

编程语言的设计原理 Design Principles of Programming Languages

Zhenjiang Hu, Haiyan Zhao,

胡振江 赵海燕

Peking University, Spring, 2022

The Typing Relation t: T

Types

• Values have two possible "shapes": they are either booleans or numbers.

types type of booleans type of numbers

Typing Rules


```
(T-True)
          true : Bool
                                         (T-False)
         false: Bool
t_1: Bool t_2: T t_3: T
                                             (T-IF)
 if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>: T
                                         (T-Zero)
             0 : Nat
            t_1: Nat
                                         (T-Succ)
         succ t_1 : Nat
            t_1: Nat
                                         (T-Pred)
         pred t<sub>1</sub>: Nat
            t_1: Nat
                                       (T-IsZero)
       iszero t<sub>1</sub>: Bool
```

Typing Relation: Formal Definition

Definition:

the *typing relation* for arithmetic expressions is the *smallest binary relation* between *terms* and *types* satisfying **all instances** of the typing rules.

A term t is typable (or well typed) if there is some T such that t: T.

Chapter 9: Simply Typed Lambda-Calculus

Function Types

The Typing Relation

Properties of Typing

The Curry-Howard Correspondence

Erasure and Typability

The simply typed lambda-calculus

- The system we are about to define is commonly called the *simply* typed lambda-calculus, λ_{\rightarrow} , for short.
- Unlike the *untyped lambda-calculus*, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting; to talk about λ_{\rightarrow} , we always begin with some set of "base types."
 - So, strictly speaking, there are many variants of λ_→, depending on the choice of base types.
 - For now, we'll work with a variant constructed over the booleans.

Function Types

- $T_1 \longrightarrow T_2$
 - classifying functions that expect arguments of type T1 and return results of type T2.
- the type constructor \rightarrow is right-associative, e.g., $T_1 \rightarrow T_2 \rightarrow T_3$ stands for $T_1 \rightarrow (T_2 \rightarrow T_3)$
- Let's consider Booleans with lambda calculus

```
T ::=

Bool type of booleans

T \rightarrow T type of functions
```

- Examples
 - Bool \rightarrow Bool
 - $(Bool \rightarrow Bool) \rightarrow (Bool \rightarrow Bool)$

Typing rules

$$\frac{t_1: Bool}{if t_1 then t_2 else t_3: T}$$
 (T-IF)

$$\frac{???}{\lambda x: T_1. t_2: T_1 \rightarrow T_2} \qquad (T-A_{BS})$$

$\lambda_{ ightarrow}$

Syntax

t ::=

X λx:T.t tt terms: variable abstraction application

values: abstraction value

types: type of functions

 Γ ::= contexts: \varnothing empty context Γ , x:T term variable binding

Evaluation

 $t \longrightarrow t'$

$$\frac{\mathsf{t}_1 \longrightarrow \mathsf{t}_1'}{\mathsf{t}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{t}_1' \; \mathsf{t}_2} \tag{E-APP1}$$

$$\frac{\mathsf{t}_2 \longrightarrow \mathsf{t}_2'}{\mathsf{v}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{v}_1 \; \mathsf{t}_2'} \tag{E-APP2}$$

 $(\lambda x : T_{11} . t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$ (E-APPABS)

Typing

 $\Gamma \vdash \mathsf{t} : \mathsf{T}$

$$\frac{\mathbf{x}:\mathsf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathsf{T}}\tag{T-VAR}$$

$$\frac{\Gamma, x: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x: T_1 \cdot t_2 : T_1 \rightarrow T_2}$$
 (T-ABS)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_{11} \rightarrow \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 : \mathsf{T}_{12}} \qquad (T-APP)$$

Assume:

all variables in Γ are different via renaming/internal

What is the relation between these two statements?

```
1. t : T
2. ⊢ t : T
```

these two relations are completely different things.

- We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language)
 - for the simple language of numbers and booleans, typing is a binary relation between terms and types (t : T).
 - for λ_→, typing is a ternary relation between contexts, terms, and types (Γ ⊢ t : T, ⊢ t : T if Γ = Ø)

Type Derivation Tree


```
\frac{x:Bool \in x:Bool}{x:Bool \vdash x:Bool} \xrightarrow{T-VAR} \frac{x:Bool \vdash x:Bool}{T-ABS} \xrightarrow{T-TRUE} \frac{T-TRUE}{T-APP} 
\vdash (\lambda x:Bool.x) \text{ true : Bool}
```


Properties of Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation

Inversion Lemma

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool and } \Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x x$: T?

Uniqueness of Types

• Theorem [Uniqueness of Types]:

In a *given typing context* Γ , a term t (with free variables all in the domain of Γ) has at most one type.

Moreover, there is just *one derivation* of this typing built from the *inference rules* that generate the typing relation.

Progress

• **Theorem** [Progress]:

Suppose t is a *closed, well-typed term*. Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations.

- The cases for Boolean constants and conditions are the same as before.
- The variable case is trivial (cannot occur because t is closed).
- The abstraction case is immediate, since abstractions are values.
- The case for application, by induction.
- Closed: No free variable
- *Well-typed*: ⊢ t : T for some T

Preservation

Theorem [Preservation]:

```
If \Gamma \vdash t: T and t \longrightarrow t', then \Gamma \vdash t':T.
```

Proof: By induction on typing derivations.

• Substitution Lemma [Preservation of types under substitution]:

```
if \Gamma, x: S \vdash t: T and \Gamma \vdash s: S,
Then \Gamma \vdash [x \mapsto s] t: T.
```

Proof: By induction on derivation of Γ , x: S ⊢ t : T cases on the possible *shape of t*.

The Curry-Howard Correspondence

A connection between logic and type theory

Logic	PROGRAMMING LANGUAGES
propositions	types
proposition $P \supset Q$	type P→Q
proposition $P \wedge Q$	type $P \times Q$ (see §11.6)
proof of proposition P	term t of type P
proposition P is provable	type P is inhabited (by some term)

Erasure and Typability

- Types are used during type checking, but do not need to appear in the compiled form of the program.
- Terms in λ_→ can be transformed to terms of the untyped lambdacalculus simply by erasing type annotations on lambda-abstractions.

```
erase(x) = x

erase(\lambda x: T_1. t_2) = \lambda x. erase(t_2)

erase(t_1 t_2) = erase(t_1) erase(t_2)
```

Erasure and Typability

Conversely, an untyped λ-term m is said to be typable if there is some term t in the simply typed λ-calculus, some type T, and some context Such that

erase(t) = m and
$$\Gamma \vdash t$$
: T

This process is called *type reconstruction* or *type inference*.

THEOREM:

- 1. If $t \to t'$ under the typed evaluation relation, then $erase(t) \to erase(t')$.
- 2. If $erase(t) \rightarrow m'$ under the typed evaluation relation, then there is a simply typed term t' such that $t \rightarrow t'$ and erase(t') = m'.

Curry-Style vs. Church-Style

- Curry Style
 - Syntax → Semantics → Typing
 - Semantics is defined on untyped terms
 - Often used for implicit typed languages

- Church Style
 - Syntax → Typing → Semantics
 - Semantics is defined only on well-typed terms
 - Often used for explicit typed languages

Homework

- Read through Chapter 9.
- Do Exercise 9.3.9.

THEOREM [PRESERVATION]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: EXERCISE [RECOMMENDED, $\star\star\star$]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma.