RIEESANSITRIE
Design Principles of
Programming Languages

Zhenjiang Hu, Halyan Zhao,
AR e
Peking University, Spring, 2022




Chapter 8:
Typed Arithmetic Expressions

Types
The Typing Relation
Safety = Progress + Preservation



Review: Arithmetic Expression - Syntax

t

nv

true

false

1if t then t else t
O

succ t

pred t

iszero t

true
false
nv

0

SuccC nv

terms

constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value

numeric values
zero value
successor value




Review: Arithmetic Expression - Evaluation Rules

uyNI P

Ki
R
21987

-189%:

if true then t, else t3 — t- (E-IFTRUE)

if false then t, else t3 — tj (E-IFFALSE)
ty — t]

(E-IF)

1if t; then t, else t3 — 1if ti then to else t3



Review:

Arithmetic Expression - Evaluation Rules

t; — t]

succ t; — succ tj

pred O — O
pred (succ nvy) — nv;

t; — t]

pred t; — pred tj

iszero 0 — true

iszero (succ nvy;) — false

t; — t]

. - ;
1szero t; — 1szero t1

(E-Succ)

(E-PREDZERO)

(E-PrREDSUCC)

(E-PRED)

(E-ISZEROZERO)

(E-IszErOSuUCC)

(E-ISZERO)



Evaluation Results

 \alues
V p—
true
false
nv
nv ..—
0]
succ nv
o (et stuck

— e.g, pred false

values
true value
false value
numeric value

numeric values
zero value
successor value




Types of Terms

« Can we tell, without actually evaluating a term, that the term
evaluation will not get stuck?

* if we can distinguish two types of terms:

— Nat: terms whose results will be a numeric value

— Bool: terms whose results will be a Boolean value

* “atermt has type T” means that

t “obviously” (statically) evaluates to a value of T
— if true then false else true has type Bool

— pred (succ (pred (succ 0))) has type Nat



The Typing Relation
t:7T



Types

* Values have two possible “shapes”: they are either booleans or
numbers.

T = types
Bool type of booleans
Nat type of numbers



Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool to 1 T t3 1 T
1 2 3 (T-Ir)
1f t; then to else t3 : T
0 : Nat (T-ZERO)
t1 : Nat
: (T-Succ)
succ tq : Nat
t1 : Nat
: (T-PRED)
pred t; : Nat
t1 : Nat
1 (T-ISZERO)

1szero ti : Bool



Typing Relation: Formal Definition

* Definition:
the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the
typing rules.

« Aterm tis typable (or well typed) if there is some T such that{: T.



Typing Derivation

« Every pair (t, T) in the typing relation can be justified by a derivation
tree built from instances of the inference rules.

T-ZERO T-ZERO

O : Nat O . Nat

T-1ISZERO T-7ZERO T-PRED
iszero O : Bool O : Nat pred O ! Nat

T-1F

if iszero O then O else pred O : Nat

* Proofs of properties about the typing relation often proceed by
iInduction on typing derivations.

« Statements are formal assertions about the typing of programs.
* Typing rules are implications between statements.
* Derivations are deductions based on typing rules.



Imprecision of Typing

» Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool to ¢ T tg3 ¢ T
('T-1IF)

1f t1{ then to else t3 : T

Using this rule, we cannot assign a type to

1f true then 0 else false

even though this term will certainly evaluate to a number



Properties of
The Typing Relation



Inversion Lemma (Generation Lemma)

« Given a valid typing statement, it shows
— how a proof of this statement could have been generated;
— a recursive algorithm for calculating the types of terms.
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t; then to else t3 : R, then t1 : Bool, t> : R, and
t3 . R.
fO : R, then R = Nat.

f succ t; : R, then R = Nat and t{ : Nat.
f pred t; : R, then R = Nat and t; : Nat.

N o A

f iszero t1 : R, then R = Bool and t; : Nat.



Typechecking Algorithm

typeof (t) = if t = true then Bool
else if t = false then Bool
else if t = if tl then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"
else if t = O then Nat
else if t = succ tl then
let T1 = typeof(tl) in
if T1 = Nat then Nat else "not typable"
else if t = pred tl1 then
let T1 = typeof(tl) in
if T1 = Nat then Nat else "not typable"
else if t = iszero tl then
let T1 = typeof(tl) in
if T1 = Nat then Bool else "not typable"



Canonical Forms

e Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.



Uniqueness of Types

 Theorem [Uniqueness of Types]:
Each term { has at most one type. I.e.,
if tis typable, then its type is unique.

* Note: later on, we may have a type system where a term may have
many types.



Safety

Progress + Preservation



Safety (Soundness)

« By safety, it means well-typed terms do not “go wrong”.

* By “go wrong’, it means reaching a “stuck state” that is not a final
value but where the evaluation rules do not tell what to do next.



Safety = Progress + Preservation

Well-typed terms do not get stuck

e Progress: A well-typed term is not stuck (either it is a value or it can take a
step according to the evaluation rules).

e Preservation: If a well-typed term takes a step of evaluation, then the
resulting term is also well typed.



Progress

 Theorem [Progress]. Suppose t is a well-typed term (that is, t : T for
some T). Then either t is a value or else there is some t' witht — t'.

Proof. By induction on a derivation of t : T.

— case T-True: true : Bool OK?

— case T-If:: t=ift, thent, else t;
t,:Bool, t,: 1, t3:T

-------------------------------- OK?
ift, thent, else t; : T...



Preservation

 Theorem [Preservation]:
Ift: Tandt — 1t thent :T.
Proof. By induction on a derivation of t : T.
— case T-True: t=true T =Bool true : Bool OK?
— case T-If: t=ift,thent, elset,
t1:Bool,12: T,13: T

ift1thent2elset3: T

The preservation theorem is often called subject reduction property (or
subject evaluation property)



Recap: Type Systems

* Very successful example of a lightweight formal method
 big topic in PL research

« enabling technology for all sorts of other things, e.g., language-based
security

* the skeleton around which modern programming languages are
designed



Homework

 Read Chapter 8.
Do Exercises 8.3.7



