
A Lightweight Data Sharing System Based on Bidirectional
Transformations

Adrien Duchêne
University of Namur
Namur, Belgium

adrien.duchene@student.unamur.be

Hugues Marchal
University of Namur
Namur, Belgium

hugues.marchal@student.unamur.be

Zhenjiang Hu
National Institute of Informatics

Tokyo, Japan
hu@nii.ac.jp

Pierre-Yves Schobbens
University of Namur
Namur, Belgium

pierre-yves.schobbens@unamur.be

ABSTRACT
Although the data sharing and synchronizing problems have been
raised many years ago, they remain major issues in the database
community. Still, some tools are provided to end-users in order to
answer some of their needs. Yet, those platforms are most likely
very complicated to handle notably because they ask the user to
have verymuch knowledge, the user sometimes being the developer.
Also, most of those systems do not really insure data consistency.
Our approach based on bidirectional transformations (BXs) resolves
collaboration between companies having their own data structure
in an easier way, guaranteeing data consistency thanks to BXs. All
this means that the user does not need to know databases structure
other than his and the shared mappings, and will also never be
asked to use pure code or database knowledge, limiting then the
complexity. In addition to this, the system profits the bidirectional
transformations properties to authorize or not editing the shared
data. The bidirectional functions coded in BiGUL have indeed the
power to grant or not any other user in the sharing group to edit
the data. Moreover, the system is extensible in the way that the user
can easily join a sharing group, after providing to the bidirectional
functions a GLAV mapping table matching his local structure with
the shared one.

CCS CONCEPTS
• Information systems→ Data exchange;

KEYWORDS
Data sharing, bidirectional transformations, BiGUL, databases, light-
weight selective data sharing system.
ACM Reference Format:
AdrienDuchêne, HuguesMarchal, ZhenjiangHu, and Pierre-Yves Schobbens.
2018. A Lightweight Data Sharing System Based on Bidirectional Transfor-
mations. In Proceedings of 2nd International Conference on the Art, Science,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3191722

and Engineering of Programming (<Programming’18> Companion). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3191697.3191722

1 INTRODUCTION
Considering two companies close to each other due to common
research field, it is possible that they may want to share some
of their data. Yet, the two companies might be different in the
way they operate, for storing data notably. Because of this, the
structure of the database is unlikely to be the same, even though
it may be related. Despite all those constraints, they still want to
be able to share relevant and consistent data without having to
know every technical aspect of the sharing process, including each
other’s structures.

This problem of sharing data between companies or even among
them has been raised many years ago and has already been an-
swered in some way such as the Hyperion Project [2], ORCHESTRA
[5] and PeerCSDB [11], for example. Yet, most platforms are not
very user-friendly, either by showing so much information to the
user or by asking him to know how to code or how all the databases
are structured. Also, most of those platforms cannot really guaran-
tee the consistency of the data they share. Still, this last concern has
already been taken into account, notably by the "Relational Lenses"
[3] platform, using bidirectional properties. Nevertheless, this last
approach remains quite difficult to handle, as mentioned before.

In this paper, we propose a user-friendly lightweight system
based on bidirectional transformations [10] that can consistently
manage the data sharing process. We consider the system light-
weight thanks to the small amount of code needed to implement
all the features and because it does not need all the "databases
functions" used in the "Relational Lenses". Indeed, our system does
neither need the "join" function nor the proofs of well-behaveness
of BiGUL. The system provides an interface limiting the needed
knowledge and enhancing its easiness. In this case, the user will
neither be directly drown inside the complicated database nor be
coding its way to share the data, as the roles of the user and the
developer are completely distinct. In our system, once the data
to share has been easily determined, the bidirectional functions
take care of concretely sharing it in background. The following
summarize the three distinguished features of our system.

• Our system being based on BXs and coded in BiGUL [6, 8, 9],
a bidirectional language, its well-behaveness is achieved for
free. Indeed, bidirectionality is notably used to enhance the

42

https://doi.org/10.1145/3191697.3191722
https://doi.org/10.1145/3191697.3191722

<Programming’18> Companion, April 9–12, 2018, Nice, France A. Duchêne, H. Marchal, Z. Hu, P-Y. Schobbens

insurance of consistent propagation, strong integrity and
update of the data thanks to its well-behaveness properties.

• Our system uses the authorization property provided by the
bidirectional transformations themselves. With such prop-
erty, the system is able to authorize or not the propagation
of updates depending on the will of the user who originally
possessed the data. The data is then respectively writable or
read-only.

• Our system is extensible. Indeed, it has been conceived in a
way that a new user can easily join the group sharing data.
The newcomer just needs to provide the BiGUL functions a
GLAVmapping table (Global-Local-As-View) [7] matching his
local format to the shared one. When that is done, the system
uses these BiGUL functions to retrieve and later update the
shared content, if authorized.

This paper is organized as follows. Section 2 gives a technical and
user perspective of the system, while Section 3 explains a concrete
example of the usage of the system. Finally, conclusion and future
work can be found in Section 4.

2 LIGHTWEIGHT SELECTIVE DATA
SHARING SYSTEM

First, the system is described in the end-user point of view, showing
what the user needs to do in order to share data. Second, a more
technical perspective is given, describing in the large the back-
ground aspects of the system. Thus, the front-end of the blackbox
system is described in the user perspective while the back-end is in
the technical perspective. It is important to note that the system has
been developed in Haskell and obviously BiGUL, using a MySQL
server [1]. The implementation is available at [4].

2.1 User Perspective of the System
As previously mentioned, the system only asks the user essential
information in an understandable way, without using specific code
or notations, for example.

At the first use of the system, it is mandatory for the user to
use the "setup" feature provided. He is only asked which database

Figure 1: The user interface of the system to push data

he wants to use for data sharing. After verifying that the mapping
table exists in the database, the system displays that the setup is
complete. Note that the system is configured using a setup file
which is easily editable. It notably contains access to the database.

The user can now start the sharing process. The system then
asks him which database he wants to use and whether he wants to
push or pull the data on or from the network.

In the case of a push, the list of tables inside the database is shown
so that the user can choose one of them. After, all the columns of
the selected table are displayed, and again, the user needs to choose
which ones he wants to share with others. Then, he needs to provide
the column on which the selection condition is applied and the
condition itself. Concerning the condition, the user only writes
the comparison operator and value, as shown in Figure 1. Then,
he is asked whether he wants the data to be editable or not. He
can answer "T" (True) for the data to be writable and "F" (False) for
read-only. Finally, the user is asked to confirm that the data to share
is the one displayed on the screen. If he accepts, the system then
automatically shares the data using bidirectional transformations
and restarts the procedure to push data, displaying the list of tables.
Note that the user is able to exit the system by typing ":q" whenever
after the list of tables is displayed.

To receive shared data, the user needs to choose "pull" instead
of "push". He is then requested to enter some keys provided by
other users, representing the data on the network. After entering
those keys, the system, based on bidirectional transformations takes
care of the rest, even putting the data back in database, including
updating existing data. Putting back in database and updating are
yet conditioned by the existence of relations in the table mapping
the shared format to the local one. If some mappings are not defined
in the GLAV mapping table, depending on the configuration file,
the user will either be asked to give a match, or the match will be
automatically given by the system.

2.2 Technical Overview of the System
To better understand, this section is explained in a top-down ap-
proach, shown in Figure 2, pushing the data on the network. There-
fore, first comes the extraction of data from the database. In order
to do so, the user is asked to give all the input stated in the previous
section.

Note that the system queries the database during the "input
process" to display the needed information. Yet, the data itself is only
retrieved when all the input has been entered. It is then given to the
BiGUL function where the data is consistently transformed so that it
contains the authorization boolean entered by the user. This BiGUL
function also selects the columns and rows from the retrieved data,
obviously following the user input. The selection of the columns is
coded so that the view is set to contain only the selected columns of
the source. Also note that as the function is bidirectional, an updated
source can be put by adding the unshared columns to the source.
The rows are selected by applying the condition given by the user
to each row in the source. When it is satisfied, the row in question is
directly set in the view. This function being bidirectional, to update
the source from the view, the condition is set on the identifier of
the row. This therefore allows to add new rows to the source.

43

A Lightweight Data Sharing System Based on Bidirectional ... <Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 2: Global schema of the system

After the selection, the tables are matched to a "universal for-
mat" significant only to the group of people sharing this data. This
provides a way for the user to only know what is his data structure
and what is happening inside of it, without even knowing a single
column of the others’ database. By using this "universal format" via
mapping tables and bidirectional transformations, the guarantee of
consistency is still preserved and the system is greatly simplified
for the user.

The BiGUL function caring for the conversion takes the mapping
table as parameter and for every row in the source, consistently
changes the name of the identifier to form the view. The reverse
operation is clearly possible. It is also important to note that the
names of the columns and table are translated too, using the same
BiGUL function. As the authorization boolean has been included
in the data, the BiGUL function is coded so that only the writable
content satisfying the condition is pushed on the network. When
the data is pulled form the network, as all the operations stated are
executed in the reverse order, the boolean cannot be modified by
the user, guaranteeing the respect of the authorizations.

When the content has been converted to the universal data, it
can be sent on the peer-to-peer network, used mainly for the time-
shared storage property. The data is then always available and
retrievable by its representative keys. Those keys are useful for the
network propagation protocol, Chord [12], because they improve
the complexity of the peer-to-peer protocol thanks to consistent
hashing.

Finally, it is important to remember that most of the system is
coded in BiGUL, so functions are meant to do round-trip modi-
fications. In other words, most functions, even though only one
implementation exists, can be used for both sending and receiving
data. In this case, the procedure is applied in the exact opposite
order, from the network propagation to the insertion or update
of the database, passing by the matching of "universal format" to
the local one and the reconciliation of shared data to the tables,
as Figure 2 suggests. A critical aspect of the system is its well-
behaveness, thanks to the bidirectional transformations. Yet, the
behavioral correctness of the functions still needs to be proven. Our

system establishes this correctness through experiments instead of
the Hoare logic [8] which takes significantly more effort.

3 CASE STUDY
This section presents a concrete use case of the system. Let us say,
for example, that two airlines, namely A and B, recently merged
because A company bought B company to have two different ranges
of flights. The two companies continue to operate separately, but
want to share data. Furthermore, a third company C is specialized
in statistics, notably about flights delays depending on departure
time. Lately, C has been very interested in the delays of flights
leaving Tokyo and then asks A to share its information, namely the
departure city and time, and the delay. Obviously, as B is a part of
A, all data of B should be included, making B also a member of the
sharing group.

Answering the request, A airline has to share its own data pre-
sented in Figure 3. The company A therefore selects, using the
interface described before, the "ID", "Fly_Dep", "Dep" and "Delay"
columns, standing respectively for the flight number, the time of
departure, the departure city and the delay, where the departure
city is Tokyo. Also, this company does not wish to allow others to
edit its data, setting the privileges to read-only. Given this input,
the system consistently produces, using bidirectional transforma-
tions, a view containing the selected data to be shared. As company
A’s configuration file states that when a value is missing from the
mapping table, it should be given by the user, A has then to fill
in missing mappings. When it is done, the system uses a BiGUL
function again to translate the local data into the universal format
agreed and understood by everyone. The company finally agrees
to push the data on the network.

When A is done sharing content, B then uses the system to pro-
duce a BiGUL view containing the data selected from its database:
the "Name", "Dep_H", "Dept" and "Del", standing respectively for
the same as A, where the departure city is Tokyo. B also sets the
data to be read-only. Then, the data needs to be translated using
BXs and B’s mapping table containing the universal format. At
this moment, the BiGUL function responsible for the translation
checks the edition authorizations on the data to be pushed. As the
"Name" JAP36 refers to the universal J42 which is already present
in the shared data on read-only privilege, the bidirectional function
refuses to edit the row. Indeed, it is possible to see in Figure 3 that
company B has a delay of 5 while the shared data of company A
has Null for row J42. So, the JAP36 local row referring to J42 is not
shared, but the others, namely CF2 and DS9, are.

Finally, C can retrieve the shared data when B has updated the
shared content. All the data is then pulled from the network. When
the system verifies C’s mapping table, it auto-generates the un-
matched local values, as the configuration files states. The system is
then able to use this source of received universal format to get the
translation into the local format, using the exact same bidirectional
function provided to others like A or B. The local format is then
computed in the put direction, using the bidirectional selection
function, to be merged to the unselected content which is updated
it if necessary. All of the content is then put back into either a new
SQL table, or an existing one, depending on the user’s choice.

44

<Programming’18> Companion, April 9–12, 2018, Nice, France A. Duchêne, H. Marchal, Z. Hu, P-Y. Schobbens

Figure 3: The database of company A (left) and company B (right)

4 CONCLUSION
This paper proposes a new user-friendly, lightweight and consistent
system trying to solve the selective data sharing problem. Indeed,
the system has been implemented in a way to be more easily han-
dled thanks to the database knowledge limitation in both structure
and code. This limitation is notably obtained by interacting with the
user and the mapping tables provided to the bidirectional functions.
Furthermore, the use of bidirectional transformations enhances the
insurance of data consistency and integrity thanks to the proved
well-behaveness of BiGUL. Last but not least, the user has the power
to authorize or not others to edit its shared data, as BiGUL func-
tions can easily deal with such properties while maintaining the
well-behaveness of the system. It is then possible to conclude that
the bidirectional transformations are here very useful and can be
used properly and efficiently in the selective data sharing context.

The system could nevertheless be optimized notably by integrat-
ing the foreign keys management. The mapping table construction
and the universal format could also be improved in order to be
automatically generated in a meaningful way. Finally, the network
part of the system could be strengthened in order to completely
manage the keys representing the data, or could be replaced by a
client-server architecture implemented following safety concerns
to guarantee the availability of the data.

ACKNOWLEDGMENTS
Wewould like to thank Hsiang-Shang "Josh" Ko and other members
in the programming research laboratory in NII for helping us to
understand bidirectional transformation and to use the BiGUL to
develop our system. We would also like to thank the University of
Namur for the internship opportunity they gave us. This work is

partially supported by the Japan Society for the Promotion of Sci-
ence (JSPS) Grant-in-Aid for Scientific Research (S) No. 17H06099,
and by the Natural Science Foundation of China under the grants
of No. 2015CB352200 and No. 61620106007.

REFERENCES
[1] Oracle Corporation and/or its affiliates. 1995. MySql. https://dev.mysql.com/.

(1995).
[2] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa,

Renée J. Miller, and John Mylopoulos. 2003. The Hyperion Project: From Data In-
tegration to Data Coordination. Dept. of Computer Science University of Toronto,
School of Inf. Technology and Engineering University of Ottawa, Canada.

[3] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. 2006. Relational
Lenses: A Language for Updatable Views. University of Pennsylvania, Pennsylva-
nia,United States.

[4] Adrien Duchene and Hugues Marchal. 2018. Lightweight Data Sharing System
based on Bidirectional Transformations. https://github.com/AdrienDuchene/Bx_
data_shared.git. (2018).

[5] J. Nathan Foster and Grigoris Karvournarakis. Provenance and Data Synchroniza-
tion. University of Pennsylvania, United States.

[6] Zhenjiang Hu and Hsiang-Shang Ko. 2017. Principles and Practice of Bidirectional
Programming in BiGUL. National Institute of Informatics, Japan.

[7] Yannis Katsis and Yannis Papakonstantinou. 2009. View-based Data Integration.
Computer Science and Engineering UC San Diego, University of California-San
Diego,La Jolla, CA,USA.

[8] Hsiang-Shang Ko and Zhenjiang Hu. 2018. An Axiomatic Basis for Bidirectional
Programming. POPL 2018, Los Angeles, California, United States.

[9] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. 2016. BiGUL: A Formally Verified
Core Language for Putback-Based Bidirectional Programming. PEPM 2016, St.
Petersburg, Florida, United States.

[10] Czarnecki Krzysztof, Foster J. Nathan, Hu Zhenjiang, Lämmel Ralf, Schürr Andy,
and Terwilliger James F. 2009. Bidirectional Transformations: A Cross-Discipline
Perspective. Springer, Berlin, Heidelberg.

[11] Xinpeng Shen and Zhanhuai Li. 2008. Implementing Database Management System
in P2P Networks. School of Computer Science and Engineering, Northwestern
Polytechnical University, Xi’an, 710072, China.

[12] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. 2001. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
MIT Laboratory for Computer Science, United States.

45

https://dev.mysql.com/
https://github.com/AdrienDuchene/Bx_data_shared.git
https://github.com/AdrienDuchene/Bx_data_shared.git

	Abstract
	1 Introduction
	2 Lightweight selective data sharing system
	2.1 User Perspective of the System
	2.2 Technical Overview of the System

	3 Case study
	4 Conclusion
	References

