
编程语言的设计原理
Design Principles of

Programming Languages

Zhenjiang Hu, Haiyan Zhao,

胡振江 赵海燕

Peking University, Spring, 2022

Chapter 8:

Typed Arithmetic Expressions

Types
The Typing Relation

Safety = Progress + Preservation

Review: Arithmetic Expression - Syntax

Review: Arithmetic Expression - Evaluation Rules

Review: Arithmetic Expression - Evaluation Rules

Evaluation Results
• Values

• Get stuck
─ e.g, 𝑝𝑟𝑒𝑑 𝑓𝑎𝑙𝑠𝑒

Types of Terms
• Can we tell, without actually evaluating a term, that the term

evaluation will not get stuck?

• if we can distinguish two types of terms:
─ Nat: terms whose results will be a numeric value
─ Bool: terms whose results will be a Boolean value

• “a term t has type T” means that
t “obviously” (statically) evaluates to a value of T

─ if true then false else true has type Bool

─ pred (succ (pred (succ 0))) has type Nat

The Typing Relation

t : T

Types
• Values have two possible “shapes”: they are either booleans or

numbers.

Typing Rules

Typing Relation: Formal Definition
• Definition:

the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the
typing rules.

• A term t is typable (or well typed) if there is some T such that t : T.

Typing Derivation
• Every pair (t, T) in the typing relation can be justified by a derivation

tree built from instances of the inference rules.

• Proofs of properties about the typing relation often proceed by
induction on typing derivations.

• Statements are formal assertions about the typing of programs.
• Typing rules are implications between statements.
• Derivations are deductions based on typing rules.

Imprecision of Typing
• Like other static program analyses, type systems are generally

imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

Using this rule, we cannot assign a type to

even though this term will certainly evaluate to a number

Properties of

The Typing Relation

Inversion Lemma (Generation Lemma)
• Given a valid typing statement, it shows
─ how a proof of this statement could have been generated;
─ a recursive algorithm for calculating the types of terms.

Typechecking Algorithm

Canonical Forms
• Lemma:

Uniqueness of Types
• Theorem [Uniqueness of Types]:

Each term t has at most one type. i.e.,
if t is typable, then its type is unique.

• Note: later on, we may have a type system where a term may have
many types.

Safety

=
Progress + Preservation

Safety (Soundness)
• By safety, it means well-typed terms do not “go wrong”.

• By “go wrong”, it means reaching a “stuck state” that is not a final
value but where the evaluation rules do not tell what to do next.

Safety = Progress + Preservation
Well-typed terms do not get stuck

• Progress: A well-typed term is not stuck (either it is a value or it can take a
step according to the evaluation rules).

• Preservation: If a well-typed term takes a step of evaluation, then the
resulting term is also well typed.

Progress
• Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for

some T). Then either t is a value or else there is some t′ with t ⟶ t′.

Proof: By induction on a derivation of t : T.
─ case T-True: true : Bool OK?
─ case T-If: : t = if t1 then t2 else t3

t1 : Bool, t2 : T, t3 : T
-------------------------------- OK?
if t1 then t2 else t3 : T…

Preservation
• Theorem [Preservation]:

If t : T and t ⟶ t′, then t′ : T.
Proof: By induction on a derivation of t : T.
─ case T-True: t = true T = Bool true : Bool OK?
─ case T-If: t = if t1 then t2 else t3

t1 : Bool, t2 : T, t3 : T
--------------------------- OK?
if t1 then t2 else t3 : T

─ …

The preservation theorem is often called subject reduction property (or
subject evaluation property)

Recap: Type Systems
• Very successful example of a lightweight formal method
• big topic in PL research
• enabling technology for all sorts of other things, e.g., language-based

security
• the skeleton around which modern programming languages are

designed

Homework
• Read Chapter 8.
• Do Exercises 8.3.7

