (for “successor” and “zero”), and applies s, n times, to z.

2022/3/9 Design Principles of Programming Language 40

Functions on Church Numerals

* Successor
suc = An.As.Az.s (n s z);

* addition
plus = Am.An.As.Az.m s (n s z);

* Multiplication
times = Am.An.m (plus n) cO0;

2022/3/9 Design Principles of Programming Language

41

Church Numerals

« Can you define minus?
— Suppose we have pred, can you define minus?
e Im.An.npred m
« Can you define pred?
— n.As.2z.n (Ag.2h.h (g s)) (Au.z) (Au.w)
— (Au.z) -- a wrapped zero
— (Au.u) — the last application to be skipped
— (Ag.2h.h (g s)) -- apply h if it is the last application, otherwise apply g
— Tryn=0, 1, 2 to see the effect

2022/3/9 Design Principles of Programming Language 42

Pairs

* Encoding

« Example

2022/3/9

pair
st
snd

2
fst
fst
fat

(Ap

= Mf.As.\b. b f s
= Ap. p tru
= Ap. p fls

(pair v w)

((AT. A5 Ab. B T 8) %)
((As. Ab. b v s) w)

(Ab. b v w)

: prew) (Abu biv w)

(Ab

. bvw) tru

tTru
\Y

V W

Design Principles of Programming Language

by definition
reducing
reducing
by definition
reducing
reducing

as before.
43

Recursion

gmega = {(AX.x ¥ (Ax. X X)

* Note that omega evaluates in one step to itself!
— evaluation of omega never reaches a normal form: it diverges.

* Terms with no normal form are said to diverge.

» Divergent computation does not seem very useful in itself. However,
there are variants of omega that are very useful...

2022/3/9 Design Principles of Programming Language

44

Recursion

* Fixed-point combinator

fix = M. (Ax.f(Ay.xxy)) (Ax.f (Ay.xxXVy));

Note that
fix f = f(y. (fix) y)

2022/3/9 Design Principles of Programming Language 45

Recursion

 Basic ldea:

A recursive definition: h = <body containing h>

g = AMf . <body containing f>
h=fix g

2022/3/9 Design Principles of Programming Language 46

Recursion

« Example:
fac=An.ifeqncO
then c1

else times n (fac (pred n)

g=A.An.ifeqncO
then c1
else times n (f (pred n)
fac = fix g
Exercise: Check that fac c3 - c6.

2022/3/9 Design Principles of Programming Language 47

Y Combinator

¥ =P TAK: F E)] £ 0ex).)

fix = Af. (Ax. f (Ay. x x ¥)) (Ax. f (Ay. x x y))

c YT=1(YT)
* Why fix is used instead of Y?

2022/3/9 Design Principles of Programming Language 48

Y Combinator

¥ =dbs The F 06 L& (9ex).)

Y =

AT £ Lk Ty LA £ &= %))

——

f ((Ax.. T (x.x)) CAx. £ (x x)))

————

£ F (Cxxe f (E3)) CAxe T &% %))))

—_——

F (& (& (= f (x:x)) Oz £ (x x)))))

—

2022/3/9 Design Principles of Programming Language 49

Answer

Fix =AF Qo T Ay mwx y)) os @y % xy))

- Assumiing call-by—value
— (=< <D is Nmot a value
— while (A y. xx 3y) is a value
— ¥ wwvill diverge for any i

* Assuming call-by-value
— (xx) is not avalue
— while (Ay.xxy) is a value
— Y will diverge for any f

2022/3/9 Design Principles of Programming Language 50

Formalities
(Formal Definitions)

Syntax (free variables)
Substitution
Operational Semantics

Syntax

* Definition [Terms]:
Let V be a countable set of variable names.
The set of terms is the smallest set 7 such that
1. X €T forevery x € V;
2. ifty €T and x € V, then Ax.t; € T;
3. iftyeTandt, e T, thent; t, € T.

 Free Variables
-V (x) = {x}

EV(AGE) = FV() \ {X)
V(ty 1) = FV(ty) U FV(L,)

2022/3/9 Design Principles of Programming Language 52

Substitution

X — S|X = S

X~ sy = if y + x

X~ s](Ay.t;) = Ay. [x+~ s]t; ify+xandy ¢ FV(s)
x~s](ty t2) = [x+~s]t [x~s]t

Alpha-conversion. Terms that differ only in the names of bound variables
are interchangeable /17 all contexts.

Example:
[x =y z] (Ay. x)
= [x = yz] (Aw. x w)
= AW.yzZW
2022/3/9 Design Principles of Programming Language 53

Operational Semantics

Syntax Evaluation t— 1t
t ::= termS: E --- ,- -- E
i . t]. —_— t E
X variable 5 ,1 (E-APP1)
AX. t abstraction | Gt—4
o application | : ,
B
- = (E-APP2)
W = values: | i M e S
AX . t abStraCtiOn Value ..
(AX.t12) Vo — [X ~ Vo]ty> (E-APPARBS)

2022/3/9 Design Principles of Programming Language 54

Summary

« What is lambda calculus for?
— A core calculus for capturing language essential mechanisms
— Simple but powerful
« Syntax
— Function definition + function application
— Binder, scope, free variables
* Operational semantics
— Substitution
— Evaluation strategies: normal order, call-by-name, call-by-value

2022/3/9 Design Principles of Programming Language 55

Homework

Read through and understand Chapter 5.
Do exercise 5.2.7, 5.3.6 in Chapter 5.

5.2.7 EXERCISE [»*]: Write a function equal that tests two numbers for equality
and returns a Church boolean. For example,

equal c3 c3;

e GAL: AR)
equal c3 c3;

. CALL AFL T -

5.3.6 EXERCISE [xx]: Adapt these rules to describe the other three strategies for
evaluation—full beta-reduction, normal-order, and lazy evaluation. O

2022/3/9 Design Principles of Programming Language 56

