

编程语言的设计原理 Design Principles of Programming Languages

Zhenjiang Hu, Haiyan Zhao,

胡振江 赵海燕

Peking University, Spring, 2022

Chapter 6: Nameless Representation of Terms

Terms and Contexts
Shifting and Substitution

Bound Variables

 Recall: bound variables can be renamed, at any moment, to enable substitution:

$$[x \mapsto s]x = s$$

$$[x \mapsto s]y = y \qquad \text{if } y \neq x$$

$$[x \mapsto s](\lambda y.t_1) = \lambda y. [x \mapsto s]t_1 \qquad \text{if } y \neq x \text{ and } y \notin FV(s)$$

$$[x \mapsto s](t_1 t_2) = [x \mapsto s]t_1 [x \mapsto s]t_2$$

- Variable Representation
 - Represent variables symbolically, with variable renaming mechanism
 - Represent variables symbolically, with bound variables are all different
 - "Canonically" represent variables in a way such that renaming is unnecessary
 - No use of variables: combinatory logic

Terms and Contexts

Nameless Terms

- De Bruijin idea: Replacing named variables by natural numbers, where the number k stands for "the variable bound by the k'th enclosing λ ". e.g.,
 - $-\lambda x.x$ $\lambda.0$
 - $\lambda x. \lambda y. x (y x) \lambda. \lambda. 1 (0 1).$
- Definition [Terms]: Let \mathcal{T} be the smallest family of sets $\{\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \ldots\}$ such that
 - 1. $k \in \mathcal{T}_n$ whenever $0 \le k < n$;
 - 2. if $t_1 \in \mathcal{T}_n$ and n>0, then $\lambda . t_1 \in \mathcal{T}_{n-1}$;
 - 3. if $t_1 \in \mathcal{T}_n$ and $t_2 \in \mathcal{T}_n$, then $(t_1 t_2) \in \mathcal{T}_n$.
 - Note: \mathcal{T}_n are set of terms with at most n free variables, n-terms, numbered between 0 and n -1

Name Context

To deal with terms containing free variables

DEFINITION: Suppose x_0 through x_n are variable names from \mathcal{V} . The naming context $\Gamma = x_n, x_{n-1}, \ldots x_1, x_0$ assigns to each x_i the de Bruijn index i. Note that the rightmost variable in the sequence is given the index 0; this matches the way we count λ binders—from right to left—when converting a named term to nameless form. We write $dom(\Gamma)$ for the set $\{x_n, \ldots, x_0\}$ of variable names mentioned in Γ .

- e.g., $\Gamma = x \mapsto 4$; $y \mapsto 3$; $z \mapsto 2$; $a \mapsto 1$; $b \mapsto 0$, under this Γ , we have
 - -x(yz)

'?

4 (3 2)

 $-\lambda w. y w$

λ. 4 0

λw. λa. x

λ. λ. 6

Shifting and Substitution

How to define substitution $[k \mapsto s]$ t?

Shifting

• Under the naming context Γ : $x \mapsto 1$, $z \mapsto 2$

[
$$1 \mapsto 2 (\lambda. 0)$$
] $\lambda. 2 \rightarrow ?$
i.e., [$x \mapsto z (\lambda w. w)$] $\lambda y. x \rightarrow ?$

 an auxiliary operation: renumber the indices of the free variables in a term.

DEFINITION [SHIFTING]: The *d*-place shift of a term t above cutoff c, written $\uparrow_c^d(t)$, is defined as follows:

$$\uparrow_{c}^{d}(k) = \begin{cases} k & \text{if } k < c \\ k + d & \text{if } k \ge c \end{cases}$$

$$\uparrow_{c}^{d}(\lambda.t_{1}) = \lambda. \uparrow_{c+1}^{d}(t_{1})$$

$$\uparrow_{c}^{d}(t_{1}t_{2}) = \uparrow_{c}^{d}(t_{1}) \uparrow_{c}^{d}(t_{2})$$

We write $\uparrow^d(\mathsf{t})$ for $\uparrow^d_0(\mathsf{t})$.

Shifting

DEFINITION [SHIFTING]: The d-place shift of a term t above cutoff c, written $\uparrow_c^d(t)$, is defined as follows:

$$\uparrow_c^d(\mathbf{k}) = \begin{cases} \mathbf{k} & \text{if } k < c \\ \mathbf{k} + d & \text{if } k \ge c \end{cases}
\uparrow_c^d(\lambda.\mathbf{t}_1) = \lambda. \uparrow_{c+1}^d(\mathbf{t}_1)
\uparrow_c^d(\mathbf{t}_1 \mathbf{t}_2) = \uparrow_c^d(\mathbf{t}_1) \uparrow_c^d(\mathbf{t}_2)$$

We write $\uparrow^d(t)$ for $\uparrow^d_0(t)$.

- 1. What is $\uparrow^2 (\lambda.\lambda. 1 (0 2))$?
- 2. What is $\uparrow^2 (\lambda.01 (\lambda.012))$?

Substitution

DEFINITION [SUBSTITUTION]: The substitution of a term s for variable number j in a term t, written $[j \mapsto s]t$, is defined as follows:

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$

$$[j \mapsto s](\lambda.t_1) = \lambda. [j+1 \mapsto \uparrow^1(s)]t_1$$

$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1 [j \mapsto s]t_2)$$

Example

[
$$1 \mapsto 2 \ (\lambda. \ 0)$$
] $\lambda. \ 2 \longrightarrow \lambda. \ 3 \ (\lambda. \ 0)$
i.e., [$x \mapsto z \ (\lambda w. \ w)$] $\lambda y. \ x \longrightarrow \lambda y. \ z \ (\lambda w. \ w)$

Evaluation

To define the evaluation relation on nameless terms, the only thing
we need to change (i.e., the only place where variable names are
mentioned) is the beta-reduction rule (computation rules), while keep
the other rules identical to what as Figure 5-3.

(
$$\lambda x. t_{12}$$
) $t_2 \rightarrow [x \mapsto t_2]t_{12}$,

How to change the above rule for nameless representation?

Evaluation

(
$$\lambda x. t_{12}$$
) $t_2 \rightarrow [x \mapsto t_2]t_{12}$,

(
$$\lambda.t_{12}$$
) $v_2 \rightarrow \uparrow^{-1}([0 \mapsto \uparrow^1(v_2)]t_{12})$

• Example:

$$(\lambda.102)(\lambda.0) \rightarrow 0(\lambda.0)1$$

Homework

- Read Chapter 6.
- Do Exercise 6.2.5.
 - 6.2.5 EXERCISE [\star]: Convert the following uses of substitution to nameless form, assuming the global context is $\Gamma = a,b$, and calculate their results using the above definition. Do the answers correspond to the original definition of substitution on ordinary terms from §5.3?
 - 1. $[b \mapsto a] (b (\lambda x.\lambda y.b))$
 - 2. $[b \mapsto a (\lambda z.a)] (b (\lambda x.b))$
 - 3. $[b \mapsto a] (\lambda b. ba)$
 - 4. $[b \mapsto a] (\lambda a. b a)$