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The Typing Relation 

t : T

Recap



Types 
• Values have two possible “shapes”: they are either booleans or numbers.



Typing Rules



Typing Relation: Formal Definition
• Definition:     

the typing relation for arithmetic expressions is the smallest binary relation 
between terms and types satisfying all instances of the typing rules.

• A term t is typable (or well typed) if there is some T such that t : T. 



Chapter 9: 

Simply Typed Lambda-Calculus
Function Types

The Typing Relation
Properties of Typing

The Curry-Howard Correspondence
Erasure and Typability



The simply typed lambda-calculus
• The system we are about to define is commonly called the simply 

typed lambda-calculus,  λ→，for short.
• Unlike the untyped lambda-calculus, the “pure” form of λ→ (with no 

primitive values or operations) is not very interesting; to talk about λ→, 
we always begin with some set of “base types.”
─ So, strictly speaking, there are many variants of λ→ , depending on 

the choice of base types.
─ For now, we’ll work with a variant constructed over the booleans.
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Function Types 
• 𝑇1 ⟶ 𝑇2

─ classifying functions that expect arguments of type T1 and return results of 
type T2. 

• the type constructor ⟶ is right-associative, e.g., 
𝑇1 ⟶ 𝑇2 ⟶ 𝑇3 stands for 𝑇1 ⟶ (𝑇2 ⟶ 𝑇3)

• Let’s consider Booleans with lambda calculus
T ::=   types :

Bool type of booleans
T ⟶ T type of functions

• Examples
─ Bool ⟶ Bool
─ (Bool ⟶ Bool) ⟶ (Bool ⟶ Bool) 



Typing rules
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𝛌→

Assume: 
all variables in Γ are different via renaming/internal  



𝛌→
• What is the relation between these two statements?
1. t : T
2. ⊢ t : T
these two relations are completely different things. 

• We are dealing with several different small programming languages, 
each with its own typing relation (between terms in that language 
and types in that language)
─ for the simple language of numbers and booleans, typing is a 

binary relation between terms and types (t : T).
─ for 𝛌→,  typing is a ternary relation between contexts, terms, and 

types (Γ ⊢ t : T,   ⊢ t : T  if Γ = ∅)



Type Derivation Tree



Properties of  Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation



Inversion Lemma

Exercise:    Is there any context  Γ and type T such that   Γ  ⊢ x x: T?



Uniqueness of Types

• Theorem [Uniqueness of Types]: 
In a given typing context Γ, a term t (with free variables all in the 
domain of Γ )  has at most one type.   
Moreover, there is just one derivation of this typing built from the 
inference rules that generate the typing relation. 



Progress
• Theorem [Progress]: 

Suppose t is a closed, well-typed term. Then either t is a value or else 
there is some t′ with t → t′. 
Proof:  By induction on typing derivations. 
─ The cases for Boolean constants and conditions are the same as before. 
─ The variable case is trivial (cannot occur because t is closed). 
─ The abstraction case is immediate, since abstractions are values.
─ The case for application，by induction.

• Closed: No free variable
• Well-typed:    ⊢ t : T for some T



Preservation

• Theorem [Preservation]: 
If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T. 
Proof:  By induction on typing derivations. 

• Substitution Lemma [Preservation of types under substitution]: 
if  Γ, x: S ⊢ t: T  and Γ ⊢ s: S, 
Then  Γ ⊢ [x↦ s] t: T. 
Proof:  By induction on derivation of Γ, x: S ⊢ t : T

cases on the possible shape of t.



The Curry-Howard Correspondence 

• A connection between logic and type theory



Erasure and Typability

• Types are used during type checking, but do not need to appear in 
the compiled form of the program. 

• Terms in 𝛌→ can be transformed to terms of the untyped lambda-
calculus simply by erasing type annotations on lambda-abstractions.



Erasure and Typability

• Conversely, an untyped λ-term m is said to be typable if there is some 
term t in the simply typed λ -calculus, some type T, and some context  
Γ such that 

erase(t) = m  and  Γ ⊢ t: T 
This process is called type reconstruction or type inference.

untyped



Curry-Style vs. Church-Style 
• Curry Style
─ Syntax à Semantics à Typing
─ Semantics is defined on untyped terms
─ Often used for implicit typed languages

• Church Style
─ Syntax à Typing à Semantics
─ Semantics is defined only on well-typed terms
─ Often used for explicit typed languages



Homework
• Read through Chapter 9.
• Do Exercise 9.3.9.


