
编程语言的设计原理
Design Principles of

Programming Languages

Zhenjiang Hu, Haiyan Zhao,

胡振江 赵海燕

Peking University, Spring, 2022

The Typing Relation

t : T

Recap

Types
• Values have two possible “shapes”: they are either booleans or numbers.

Typing Rules

Typing Relation: Formal Definition
• Definition:

the typing relation for arithmetic expressions is the smallest binary relation
between terms and types satisfying all instances of the typing rules.

• A term t is typable (or well typed) if there is some T such that t : T.

Chapter 9:

Simply Typed Lambda-Calculus
Function Types

The Typing Relation
Properties of Typing

The Curry-Howard Correspondence
Erasure and Typability

The simply typed lambda-calculus
• The system we are about to define is commonly called the simply

typed lambda-calculus, λ→，for short.
• Unlike the untyped lambda-calculus, the “pure” form of λ→ (with no

primitive values or operations) is not very interesting; to talk about λ→,
we always begin with some set of “base types.”
─ So, strictly speaking, there are many variants of λ→ , depending on

the choice of base types.
─ For now, we’ll work with a variant constructed over the booleans.

2022/3/9 Design Principles of Programming Languages 7

Function Types
• 𝑇1 ⟶ 𝑇2

─ classifying functions that expect arguments of type T1 and return results of
type T2.

• the type constructor ⟶ is right-associative, e.g.,
𝑇1 ⟶ 𝑇2 ⟶ 𝑇3 stands for 𝑇1 ⟶ (𝑇2 ⟶ 𝑇3)

• Let’s consider Booleans with lambda calculus
T ::= types :

Bool type of booleans
T ⟶ T type of functions

• Examples
─ Bool ⟶ Bool
─ (Bool ⟶ Bool) ⟶ (Bool ⟶ Bool)

Typing rules

2022/3/9 Design Principles of Programming Languages 9

???
"#: %!. '" ∶ %!⟶%"

(T−ABS）

𝛌→

Assume:
all variables in Γ are different via renaming/internal

𝛌→
• What is the relation between these two statements?
1. t : T
2. ⊢ t : T
these two relations are completely different things.

• We are dealing with several different small programming languages,
each with its own typing relation (between terms in that language
and types in that language)
─ for the simple language of numbers and booleans, typing is a

binary relation between terms and types (t : T).
─ for 𝛌→, typing is a ternary relation between contexts, terms, and

types (Γ ⊢ t : T, ⊢ t : T if Γ = ∅)

Type Derivation Tree

Properties of Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation

Inversion Lemma

Exercise: Is there any context Γ and type T such that Γ ⊢ x x: T?

Uniqueness of Types

• Theorem [Uniqueness of Types]:
In a given typing context Γ, a term t (with free variables all in the
domain of Γ) has at most one type.
Moreover, there is just one derivation of this typing built from the
inference rules that generate the typing relation.

Progress
• Theorem [Progress]:

Suppose t is a closed, well-typed term. Then either t is a value or else
there is some t′ with t → t′.
Proof: By induction on typing derivations.
─ The cases for Boolean constants and conditions are the same as before.
─ The variable case is trivial (cannot occur because t is closed).
─ The abstraction case is immediate, since abstractions are values.
─ The case for application，by induction.

• Closed: No free variable
• Well-typed: ⊢ t : T for some T

Preservation

• Theorem [Preservation]:
If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T.
Proof: By induction on typing derivations.

• Substitution Lemma [Preservation of types under substitution]:
if Γ, x: S ⊢ t: T and Γ ⊢ s: S,
Then Γ ⊢ [x↦ s] t: T.
Proof: By induction on derivation of Γ, x: S ⊢ t : T

cases on the possible shape of t.

The Curry-Howard Correspondence

• A connection between logic and type theory

Erasure and Typability

• Types are used during type checking, but do not need to appear in
the compiled form of the program.

• Terms in 𝛌→ can be transformed to terms of the untyped lambda-
calculus simply by erasing type annotations on lambda-abstractions.

Erasure and Typability

• Conversely, an untyped λ-term m is said to be typable if there is some
term t in the simply typed λ -calculus, some type T, and some context
Γ such that

erase(t) = m and Γ ⊢ t: T
This process is called type reconstruction or type inference.

untyped

Curry-Style vs. Church-Style
• Curry Style
─ Syntax à Semantics à Typing
─ Semantics is defined on untyped terms
─ Often used for implicit typed languages

• Church Style
─ Syntax à Typing à Semantics
─ Semantics is defined only on well-typed terms
─ Often used for explicit typed languages

Homework
• Read through Chapter 9.
• Do Exercise 9.3.9.

