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Recap

The Typing Relation
t:7T



Types

» Values have two possible “shapes”: they are either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers



Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool tr ¢ T t3 ¢ T
1 2 3 (T-Ir)
1f t; then to else t3 : T
0 : Nat (T-ZERO)
t1 : Nat
1 ('T-Succ)
succ ti : Nat
t1 : Nat
: (T-PRED)
pred t; : Nat
t1 : Nat
1 (T-ISZERO)

1szero ti : Bool



Typing Relation: Formal Definition

» Definition:
the typing relation for arithmetic expressions is the smallest binary relation
between terms and types satisfying all instances of the typing rules.

« Aterm tis typable (or well typed) if there is some T such that f: T.



Chapter 9:
Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability



The simply typed lambda-calculus

* The system we are about to define is commonly called the simply
typed lambda-calculus, A_,, for short.

* Unlike the untyped lambda-calculus, the “pure” form of A_, (with no
primitive values or operations) is not very interesting; to talk about A_,,
we always begin with some set of “base types.”

— S0, strictly speaking, there are many variants of A_, , depending on
the choice of base types.

— For now, we’ll work with a variant constructed over the booleans.
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Function Types

e T1— T2

— classifying functions that expect arguments of type T1 and return results of
type T2.
« the type constructor — is right-associative, e.q.,

T1— T2 — T3 standsforTi — (T2 — T3)

 Let’s consider Booleans with lambda calculus

T .= types :
Bool type of booleans
T—T type of functions
« Examples
— Bool — Bool

— (Bool — Bool) — (Bool — Bool)



Typing rules

uyNI P

|
@.:K o
158>

.189%:

2022/3/9

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool tr ¢ T t3 ¢ T
1 2 3 (T-I¢)
1f t; then to else t3 : T
77
(T—Ass)

AX: Tl' tz . T1—> T2
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Syntax

R
I G .
AX:Tit
F—

VAR R ;

T = _........ )
T-T
g
: %)
Ix:T
Assume:

terms:
variable
abstraction
application

values:
abstraction value

types:
type of functions

contexts:
empty context i
term variable binding

Evaluation
t] — t)

1t — t]

ty — t)

x:TeTl

I'=x:T

r - )\X.Tl.tz

'ty :T11—-To2

: T1—>T2

't

s T11

(T-Aprp)

'ty to @ Ty

all variables in I are different via renaming/internal



A

* \What is the relation between these two statements?
1.t: T
2. t: T
these two relations are completely different things.

* We are dealing with several different small programming languages,
each with jts own typing relation (between terms in that language
and types in that language)

— for the simple language of numbers and booleans, typing is a
binary relation between terms and types (t: T).

— for A_,, typing is a ternary relation between contexts, terms, and
types (' - t: T, - t:T ifl =0Q)



Type Derivation Tree

x:Bool € x:Bool
T-VAR

X:Bool - x : Bool
T-ABS T-TRUE
— AXx:Bool.x : Bool—Bool — true : Bool

T-APP
— (Ax:Bool.x) true : Bool



Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms

Safety: Progress + Preservation
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1. If I = true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. f T'=if t; then to else t3 : R, then ~ t7 : Bool and
[ - to.t3 : R.

A If =% : R, then x:R e .

5. f I'= Ax:Ty.t> : R, then R = T;{—R> for some R, with
[, x:T{F t> : Ro.

6. If =1ty to : R, then there is some type Ti1 such that
[~t1 : Ty1—Rand N+ to @ Tq1.

Exercise: |Isthere any context [ andtype T suchthat I Fxx: T?



Uniqueness of Types

 Theorem [Uniqueness of Types].
In a given typing context [, aterm { (with free variables all in the
domain of [ ) has at most one type.
Moreover, there is just one derivation of this typing built from the
inference rules that generate the typing relation.



Progress

 Theorem [Progress].

Suppose tis a closed, well-typed term. Then either t is a value or else
there is some t' witht — t'.
Proof. By induction on typing derivations.

— The cases for Boolean constants and conditions are the same as before.
— The variable case is trivial (cannot occur because t is closed).

— The abstraction case is immediate, since abstractions are values.

— The case for application, by induction.

* Closed: No free variable
* Well-typed: +t:Tforsome T



Preservation

* Theorem [Preservation]:
fl'-t: Tandt —t', thenl -t :T.
Proof. By induction on typing derivations.

* Substitution Lemma [Preservation of types under substitution]:
f ILx:SkHtT andl Fs: S,
Then [ - [x— s]t:T.
Proof. By induction on derivationof [, x: S -t: T
cases on the possible shape of t.



The Curry-Howard Correspondence

* A connection between logic and type theory

LOGIC PROGRAMMING LANGUAGES
propositions types

proposition P O Q type P—Q

proposition P A Q type Px Q (see §11.6)
proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)



Erasure and Typability

* Types are used during type checking, but do not need to appear in
the compiled form of the program.

 Terms in A_, can be transformed to terms of the untyped lambda-
calculus simply by erasing type annotations on lambda-abstractions.

erase(x) = X
erase(Ax:T1. t2) = Ax. erase(ty)
erase(t1 to) = erase(ty) erase(ty)



Erasure and Typability

« Conversely, an untyped A-term m is said to be typable if there is some
term t in the simply typed A -calculus, some type T, and some context
[ such that

erase(t)=m and I —t: T
This process is called type reconstruction or type inference.

THEOREM:

1. If t — t’ under the typed evaluation relation, then erase(t) — erase(t’).

typed term t’ such that t — "t and erase(t’) = n'. 0

untyped



Curry-Style vs. Church-Style

« Curry Style
— Syntax - Semantics - Typing
— Semantics is defined on untyped terms
— Often used for implicit typed languages

* Church Style
— Syntax = Typing = Semantics
— Semantics is defined only on well-typed terms
— Often used for explicit typed languages



Homework

« Read through Chapter 9.
* Do Exercise 9.3.9.

THEOREM [PRESERVATION]: f 't : Tandt — t’,thenl ~ t’ : T. O

Proof- EXERCISE [RECOMMENDED, x*x*]|. The structure is very similar to the
proof of the type preservation theorem for arithmetic expressions (8.3.3),
except for the use of the substitution lemma. O



