
编程语言的设计原理
Design Principles of

Programming Languages

Zhenjiang Hu, Haiyan Zhao,
胡振江 赵海燕

Peking University, Spring, 2022

Recap
• Core messages in the previous lecture
─ (Untyped) programming languages are defined by syntax and

semantics
─ Syntax is often specified by grammars

l Inductively vs structural induction
─ Semantics can be specified in three ways, and this book chooses

operational semantics expressed as evaluation rules
─ Big step vs small step semantics

2022/3/9 Design Principles of Programming Language 2

Abstract Machines
• An abstract machine consists of:

─ a set of states
─ a transition relation on states, written ⟶

“𝑡 ⟶ 𝑡′ ” is read as “𝑡 evaluates to 𝑡′ in one step”.

• A state records all the information in the abstract machine at a given
moment.
─ e.g., an abstract-machine-style description of a conventional

microprocessor would include the program counter, the contents of the
registers, the contents of main memory, and the machine code
program being executed.

2022/3/9 Design Principles of Programming Language 3

Operational semantics for Booleans
• Syntax of terms and values

2022/3/9 Design Principles of Programming Language 4

Evaluation relation for Booleans
• The evaluation relation 𝑡 ⟶ 𝑡′ is the smallest relation closed under

the following rules:

2022/3/9 Design Principles of Programming Language 5

Evaluation relation for Booleans
• Computation rules

• Computation rules perform “real” computation steps
• Congruence rules determine where computation rules can be applied

next

• Congruence rules

2022/3/9 Design Principles of Programming Language 6

Evaluation relation for Booleans
⟶ is the smallest two-place relation closed under the following rules:

If the pair 𝑡, 𝑡! is an evaluation relation, then the evaluation statement or
judgement 𝑡 ⟶ 𝑡′ is said to be derivable

2022/3/9 Design Principles of Programming Language 7

Derivation
• “Justification” for a particular pair of terms that are in the evaluation

relation in the form of a tree.

─ These trees are called derivation trees (or just derivations).
─ The final statement in a derivation is its conclusion.
─ We say that the derivation is a witness for its conclusion (or a proof of

its conclusion) — it records all the reasoning steps that justify the
conclusion.

2022/3/9 Design Principles of Programming Language 8

Induction on Derivation

• Write proofs about evaluation “by induction on derivation trees.”

• Given an arbitrary derivation 𝒟 with conclusion 𝑡 ⟶ 𝑡′ , we assume the
desired result for its immediate sub-derivation (if any) and proceed by
a case analysis of the final evaluation rule used in constructing the
derivation tree.

2022/3/9 Design Principles of Programming Language 9

Chapter 5:
The Untyped Lambda Calculus

What is lambda calculus for ?
Basics: Syntax and Operational semantics

Programming in the Lambda Calculus
Formalities (formal definitions)

Story of Turing and Church

Alan Turing
Turing Machine

Alonzo Church
Lambda Calculus

2022/3/9 Design Principles of Programming Language 11

What is Lambda calculus for?
• A core calculus (used by Landin) for

─ capturing the language’s essential mechanisms, with a collection
of convenient derived forms whose behavior is understood by
translating them into the core.

─ modeling programming language, as the foundation of many real-
world programming language designs (including ML, Haskell,
Scheme, Lisp, ...) , and being central to contemporary computer
science.

2022/3/9 Design Principles of Programming Language 12

Lambda calculus
• A formal system devised by Alonzo Church in the 1930’s as a model

for computability
─ all computation is reduced to the basic operations of function

abstraction and application.
• A very simple but very powerful language based on pure abstraction
─ Turing complete
─ higher order (functions as data)

2022/3/9 Design Principles of Programming Language 13

Basics
Syntax
Scope

Operational semantics

Syntax
• The lambda calculus (or λ-calculus) embodies this kind of function

definition and application in the purest possible form.

• Terminology:
─ terms in the pure λ-calculus are often called λ-terms
─ terms of the form λx.	t	are called λ-abstractions or just abstractions

2022/3/9 Design Principles of Programming Language 15

Syntactic conventions

• The λ-calculus provides only one-argument functions, all multi-
argument functions must be written in curried style.

• The following conventions make the linear forms of terms easier to
read and write:
─ Application associates to the left

e.g., t u v means (t u) v, not t (u v)
─ Bodies of λ- abstractions extend as far to the right as possible

e.g., λx. λy. x y means λx. (λy. x y), not λx. (λy. x) y

2022/3/9 Design Principles of Programming Language 16

Abstract Syntax Trees
• (s t) u (or simply written as s t u)

2022/3/9 Design Principles of Programming Language 17

Abstract Syntax Trees
• λx. (λy. ((x y) x))

(or simply written as λx. λy. x y x)

2022/3/9 Design Principles of Programming Language 18

Scope
• An occurrence of the variable 𝑥 is said to be bound when it occurs in

the body t	of an abstraction λx.t, i.e.,
─ the λ-abstraction term λx.t binds the variable x, and the scope of

this binding is the body t.
─ λx is a binder whose scope is t.
─ a binder can be renamed as necessary

• so-called: alpha-renaming
• e.g., λx. x	=	λy. y，

2022/3/9 Design Principles of Programming Language 19

Scope
• An occurrence of x is free if it appears in a position where it is not bound

by an enclosing abstraction on x.
─ a term with no free variable is said to be closed.
─ closed terms are also called combinators.

• Exercises: Find free variable occurrences from the following terms:
─ x y,
─ λx.x
─ λy. x y
─ (λx.x) x
─ (λx.x) (λy.y x)
─ (λx.x) (λx.x)
─ (λx.(λy.x y)) y

2022/3/9 Design Principles of Programming Language 20

Values

2022/3/9 Design Principles of Programming Language 21

Operational Semantics
• Beta-reduction: the only computation (substitution)

─ the term obtained by replacing all free occurrences of x in t12 by t2
─ a term of the form (λx.t) v — a λ-abstraction applied to a value — is

called a redex (short for “reducible expression”).
• Examples:

(λx. x) y à y

(λx. x (λx .x)) (u r) à u r (λx. x)

2022/3/9 Design Principles of Programming Language 22

Operational Semantics
• If the function λx.t is applied to t2, we substitute all free occurrences

of x in t	with 𝑡2.
─ If the substitution would bring a free variable of t2 in an expression

where this variable occurs bound, we rename the bound variable
before performing the substitution.

• Examples:
(λx.x) (λx.x) à ?
(λx.(λy.x y)) y à ?
(λx.(λy.(x (λx.x y)))) y à ?

2022/3/9 Design Principles of Programming Language 23

Evaluation Strategies
• Full beta-reduction
─ any redex may be reduced at any time.

• e. g.，id = λx.x
─ we can apply full beta reduction to any of the following underlined

redexes:

Note: lambda calculus is confluent under full beta-reduction.
Ref. Church-Rosser property.
2022/3/9 Design Principles of Programming Language 24

Evaluation Strategies
• The normal order strategy
─ The leftmost, outmost redex is always reduced first.

• try to reduce always the leftmost expression of a series of applications, and
continue until no further reductions are possible

─ the evaluation relation under this strategy is actually a partial
function: each term t evaluates in one step to at most one term t’

2022/3/9 Design Principles of Programming Language 25

Evaluation Strategies
• call-by-name strategy
─ a more restrictive normal order strategy, allowing no reduction

inside abstraction.

─ stop before the last and regard λz.	id	z	as a normal form

2022/3/9 Design Principles of Programming Language 26

Evaluation Strategies
• call-by-value strategy
─ only outermost redexes are reduced and
─ where a redex is reduced only when its right-hand side has already

been reduced to a value
• value: a term that cannot be reduced any more.

2022/3/9 Design Principles of Programming Language 27

Evaluation Strategies
• call-by-value strategy
─ strict in the sense that the arguments to functions are always

evaluated, whether or not they are used by the body of the function.
─ reflects standard conventions found in most mainstream languages.

2022/3/9 Design Principles of Programming Language 28

Operational Semantics
• Computation rule

• Congruence rules

2022/3/9 Design Principles of Programming Language 29

Lambda Calculus

• Once we have 𝜆-abstraction and application, we can throw away all
the other language primitives and still have left a rich and powerful
programming language.

• Everything is a function
─ Variables always denote functions
─ Functions always take other functions as parameters
─ The result of a function is always a function

2022/3/9 Design Principles of Programming Language 30

Abstractions over Functions
• Consider the λ-abstraction

g = λf. f (f (succ 0))
─ the parameter variable f is used in the function position in the body of g.
─ terms like g are called higher-order functions.
─ If we apply g to an argument like plus3, the “substitution rule” yields a

nontrivial computation:

2022/3/9 Design Principles of Programming Language 31

Programming
in the Lambda Calculus

Multiple Arguments
Church Booleans

Pairs
Church Numerals

Recursion

Multiple Arguments

f (x, y) = t

currying

(f x) y = t

λ-encoding

f = λx. (λy. t)

• λ-calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

2022/3/9 Design Principles of Programming Language 33

Multiple Arguments
• In general, λx.	λy.	t	is a function that, given a value v for x, yields a

function that, given a value u for 𝑦, yields t with v in place of x and u
in place of y.
─ i.e., λx.	λy.	t	is a two-argument function.

• λ-abstraction that does nothing but immediately yields another
abstraction — is very common in the λ-calculus.

2022/3/9 Design Principles of Programming Language 34

Church Booleans
• Boolean values can be encoded as:

tru = λt. λf. t
fls = λt. λf. f

2022/3/9 Design Principles of Programming Language 35

Church Booleans
• Boolean conditional and operators can be encoded as:

test = λl. λm. λn. l m n

2022/3/9 Design Principles of Programming Language 36

Church Booleans

─ a function that, given a boolean value v, returns fls if v is tru and
tru if v is fls.

• How to define not	?

2022/3/9 Design Principles of Programming Language 37

Church Booleans
• Boolean conditional
─ and is a function that, given two boolean values v and w, returns w

if v is tru and fls if v	is fls.
─ thus and v w yields tru if both v and w are tru, and fls if either v or
w is fls.

• and operators can be encoded as:

2022/3/9 Design Principles of Programming Language 38

and = λb.	λc.	b	c	fls

Church Booleans
• How to define or ?

𝑜𝑟 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑡𝑟𝑢 𝑏

2022/3/9 Design Principles of Programming Language 39

Church Numerals
• Encoding Church numerals
─ Basic idea: represent the number 𝑛 by a function that “repeats

some action 𝑛 times.”

─ each number 𝑛 is represented by a term cn taking two arguments,
s and z (for “successor” and “zero”), and applies s, n	times, to z.

2022/3/9 Design Principles of Programming Language 40

Functions on Church Numerals
• Successor

𝑠𝑢𝑐 = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧);
• addition

𝑝𝑙𝑢𝑠 = 𝜆𝑚. 𝜆𝑛. 𝜆𝑠. 𝜆𝑧.𝑚 𝑠 (𝑛 𝑠 𝑧);
• Multiplication

𝑡𝑖𝑚𝑒𝑠 = 𝜆𝑚. 𝜆𝑛.𝑚 (𝑝𝑙𝑢𝑠 𝑛) 𝑐0;

2022/3/9 Design Principles of Programming Language 41

Church Numerals
• Can you define minus?
─ Suppose we have pred, can you define minus?

• 𝜆𝑚. 𝜆𝑛. 𝑛 𝑝𝑟𝑒𝑑 𝑚
• Can you define pred?

─ 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑛 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 𝜆𝑢. 𝑧 (𝜆𝑢. 𝑢)

─ 𝜆𝑢. 𝑧 -- a wrapped zero
─ (𝜆𝑢. 𝑢) – the last application to be skipped

─ 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 -- apply h if it is the last application, otherwise apply g

─ Try n = 0, 1, 2 to see the effect
2022/3/9 Design Principles of Programming Language 42

Pairs
• Encoding

• Example

2022/3/9 Design Principles of Programming Language 43

Recursion

• Note that omega evaluates in one step to itself !
─ evaluation of omega never reaches a normal form: it diverges.

• Terms with no normal form are said to diverge.

• Divergent computation does not seem very useful in itself. However,
there are variants of omega that are very useful...

2022/3/9 Design Principles of Programming Language 44

Recursion
• Fixed-point combinator

!ix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

Note that
,ix f = f (λy. (,ix f) y)

2022/3/9 Design Principles of Programming Language 45

Recursion
• Basic Idea:

A recursive definition: h = <body containing h>

g = λf . <body containing f>
h = fix g

2022/3/9 Design Principles of Programming Language 46

Recursion
• Example:

fac = λn. if eq n c0
then c1
else times n (fac (pred n)

g = λf . λn. if eq n c0
then c1
else times n (f (pred n)

fac = fix g

Exercise: Check that fac c3 à c6.
2022/3/9 Design Principles of Programming Language 47

Y Combinator

• Y f = f (Y f)
• Why fix is used instead of Y?

2022/3/9 Design Principles of Programming Language 48

Y Combinator

Y =

2022/3/9 Design Principles of Programming Language 49

Answer

• Assuming call-by-value
─ (x	x) is not a value
─ while (λy. x x y) is a value
─ Y will diverge for any f

2022/3/9 Design Principles of Programming Language 50

Formalities
(Formal Definitions)

Syntax (free variables)
Substitution

Operational Semantics

Syntax
• Definition [Terms]:

Let 𝒱 be a countable set of variable names.
The set of terms is the smallest set 𝒯 such that
1. x ∈ 𝒯 for every x ∈ 𝒱;
2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯;
3. if t1 ∈ 𝒯and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯.

• Free Variables
FV(x) = {x}
FV(λx.t1) = FV(t1) \ {x}
FV(t1 t2) = FV(t1) ∪ FV(t2)

2022/3/9 Design Principles of Programming Language 52

Substitution

Example:
[x ↦ y z] (𝜆y. x y)

= [x ↦ y z] (λw. x w)
= λw. y z w

Alpha-conversion: Terms that differ only in the names of bound variables
are interchangeable in all contexts.

2022/3/9 Design Principles of Programming Language 53

Operational Semantics

2022/3/9 Design Principles of Programming Language 54

Summary
• What is lambda calculus for?
─ A core calculus for capturing language essential mechanisms
─ Simple but powerful

• Syntax
─ Function definition + function application
─ Binder, scope, free variables

• Operational semantics
─ Substitution
─ Evaluation strategies: normal order, call-by-name, call-by-value

2022/3/9 Design Principles of Programming Language 55

Homework
• Read through and understand Chapter 5.
• Do exercise 5.2.7， 5.3.6 in Chapter 5.

2022/3/9 Design Principles of Programming Language 56

