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Abstract. Putback-based bidirectional programming allows the pro-
grammer to write only one backward transformation, from which the
unique corresponding forward transformation is derived for free. A key
distinguishing feature of putback-based bidirectional programming is full
control over the bidirectional behavior, which is important for specifying
intended bidirectional transformations without any ambiguity. In this
chapter, we will introduce BiGUL, a simple yet powerful putback-based
bidirectional programming language, explaining the underlying princi-
ples and showing how various kinds of bidirectional application can be
developed in BiGUL.

1 Putback-Based Bidirectional Programming

In this chapter, the kind of bidirectional transformations (BXs) we discuss is
aymmetric lenses [8], which basically consist of a pair of transformations1: a
forward transformation get producing a view from a source, and a backward, or
putback, transformation put which takes a source and a possibly modified view,
and reflects the modifications on the view to the source, producing an updated
source. These two transformations should be well-behaved in the sense that they
satisfy the following round-tripping laws:

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that no change to the view should be reflected
as no change to the source, while the PutGet property requires that all changes
in the view should be completely reflected to the source so that the changed
view can be successfully recovered by applying the forward transformation to
the updated source.

The purpose of bidirectional programming is to develop well-behaved bidi-
rectional transformations to solve various synchronization problems. A straight-
forward approach to bidirectional programming is to write two unidirectional
1 The text of this section is adapted from the first author’s FM 2014 paper [10].
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transformations. Although this ad hoc solution provides full control over both get
and putback transformations, and can be realized using standard programming
languages, the programmer needs to show that the two transformations satisfy the
well-behavedness laws, and a modification to one of the transformations requires
a redefinition of the other transformation as well as a new well-behavedness proof.
To ease and enable maintainable bidirectional programming, it is preferable to
write just a single program that can denote both transformations.

Lots of work [2,3,8,9,12,15,16] has been devoted to the get-based approach,
allowing the programmer to write, mainly, the forward transformation get , and
deriving a suitable putback transformation. While the get-based approach is
friendly, a get function will typically not be injective, so there may exist many
possible put functions that can be combined with it to form a valid BX. This
ambiguity of put is what makes bidirectional programming challenging and
unpredictable in practice. For specific domains where declarative approaches
suffice, the get-based approach works fine, but when it comes to problems for
which it is essential to precisely control put behavior, the get-based approach
is inherently awkward: while most get-based languages/systems offer some fea-
tures for programming put behavior, the programmer ends up having to break
the get-based abstraction and figure out the put semantics of their get programs
in excruciating detail to be able to reliably use these features, largely defeating
the purpose of these languages/systems.

The main topic of this chapter is the putback-based approach to bidirectional
programming. In contrast to the get-based approach, it allows the programmer
to write a backward transformation put and derives a suitable get that can be
paired with this put to form a bidirectional transformation. Interestingly, while
get usually loses information when mapping from a source to a view, put must
preserve information when putting back from the view to the source, according
to the PutGet property.

Before explaining how to program put in practice, let us briefly review the
foundations [5–7], showing that “putback” is the essence of bidirectional pro-
gramming. We start by defining validity of put as follows:

Definition 1 (Validity of put). We say that a put function is valid if there
exists a get function such that both GetPut and PutGet are satisfied.

The first interesting fact is that, for a valid put , there exists exactly one get
that can form a BX with it. This is in sharp contrast to get-based bidirectional
programming, where many puts may be paired with a get to form a BX.

Lemma 1 (Uniqueness of get). Given a put function, there exists at most
one get function that forms a well-behaved BX.

The second interesting fact is that it is possible to check the validity of put
without mentioning get . The following are two important properties of put .

– The first,whichwe call view determination, says that the equivalence of updated
sources produced by a put implies equivalence of views that are put back.

∀ s, s′, v, v′. put s v = put s′ v′ ⇒ v = v′ ViewDetermination

Note that view determination implies that put s is injective (with s = s′).
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– The second, which we call source stability, denotes a slightly stronger notion
of surjectivity for every source:

∀ s. ∃ v. put s v = s SourceStability

These two properties together provide an equivalent characterization of the valid-
ity of put [5].

Theorem 1. A put function is valid if and only if it satisfies
ViewDetermination and SourceStability.

Practically, there are few languages supporting putback-based bidirectional
programming. This is not without reason: as argued by Foster [7], it is more
difficult to construct a framework that can directly support putback-based bidi-
rectional programming.

In the rest of this chapter, we will introduce BiGUL [11] (pronounced
“beagle”), a simple yet powerful putback-based bidirectional language, which
grew out of some prior putback-based languages [13,14]. BiGUL is implemented
as an embedded language in Haskell, and we will assume that the reader is rea-
sonably familiar with Haskell. After briefly explaining how to install BiGUL in
Sect. 2, we will introduce basic BiGUL programming in Sect. 3, and see a few
more examples about lists in Sect. 4. We will then move on to the underlying prin-
ciples in Sect. 5, explaining the design and implementation of BiGUL in detail.
Those readers who are more interested in practical applications or want to see
more examples first may safely skip Sect. 5 (which is rather long) and proceed to
the last three sections, which will show how various bidirectional applications can
be developed, including list alignment in Sect. 6, relational database updating in
Sect. 7, and parsing and “reflective” printing in Sect. 8.

2 Preparation: Installing BiGUL

BiGUL is implemented as an embedded domain-specific language in Haskell,
and this chapter assumes that the readers have some Haskell background. (If
not, see https://wiki.haskell.org/Learning Haskell for a list of resources for learn-
ing Haskell; for the Haskell environment, it is recommended to install Haskell
Platform at https://www.haskell.org/platform/.) BiGUL has been released to
Hackage, and the latest version (1.0.1 at the time of writing) can be installed
using Cabal in the usual way, by executing the following in the command line:

$ cabal update
$ cabal install BiGUL

If you want to ensure compatibility with this chapter, you can instead install
BiGUL-1.0.1 specifically by executing:

$ cabal install BiGUL-1.0.1

Now you can easily check whether BiGUL is correctly installed. First, create
a simple file called Test.hs with the following content for importing BiGUL
modules.

https://wiki.haskell.org/Learning_Haskell
https://www.haskell.org/platform/
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{-# LANGUAGE FlexibleContexts, TemplateHaskell, TypeFamilies #-}
import Generics.BiGUL
import Generics.BiGUL.Interpreter
import Generics.BiGUL.TH
import Generics.BiGUL.Lib

Then load it using GHCi.

$ ghci Test.hs
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Main ( Test.hs, interpreted )
Ok, modules loaded: Main.
*Main>

If you see the above message, congratulations on your successful installation.
To make it more convenient to play with the BiGUL code in this

chapter, the Haskell source files for Sect. 3 (Basic.hs), Sect. 4 (List.hs),
Sect. 6 (Alignment.hs), Sect. 7 (Brul.hs), and Sect. 8 (BiYacc.hs) are
provided at:

https://bitbucket.org/prl tokyo/bigul/src/master/SSBX16/

They are also available as electronic supplementary material to the online version
of this chapter on SpringerLink. There are some dependencies among the files:
List.hs imports Basic.hs, and Brul.hs imports Alignment.hs. The imported
files should be present in the same directory as the files being loaded.

3 A Quick Tour of BiGUL

Intuitively, we can think of a bidirectional BiGUL program

bx :: BiGUL s v

as describing how to manipulate a state consisting of a source component of
type s and a view component of type v ; the goal is to embed all information in
the view to proper places in the source. For each bx ::BiGUL s v , we can run it
forwards by calling get and backwards by calling put :

get bx :: s → Maybe v
put bx :: s → v → Maybe s

Here, get bx is a function mapping a source to a view, which can possibly fail: it
either returns a successfully computed view wrapped in the Just constructor of
Maybe, or signifies failure by producing the Nothing constructor. On the other
hand, put bx accepts an original source and uses a view to update it to get an
updated source (and might fail as well).

In BiGUL, it suffices for the programmer to write the put behavior (i.e., how
to use a view to update the original source to a new source), and the (unique)
get behavior is obtained for free. The core of BiGUL consists of a small num-
ber of primitives and combinators for constructing well-behaved bidirectional
transformations, which we introduce below.

https://bitbucket.org/prl_tokyo/bigul/src/master/SSBX16/
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3.1 Skip

The first primitive for writing put is

Skip :: (s → v) → BiGUL s v

The put behavior of Skip f keeps the source unchanged, provided that the view
is computable from the source by f (while in the get direction, the view is fully
computed by applying function f to the source). Consider a simple put defined
by Skip square where

square :: Num a ⇒ a → a
square x = x ∗ x

We can test its put behavior as follows:

*Basic> put (Skip square) 10 100
Just 10

It first checks if the view 100 is the square of the source 10. If that is the case,
the original source is returned. But if the view is changed, say to 250, it should
produce Nothing :

*Basic> put (Skip square) 10 250
Nothing

To see why put produces Nothing , we may use putTrace instead of put to get
more information:

*Basic> putTrace (Skip square) 10 250
view not determined by the source

Each putback transformation in BiGUL is equipped with a unique get for
doing forward transformation. We can test the get behavior as follows:

*Basic> get (Skip square) 5
Just 25

In prose: doing the forward transformation of Skip square on the source 5 gives
the view 25. If get fails, we can also use getTrace to see more information about
the failure, analogous to putTrace.

As a simple exercise, can you see what the following skip1 does?

skip1 :: BiGUL s ()
skip1 = Skip (const ())

3.2 Replace

The second primitive is

Replace :: BiGUL s s

which completely replaces the source with the view. For instance,
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*Basic> put Replace 1 100
Just 100

uses the view 100 to replace the source 1 and gets a new source 100.

3.3 Product

If we want to use a view pair (v1, v2) to update a source pair (s1, s2), we can
write Prod bx1 bx2 or bx1 ‘Prod ’ bx2 , a product of two putback transformations
bx1 and bx2 , to use v1 to update s1 with bx1 and v2 to s2 with bx2 .

Prod :: BiGUL s1 v1 → BiGUL s2 v2 → BiGUL (s1, s2) (v1, v2)

For instance, we can use Prod to combine Skip and Replace to put a view pair
into a source pair.

*Basic> put (skip1 `Prod' Replace) (5,1) ((),100)
Just (5,100)

Generally, we can use nested Prods to describe a complicated structural mapping:

*Basic> put ((skip1 `Prod' Replace) `Prod' Replace) ((5,1),2)
(((),100),200)

Just ((5,100),200)

3.4 Source/View Rearrangement

So far, the source and view have been of the same structure. What if we wish
to put a view (v1, v2) into a source of a different structure, say ((s0, s1), s2), to
replace s1 by v1 and s2 by v2? To do that, we need to rearrange the source and
view into the same structure, and BiGUL provides a way of rearranging either
the source or view through a “simple” λ-expression e:

$(rearrS [[ e :: s1 → s2 ]]) :: BiGUL s2 v → BiGUL s1 v
$(rearrV [[ e :: v1 → v2 ]]) :: BiGUL s v2 → BiGUL s v1

The “simple” λ-expression e should be wrapped inside Template Haskell quasi-
quotes [[ . . . ]] (written as [| . . . |] in plain text Haskell); it is then processed and
expanded by rearrS or rearrV to “core” BiGUL code, which is spliced (pasted)
into the invocation site by Template Haskell, as instructed by $(. . .). By “simple”
we mean that there should be no wildcards ‘ ’ in the argument pattern, and that
the body can only contain the argument variables and constructors, and must
mention all the argument variables. We will discuss the details later in Sect. 5.6.
Returning to the problem of putting a pair into a triple, we may define the
following putback transformation

putPairOverNPair :: (Show s0,Show s1,Show s2)
⇒ BiGUL ((s0, s1), s2) (s1, s2)
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putPairOverNPair = $(rearrV [[λ(v1, v2) → (((), v1), v2) ]])$

(skip1 ‘Prod ’ Replace) ‘Prod ’ Replace

by first rearranging the view (v1, v2) to a triple (((), v1), v2) with the same struc-
ture as the source, and then using (skip1 ‘Prod ’ Replace) ‘Prod ’ Replace to put
the arranged view (((), v1), v2) into the source ((s0, s1), s2). The type context
(Show s0,Show s1,Show s2) above is required by BiGUL for printing debugging
messages. And note that the two ‘$’ signs in the definition off putPairOverNPair
have different meanings: the first one marks the beginning of a Template Haskell
splice, while the second one is the low-precedence application operator.

The mechanism of source/view rearrangement enables us to process algebraic
data structures such as lists and trees, by mapping an algebraic structure to the
(nested) pair structure. The following example uses the view to replace the first
element of a nonempty source list:

pHead :: Show s ⇒ BiGUL [s ] s
pHead = $(rearrS [[λ(s : ss) → (s, ss) ]])$

$(rearrV [[λv → (v , ()) ]])$

Replace ‘Prod ’ skip1

It rearranges the source (a nonempty list) to a pair with its head element s and
its tail ss, and the view v to a pair (v , ()), so that we can use v to replace s and ()
to keep ss.

*Basic> put pHead [1,2,3,4] 100
Just [100,2,3,4]

What if we wish to define a general putback transformation that uses the
view to replace the ith element of the source list? We can define it recursively
as follows:

pNth :: Show s ⇒ Int → BiGUL [s ] s
pNth i = if i = = 0 then pHead

else $(rearrS [[λ(x : xs) → (x , xs) ]])$
$(rearrV [[λv → ((), v) ]])$

skip1 ‘Prod ’ pNth (i − 1)

If i is 0, we simply use pHead to update the head element of the source with
the view. Otherwise, we do the same arrangements on the view and the source
as we did for pHead , but then keep the head element unchanged and replace the
(i − 1)th element of the tail of the source by the view.

*Basic> put (pNth 3) [1..10] 100
Just [1,2,3,100,5,6,7,8,9,10]

As we know, any putback function in BiGUL is equipped with a get function.
For pNth, we can test its get behavior as follows; its corresponding get function
is actually the familiar index function (!!).
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*Basic> get (pNth 3) [1..10]
Just 4

Both pHead and pNth contain the programming pattern in which both the
source and view are rearranged into a product and then further updates are
performed on corresponding components. This is a ubiquitous pattern in BiGUL,
for which we provide a more compact syntax:

$(update P [[ sourcePattern ]] P [[ viewPattern ]] D[[ updates ]])

The source and view are respectively decomposed using sourcePattern and
viewPattern inside the pattern quasi-quotes P [[ . . . ]] (written as [p| . . . |] in plain
text Haskell), and corresponding elements are updated using the programs pro-
vided in the declaration quasi-quote D[[ . . . ]] ([d| . . . |] in plain text Haskell). For
example, we may describe (skip1 ‘Prod ’ Replace) ‘Prod ’ Replace by

testUpdate :: (Show a,Show b,Show c) ⇒ BiGUL ((a, b), c) (((), b), c)
testUpdate = $(update P [[ ((x , y), z ) ]]

P [[ ((x , y), z ) ]]
D[[ x = skip1 ; y = Replace; z = Replace ]])

In this concrete example, the three elements of the tuple (in both the source
and view) are bound to the variables x , y , and z , and they are sent to the three
combinators as arguments in the D[[ . . . ]] part. Note that since skip1 does nothing
on its source but checks if its view is (), we can just match that source element
with a wildcard ‘ ’ in the source pattern and avoid writing skip1 in D[[ . . . ]].

testUpdate ′ :: (Show a,Show b,Show c) ⇒ BiGUL ((a, b), c) (((), b), c)
testUpdate ′ = $(update P [[ (( , y), z ) ]]

P [[ (((), y), z ) ]]
D[[ y = Replace; z = Replace ]])

3.5 Case

The Case combinator is for case analysis, and the general structure is as follows:

Case [ $(normal [[mainCond :: s → v → Bool ]] [[ exitCond :: s → Bool ]])
=⇒ (bx :: BiGUL s v)

, . . .

, $(adaptive [[mainCond :: s → v → Bool ]])
=⇒ (f :: s → v → s)

, . . .
]

:: BiGUL s v

It contains a sequence of cases, each of which is either normal or adaptive. We
try the conditions of these cases in order and decide which branch we go into.
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– For a normal case, $(normal . . .) takes two predicates, which we call the main
condition and the exit condition. The predicate for the main condition is very
general, and we can use any function of type (s → v → Bool) to examine the
source and view. The predicate for the exit condition checks the source only.
If the main and the exit conditions are satisfied, then the BiGUL program
after the arrow ‘=⇒’ (written ‘==>’ in plain text Haskell and defined in the
module Generics.BiGUL.Lib) is executed. The exit conditions in different
branches are expected to be disjoint for efficient execution of the forward
transformation.

– For an adaptive case, if the main condition is satisfied, a function of type
(s → v → s) is used to produce an adapted source from the current source
and view before the whole Case is rerun, with the expectation that one of the
normal cases will be applicable this time. Note that if adaptation does not
lead to a normal case, an error will be reported at runtime. This is to ensure
that BiGUL does not stuck in adaptation and fail to terminate.

As a simple example, consider using the view to replace each element in the
source list. To do so, we use Case to describe a case analysis.

replaceAll :: (Eq s,Show s) ⇒ BiGUL [s ] s
replaceAll =

Case [ $(normal [[λs v → length s = = 1 ]] [[λs → length s = = 1 ]])
=⇒ $(rearrS [[λ[x ] → x ]]) Replace

, $(normal [[λs v → length s > 1 ]] [[λs → length s > 1 ]])
=⇒ $(rearrS [[λ(x : xs) → (x , xs) ]])$

$(rearrV [[λv → (v , v) ]])$

Replace ‘Prod ’ replaceAll
, $(adaptive [[λs v → length s = = 0 ]])

=⇒ λs v → [⊥]
]

It consists of two normal cases and one adaptive case. The first normal case says
that if the source is of length 1 (containing a single element), we rearrange the
source list by extracting the single element, and replace this element with the
view. The second normal case says that if the source has more than 1 element,
we rearrange the source list to a pair of its head element and its tail, rearrange
the view by duplicating it to a pair, and use one copy of the view to replace the
head element, and the other copy to recursively replace each element in the tail
of the source. The last adaptive case says that if the source is empty, we adapt
the source to a singleton list with the don’t-care element ⊥ (‘undefined’ in plain
text Haskell), and rerun the whole Case executing the first normal case.

*Basic> put replaceAll [] 100
Just [100]
*Basic> put replaceAll [1..10] 100
Just [100,100,100,100,100,100,100,100,100,100]
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Note that in the first running example, the source [ ] is first adapted to [⊥], and
the don’t care element ⊥ is replaced by 100 at the rerun of the whole Case.

As another interesting example, we define emb, which can safely embed any
pair of well-behaved get and put into BiGUL. It is defined as follows:

emb :: Eq v ⇒ (s → v) → (s → v → s) → BiGUL s v
emb g p =

Case [ $(normal [[λs v → g s = = v ]] [[λs → True ]])
=⇒ Skip g

, $(adaptive [[λ → otherwise ]])
=⇒ p

]

where, given a pair (g , p) of well-behaved get and put functions, if the view is the
same as that produced by applying g to the source, we make no change on the
source with Skip g (hinting that the view can be produced using g), otherwise
we adapt the source using p to reflect the change on the view to the source.
Note that if p and g form a well-behaved bidirectional transformation, in the
rerun of the whole Case after the adaptation, the first normal case will always
be applicable. To see a use of emb, we may define the following putback function
to update a pair with its sum.

pSum2 :: BiGUL (Int , Int) Int
pSum2 = emb g p

where g (x , y) = x + y
p (x , y) v = (v − y , y)

While we allow a general function to describe the main condition or the exit
condition, it is usually more concise to use patterns to describe these conditions.
For instance, we may replace the condition [[λs → length s = = 1 ]] by

[[λ[x ] → True ]]

Here, the meaning of a boolean-valued pattern-matching lambda-expression is
redefined as a total function which computes to False when an input does not
match the pattern; this meaning is different from that of a general pattern-
matching lambda-expression, which fails to compute (and throws an exception)
when the pattern is not matched. For example, in general the lambda-expression
λ[x ] → True will fail to compute if the first input is not a singleton list; when
used in branch construction, however, the lambda-expression will compute to
False upon encountering an empty list. A unary condition like [[λ[x ] → True ]]
where only the pattern part matters can be abbreviated to

P [[ [x ] ]]

to further reduce syntactic noise. Finally, to also allow this kind of abbreviation
in main conditions, BiGUL provides a special form for the normal case where
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the main condition is specified as the conjunction of two unary predicates on the
source and view respectively:

$(normalSV [[ sourceCond :: s → Bool ]]
[[ viewCond :: v → Bool ]]
[[ exitCond :: s → Bool ]])

=⇒ (bx :: BiGUL s v)

and a special form for the adaptive case where the main condition is specified as
the conjunction of two unary predicates on the source and view respectively:

$(adaptiveSV [[ sourceCond :: s → Bool ]]
[[ viewCond :: v → Bool ]])

=⇒ (f :: s → v → s)

3.6 View Dependency

Sometimes, a view may contain derived values that are computed from other
parts of the view, and the view should be consistently changed. For instance, for
the view (x , even (x )), the second component is an indicator showing whether
or not the first component is an even number. To capture this, BiGUL provides

Dep :: Eq v ′ ⇒ (v → v ′) → BiGUL a v → BiGUL a (v , v ′)

to describe this intention. We may, for example, define

replaceAll2 :: BiGUL [Int ] (Int ,Bool)
replaceAll2 = Dep even replaceAll

to replace all elements of the source by the first component of the view, while
checking whether the second component is consistent with the first component.

*Basic> put replaceAll2 [1..10] (100,True)
Just [100,100,100,100,100,100,100,100,100,100]
*Basic> put replaceAll2 [1..10] (100,False)
Nothing
*Basic> putTrace replaceAll2 [1..10] (100,False)
second view component not determined by the first

As seen in the last running of put , it reports an error because the view (100,False)
is inconsistent: 100 is an even number, so the second component should be True.

3.7 Composition

BiGUL programs can be composed sequentially:

Compose :: BiGUL a u → BiGUL u b → BiGUL a b
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This combinator is straightforward in the get direction: get (Compose l r)
(where l :: BiGUL a u and r :: BiGUL u b) simply applies get l to its input
of type a to compute an intermediate value of type u, which is then processed
by get r to produce the final result of type b. Its put direction is more complex:
put (Compose l r) starts with a source s :: a and a view v :: b, and the aim is to
produce an updated source of type a. The only way to proceed is to use put r
to put v into some intermediate source m of type u, and to produce this m we
are forced to use get l on s. We can then update m with v to m ′ using put r ,
and update a with m ′ using put l . In general, programs involving Compose are
significantly harder to think about since we have to think in both put and get
directions to figure out precisely what is going on.

As a simple example, consider that we wish to use the view to update the
head element of the head element of a list of lists. We can define such a putback
function as the following pHead2 by composing pHead with pHead .

pHead2 :: Show a ⇒ BiGUL [[a ]] a
pHead2 = pHead ‘Compose’ pHead

The following is an example to demonstrate this:

*Basic> put pHead2 [[1,2],[3,4,5],[]] 100
Just [[100,2],[3,4,5],[]]

4 Bidirectional Programming on Lists

To give some more involved examples, in this section we demonstrate that many
list functions can be bidirectionalized using BiGUL. The putback behaviors of
these functions are in fact non-trivial, and the reader might want to skip to later
sections in which more examples are developed, starting from Sect. 6.

To show the correspondence with the original list functions, we prefix the
original forward function names with lens. Note that in our context, the original
forward functions can be automatically derived from the new putback transfor-
mations by calling get .

We shall focus on bidirectionalizing foldr , an important higher-order function
on lists:

foldr :: (a → b → b) → b → [a ] → b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

Many interesting functions can be defined in terms of foldr :

sum = foldr (+) 0
map f = foldr (λa r → f a : r) [ ]

where sum sums up all the elements in a list, and map f applies f to every
element in a list.
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We start by developing a putback function for foldr in BiGUL:

lensFoldr :: (Show a,Show v)
⇒ BiGUL (a, v) v → (v → Bool) → BiGUL ([a ], v) v

where we hope to define a putback program of type BiGUL ([a ], v) v that is to
use the view to update the source, a list together with a value, by recursively
applying a simpler putback function of type BiGUL (a, v) v (until a condition
is satisfied or all the list elements have been visited). The program is somewhat
tricky, and is probably not easy to understand since Compose is involved.

lensFoldr bx pv =
Case [ $(adaptive [[λ(x , y) v → pv v ∧ length x 	≡ 0 ]])

=⇒ λ(x , y) v → ([ ], y)
, $(normal [[λ(xs, ) v → null xs ]] [[λ(xs, ) → null xs ]])

=⇒ $(rearrV [[λv → ((), v) ]])$
$(update P [[ ( , v) ]] P [[ ((), v) ]] D[[ v = Replace ]])

, $(normalSV P [[ ]] P [[ ]] [[λ(xs, ) → not (null xs) ]])
=⇒ $(rearrS [[λ((x : xs), e) → (x , (xs, e)) ]])$

(Replace ‘Prod ’ lensFoldr bx pv) ‘Compose’ bx
]

The lensFoldr program accepts a putback function bx and a view condition pv ,
and performs a case analysis to put the view v to the source (xs, e). If the view
v satisfies pv but the list xs in the source is not empty, then it adapts the list to
be empty. If the list xs in the source is empty, we do nothing but use the view to
replace the second component of the source. Otherwise, we rearrange the source
from the form of (x : xs, e) to that of (x , (xs, e)), and apply lensFoldr recursively
with a composition with bx . One may understand the composition through the
following picture (where r = Replace ‘Prod ’ lensFoldr bx pv).

(x, (xs, e)) r↔ (x, e′) bx↔ v

With lensFoldr , we can redefine many list functions from the putback point
of view. As the first example, consider mapAppend :

mapAppend f (xs, ys) = map f xs ++ ys

We can define its putback function as follows.

lensMapAppend :: (Show a,Show b) ⇒ BiGUL a b → BiGUL ([a ], [b ]) [b ]
lensMapAppend pf = lensFoldr bx null

where bx = $(rearrV [[λ(v : vs) → (v , vs) ]])$

pf ‘Prod ’ Replace

Here bx has the type of BiGUL (a, [b ]) [b ] and is defined on pf that has the
type of BiGUL a b.
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*List> put (lensMapAppend dec1) ([0..10],[]) [100..110]
Just ([99,100,101,102,103,104,105,106,107,108,109],[])
*List> get (lensMapAppend dec1) ([1..10],[])
Just [2,3,4,5,6,7,8,9,10,11]

Note that, for testing, we embed into our framework the bijective functions for
increasing and decreasing a number by 1.

dec1 :: (Eq a,Num a) ⇒ BiGUL a a
dec1 = emb g p

where g s = s + 1
p s v = v − 1

For a second example, consider the function sum (xs, e), which is to sum up
all elements of the list xs starting from the seed e. If the sum is changed, there
are many ways to reflect this change to the input (xs, e). The following describes
one way in BiGUL:

lensSum :: BiGUL ([Int ], Int) Int
lensSum = lensFoldr pSum2 (const False)

which will reflect the change difference on the view to the head element of xs if
xs is not empty, or to the seed e otherwise. We may choose other ways, say to
reflect the change difference on the view only to the seed by defining

lensSum ′ :: BiGUL ([Int ], Int) Int
lensSum ′ = lensFoldr ($(rearrS [[λ(x , y) → (y , x ) ]]) pSum2 ) (const False)

Note that although get lensSum ([1, 2, 3], 0) = get lensSum ′ ([1, 2, 3], 0) =
Just 6, their putback behaviors are different:

put lensSum ([1, 2, 3], 0) 16 = Just ([11, 2, 3], 0)
put lensSum ′ ([1, 2, 3], 0) 16 = Just ([1, 2, 3], 10)

It is worth noting that our definition of lensFoldr is just one putback function
for foldr , and there are many others. This reflects the fact that one foldr can
have many puts, each describing one updating strategy.

5 BiGUL’s Bidirectionality

We have been writing put programs, usually having a corresponding get in mind
but not explicitly describing it, and yet BiGUL is capable of finding the right
get behaviour as if it could read our mind. How? We will see that, when writing
a BiGUL program, we are always simultaneously describing both a put function
and a get function, which are guaranteed to be a well-behaved pair. And the
“mind-reading” ability is far from magic: It is the consequence of the fact that
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well-behavedness directly implies that get is uniquely determined by put , which
is the main motivation for taking a putback-based approach. In this section, we
will first review the theory, this time explicitly taking partiality into account,
and then we will dive into BiGUL’s internals to get a taste of putback-based
design.

This is a fairly long section, but it is not a prerequisite for subsequent sections;
readers who wish to see more examples first or are more interested in practical
BiGUL applications can safely skip this section and proceed to Sect. 6.

5.1 Lenses, Well-Behavedness, and the Fundamental Theorem

Formally, we call a well-behaved pair of put and get a lens:

Definition 2 (lens). A lens between a source type s and a view type v consists
of two functions:

put :: s → v → Maybe s
get :: s → Maybe v

satisfying two well-behavedness laws:

put s v = Just s′ ⇒ get s′ = Just v PutGet

get s = Just v ⇒ put s v = Just s GetPut

In the original formulation [8], a lens refers to just a pair of functions having
the right types, and one needs to explicitly say “well-behaved lens” to mean
a well-behaved pair; we will, however, discuss well-behaved lenses only, so we
build well-behavedness into our definition of lenses by default. Note that this
definition models partial transformations explicitly as Maybe-valued functions:
put and get are total functions that can nevertheless produce Nothing to indicate
failure. From now on, this definition replaces the one in Sect. 1, where only total
lenses were discussed. Also note that these well-behavedness laws are actually
easy to satisfy vacuously, by making the transformations produce Nothing all (or
most of) the time. One important task of the BiGUL programmer is thus to meet
certain side conditions for guaranteeing the totality of their BiGUL programs.
These side conditions will be introduced below along with the relevant BiGUL
constructs.

From this revised definition of well-behavedness, we can immediately prove
a reformulation of Lemma 1:

Theorem 2 (uniqueness of get). Given two lenses whose put components
are equal, their get components are also equal.

Proof. Let l and r be two lenses; denote their put/get components as put l/get l
and put r/get r respectively, and assume that put l = put r . Then for any



Principles and Practice of Bidirectional Programming in BiGUL 115

s and v,

get l s = Just v
⇔ {well-behavedness of l }

put l s v = Just s
⇔ { put l = put r }

put r s v = Just s
⇔ {well-behavedness of r }

get r s = Just v

(This also entails that get l s = Nothing if and only if get r s = Nothing .) 
�
This might be called the “fundamental theorem” of putback-based bidirectional
programming, as the theorem guarantees that the BiGUL programmer is in
full control of the bidirectional behaviour—programming the put behavior is
sufficient to determine the get behaviour. Also, to the language designer, the
theorem gives a kind of reassurance that, once the put behaviour of a construct
is determined, there is no need to worry about which get behaviour should
be adopted—there is at most one possibility. This is in contrast to get-based
design, in which there are usually more than one viable put semantics that can
be assigned to a get-based construct, and the designer needs to justify the choice
or provide several versions.

For the rest of this section, we will look at several constructs of BiGUL in
detail to get a taste of putback-based design. Each BiGUL construct is conceived,
at the design stage, as a lens (like Skip and Replace) or a lens combinator (like
Case), which constructs a more complex lens from simpler ones. The put and
get components of these lenses usually have to be developed together, but for
each lens we will employ a more “put-oriented” design process: We start from
an intended put behaviour, and then add restrictions so that we can find a
corresponding get . This does not guarantee that the lenses we arrive at will have
a “strong put flavour”—that is, some of the lenses will be as (or even more)
suitable for get-based programming as for putback-based programming. But we
will also see that some other lenses are more naturally understood in terms of
their put behaviour.

5.2 Replacement

The simplest lens is probably Replace, which replaces the entire source with the
view:

put Replace s v = Just v

Is there a get semantics that can be paired with this put? Yes, quite obviously—
in fact, PutGet directly gives us the definition of get Replace:

get Replace v = Just v

We still need to verify GetPut, which can be easily checked to be true.
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5.3 Skipping

Coming up next is Skip, whose natural behaviour is

put Skip s v = Just s

Considering PutGet, though, we immediately see that this behaviour is too
liberal: If the view is simply thrown away, how can get Skip possibly recover it?
One way out is to require that the view is trivial enough such that it can be
thrown away and still be recovered, by setting the view type of Skip to the unit
type (). Then it is easy for get Skip to recover the view, for which there is only
one choice:

get Skip s = Just ()

This is the approach adopted prior to BiGUL 1.0.
More generally, we can establish well-behavedness as long as get Skip has

only one view choice for each source, regardless of what the view type is. The
existence of this “unique choice” is witnessed by a function f :: s → v , which we
add as an additional argument to Skip. The get direction is then

get (Skip f ) s = Just (f s)

From the put direction, we may think of this function f as specifying a consis-
tency relation, saying that the view information is completely included in the
source (since you can compute the view from the source) and can be safely dis-
carded. Skip f can be used if and only if the source and view are consistent in
that sense, and this is the side condition about Skip that the BiGUL program-
mers need to be aware of if they want their programs using Skip to be total. We
thus arrive at:

put (Skip f ) s v = if v = = f s then return s else Nothing

This pair of put and get can be verified to be well-behaved. Skip f , which features
in BiGUL 1.0, is one lens which turns out to be more easily understood from the
get direction—it bidirectionalizes any get function whose codomain has decidable
equality, albeit trivially. We recover the first version of Skip as a special case by
setting f to const ().

5.4 Product

For a simplest example of a lens combinator, we look at Prod . Both the source
and view types should be pairs; Prod accepts two lenses, say l and r , and applies
them respectively to the left and right components:

put (l ‘Prod ’ r) (sl , sr) (vl , vr) = do sl ′ ← put l sl vl
sr ′ ← put r sr vr
return (sl ′, sr ′)
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The get direction is unsurprising:

get (l ‘Prod ’ r) (sl , sr) = do vl ← get l sl
vr ← get r sr
return (vl , vr)

Having constructed put and get from l and r , we also expect that their well-
behavedness is a consequence of the well-behavedness of l and r . While this may
look obvious, we take this opportunity to show how a well-behavedness proof for
a lens combinator can be carried out formally and in detail. To prove PutGet,
for example, we should prove that the assumption

put (l ‘Prod ’ r) (sl , sr) (vl , vr) = Just (sl ′, sr ′) (1)

implies the conclusion

get (l ‘Prod ’ r) (sl ′, sr ′) = Just (vl , vr) (2)

Both equations say that a somewhat complicated monadic Maybe-program com-
putes successfully to some value. It may seem that we need some messy case
analysis, but what we know about Maybe-programs tells us that such a program
computes successfully if and only if every step of the program does, and this
helps us to split both (1) and (2) into simpler equations. Formally, we have this
lemma:

Lemma 2. Let mx :: Maybe a and f :: a → Maybe b. Then, for all y :: b,

mx >>= f = Just y

if and only if

mx = Just x and f x = Just y for some x :: a

Proof. Case analysis on mx . 
�
This lemma can be nicely applied to Maybe-programs written in the do-notation,
transforming such programs into predicates saying that a program computes to
some given value. To do it more formally: Define a translation S from do-blocks
of type Maybe a to predicates on a by

S (do {x ← mx ;B}) y = (∃x. mx = Just x ∧ S (do B) y)
S (do {my}) y = (my = Just y)

Then we can extend Lemma 2 to the following:

Lemma 3. The proposition

S (do B) y

is true if and only if

do B = Just y
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Proof. By induction on the list structure of B , using Lemma 2 repeatedly. 
�
For example, applying S to put (l ‘Prod ’ r) (sl , sr) (vl , vr) yields

λ(sl′′, sr′′). ∃sl′. put l sl vl = Just sl ′ ∧
∃sr′. put r sr vr = Just sr ′ ∧
return (sl ′, sr ′) = Just (sl ′′, sr ′′)

where the last equation is equivalent to sl ′ = sl ′′ ∧sr ′ = sr ′′ (since return = Just
for the Maybemonad). Applying Lemma 3 and doing some simplification, (1) is
equivalent to

put l sl vl = Just sl ′ ∧ put r sr vr = Just sr ′

Similarly, (2) can be shown to be equivalent to

get l sl ′ = Just vl ∧ get r sr ′ = Just vr

The entailment is then just PutGet for l and r .

5.5 Case Analysis

This is a representative combinator in BiGUL, and arguably the most complex
one. For simplicity, let us consider a two-branch variant of Case. A branch is a
condition and a body; since in put we manipulate both a source and a view, the
conditions in general can be binary predicates on both the source and view. We
thus define the type of branches as:

type CaseBranch s v = (s → v → Bool ,BiGUL s v)

and consider the following variant of Case:

Case :: CaseBranch s v → CaseBranch s v → BiGUL s v

The straightforward behaviour is

put (Case (pl , l) (pr , r)) s v = if pl s v then put l s v
else if pr s v then put r s v
else Nothing

That is, depending on which condition is satisfied (with pl having higher pri-
ority), we execute either put l or put r , or fail the computation if neither of
the conditions is satisfied. Now, again, we ask the question: Can we find a get
behaviour to pair with this put?
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Ruling out branch switching for PutGet. An important working assump-
tion here is that we want lens combinators to be compositional : When we looked
at Prod , for example, we defined its put and get in terms of those of the smaller
lenses, and derived the overall well-behavedness from that of the smaller lenses.
For Case, this implies that, when establishing well-behavedness, we want a get
following a put (or a put following a get) to use the same branch taken by the
put (or the get), so we can make use of PutGet (or GetPut) of the branch.
The current put behaviour of Case does not leave any clue in the updated source
about which branch is used to produce it, though, so it is impossible for get to
always choose the correct branch.

One solution, which does not require changing the syntax of Case, is to check
that the ranges of the branches are disjoint. In general, for a lens, the range of
a put can be shown to coincide with the domain of the corresponding get . So
the get behaviour of Case can simply try to execute both branches on the input
source, and there will be at most one branch that computes successfully. We
can put (expensive) disjointness checks into put such that if put succeeds, the
subsequent get will have at most one branch to choose:

put (Case (pl , l) (pr , r)) s v =
if pl s v then do s′ ← put l s v

maybe (return s′) (const Nothing) (get r s′)
else if pr s v then do s′ ← put r s v

maybe (return s′) (const Nothing) (get l s′)
else Nothing

The maybe function is from Haskell’s prelude and has type b → (a → b) →
Maybe a → b; depending on whether the third, Maybe-typed, argument is
Nothing or a Just-value, the result is either the first argument or the second
argument applied to the value wrapped inside Just . In the first branch of the
code above, if put l s v successfully produces an updated source s′, we will
ensure that get r s′ does not succeed: If get r s′ is Nothing as we want, we will
return s′; otherwise we emit Nothing .

If get favours the first branch, meaning that it declares success as soon as
the first branch succeeds (without requiring that the second branch fails),

get (Case (pl , l) (pr , r)) s = maybe (get r s) return (get l s)

then we can also omit the check in put ’s first branch:

put (Case (pl , l) (pr , r)) s v =
if pl s v then put l s v
else if pr s v then do s′ ← put r s v

maybe (return s′) (const Nothing) (get l s′)
else Nothing
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Ruling out branch switching for GetPut. The GetPut direction, on the
other hand, still does not avoid branch switching—the outcome of get does not
say anything about which of pl and pr will be satisfied in the subsequent put .
So we add some checks to get such that get ’s success will tell us which branch
will be chosen by put :

get (Case (pl , l) (pr , r)) s = maybe (do v ← getBranch (pr , r) s
if pl s v then Nothing

else return v)
return
(getBranch (pl , l) s)

getBranch (p, b) s = do v ← get b s
if p s v then return v

else Nothing

The definition of put should also be revised to use getBranch for the disjointness
check. This fixes GetPut, but breaks PutGet! Since put does not guarantee
that the updated (not the original) source and the view satisfy the condition of
the branch executed, even though get will be able to choose the correct branch,
the subsequent, newly added check is not guaranteed to succeed. We thus also
need to add similar checks to put :

put (Case (pl , l) (pr , r)) s v =
if pl s v then do s′ ← put l s v

if pl s′ v then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v then maybe (return s′)
(const Nothing)
(getBranch (pl , l) s′)

else Nothing
else Nothing

Now this pair of put and get can be verified to be well-behaved.

Improving the Efficiency of get . The efficiency of the current get does not
look very good, especially when, in general, more than two branches are allowed,
and get has to try to execute each branch, possibly with a high cost, until it
reaches a successful one; also, inefficient get affects the efficiency of put , since
this calls get to check range disjointness. An idea is to ask the programmer to
make a rough “prediction” of the range of each branch: We enrich CaseBranch
with a third component, which is a source predicate:

type CaseBranch s v = (s → v → Bool ,BiGUL s v , s → Bool)

This new predicate is supposed to be satisfied by the updated source; we again
add checks to put to ensure this:
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put (Case (pl , l , ql) (pr , r , qr)) s v =
if pl s v then do s′ ← put l s v

if pl s′ v ∧ ql s′ then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v ∧ qr s′

then maybe (return s′)
(const Nothing)
(getBranch (pl , l , ql) s′)

else Nothing
else Nothing

Let us call pl and pr the main conditions, and ql and qr the exit conditions.
The exit condition, in general, over-approximates the range of a branch. Well-
behavedness tells us that the range of put is exactly the domain of the corre-
sponding get . Thus, in the get direction, every source in the domain of a branch
satisfies the exit condition. Contrapositively, if a source does not satisfy the exit
condition, then get for that branch will necessarily fail, and we do not need to
try to execute the branch at all. This leads to the following revised definition of
getBranch:

getBranch (pl , l , ql) s = if ql s then do v ← get l s
if pl s v then return v

else Nothing
else Nothing

If we do not care about efficiency, we can simply use const True as exit condi-
tions, and the behaviour will be exactly the same as the previous version. But
if we supply disjoint exit conditions, then get will try at most one branch. Inci-
dentally (but actually no less importantly), making exit conditions explicit also
encourages the programmer to think about range disjointness, which is essential
to guaranteeing the totality of Case.

Adaptation. We have seen that, to make Case total, one thing we need to
ensure is that the main condition of a branch should be satisfied again after
the update. In practice, the main condition is usually closely related to the
consistency relation, and we will only be able to deal with sources and views
that are already more or less consistent; this is a rather severe restriction. As
we have seen in Sect. 3.5, the solution is to introduce a different kind of branch
called adaptive branches, which can deal with sources and views that are too
inconsistent by adapting the source to establish enough consistency such that
a normal branch becomes applicable. Again, for simplicity, we consider only a
variant of Case which has just one adaptive branch at the end:

type CaseAdaptiveBranch s v = (s → v → Bool , s → v → s)
Case :: CaseBranch s v → CaseBranch s v →

CaseAdaptiveBranch s v → BiGUL s v
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The execution structure of put becomes slightly more complicated, as the whole
thing has to be run again after adaptation; to ensure termination, we require
that the second run does not match an adaptive branch again. This is realized
in BiGUL in continuation-passing style:

put (Case bl br ba) s v =
putWithAdaptation bl br ba s v (λsa →

putWithAdaptation bl br ba sa v (const Nothing))
putWithAdaptation ::

CaseBranch s v → CaseBranch s v → CaseAdaptiveBranch s v →
s → v → (s → Maybe s) → Maybe s

putWithAdaptation (pl , l , ql) (pr , r , qr) (pa, f ) s v cont =
if pl s v then do s′ ← put l s v

if pl s′ v ∧ ql s′ then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v ∧ qr s′

then maybe (return s′)
(const Nothing)
(getBranch (pl , l , ql) s′)

else Nothing
else if pa s v then cont (f s v)
else Nothing

Major work is now moved into a separate function putWithAdaptation, which
takes an extra cont argument of type s → Maybe s. This extra argument is a
continuation that takes over after the body of an adaptive branch is executed,
and is invoked with the adapted source. The requirement of not doing adaptation
twice is met by setting putWithAdaptation itself as a continuation, and this inner
putWithAdaptation takes the continuation that always fails.

What about get? It turns out that get can simply ignore the adaptive branch!
If you have doubt about this “choice”, just invoke the fundamental theorem
(Theorem 2): The put behaviour is exactly what we want, and we can verify that
the pair of put and get is well-behaved, so we are reassured that our “choice” is
“correct”, simply because there is no other choice of get .

To sum up, we have arrived at a simpler variant of Case which nevertheless
has all the features of the multi-branch Case in BiGUL. We have inserted various
dynamic checks into the put semantics, and the BiGUL programmer needs to be
aware of these constraints to make execution of Case succeed: For each normal
branch, (i) the main condition should be satisfied after the update, (ii) the main
conditions of the branches before this one should not be satisfied after the update,
and (iii) the exit condition should be satisfied by the updated source. Also the
ranges of all the normal branches should be disjoint; the programmer is encour-
aged to write disjoint exit conditions, which imply disjointness of the ranges,
and improve the efficiency of get . Finally, for each adaptive branch, the adapted
source and the view should match the main condition of a normal branch.
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5.6 Rearrangement

Source and view rearrangements are also among the more complex constructs of
BiGUL. Their complexity lies in the strongly and generically typed treatment
of pattern matching, though, rather than their bidirectional behavior. (We are
referring to “pattern matching” in functional programming, where a pattern
matching checks whether a value has a specific shape and decomposes it into
components. For example, matching a list with a pattern x :y :xs checks whether
the list has two or more elements, and then binds x to the first element, y to
the second one, and xs to the rest of the list.) The two kinds of rearrangement
are similar, and we will discuss view rearrangement only. We will start by for-
malizing pattern matching as a bidirectional operation—in fact an isomorphism.
Based on pattern matching, evaluation and inverse evaluation of rearranging
λ-expressions can be defined, again forming an isomorphism. The semantics of a
view rearrangement is then the composition of this latter isomorphism with the
lens obtained by interpreting the inner BiGUL program.

Strongly typed pattern matching, bidirectionally. Pattern matching is
inherently a bidirectional operation: In one direction, we break something into
a collection of its components at the variable positions of a pattern. This collec-
tion can be considered as indexed by the variable positions, and acting like an
environment for expression evaluation. Indeed, conversely, if we have a pattern
and a corresponding environment, we can treat the pattern as an expression and
evaluate it in the environment. These two directions are inverse to each other,
i.e., they form a (partial) isomorphism. For the language designer, it may be
slightly tedious to establish such isomorphisms, but for the programmer, pat-
tern matching and evaluation are arguably the most natural way to decompose
and rearrange things. Previous bidirectional languages usually provide theoret-
ically simpler combinators for decomposition and rearrangement, but they are
hard to use in practice. BiGUL’s native support of pattern matching, on the
other hand, turns out to be one important contributing factor in its usability.

BiGUL’s patterns are strongly typed: The programmer has to declare a target
type for a pattern, and the pattern is guaranteed, through typechecking, to make
sense for that target type. This can be achieved by defining the datatype of
patterns as a generalised algebraic datatype:

data Pat a where
PVar :: Eq a ⇒ Pat a
PConst :: Eq a ⇒ a → Pat a
PProd :: Pat a → Pat b → Pat (a, b)
PLeft :: Pat a → Pat (Either a b)
PRight :: Pat b → Pat (Either a b)
PIn :: InOut a ⇒ Pat (F a) → Pat a

A pattern can be a (nameless) variable, a constant, a product, a Left or Right
injection (for the Either type), or a generic constructor, and its target type is
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given as the index in its type. For example, the pattern PLeft (PConst ()) has
type Pat (Either () b), and can only be used to match those values of type
Either () b (and matching succeeds only for the value Left ()). The InOut type-
class contains the types that are isomorphic to (and therefore interconvertible
with) a sum-of-products representation. The isomorphism is witnessed by

inn :: InOut a ⇒ F a → a and out :: InOut a ⇒ a → F a

which will be used to define pattern matching and evaluation. For example, [a ] is
an instance of InOut , and F [a ], an isomorphic sum-of-products representation
of [a ], is Either () (a, [a ]). The two functions witnessing the isomorphism for
lists are defined by

inn (Left ()) = [ ]
inn (Right (x , xs)) = x : xs
out [ ] = Left ()
out (x : xs) = Right (x , xs)

How do we define pattern matching? As we mentioned above, the result of
matching a value against a pattern is an environment indexed by the variable
positions of the pattern. For example, matching a list against the cons pattern

PIn (PRight (PProd PVar PVar)) (3)

should produce an environment containing its head and tail. Here we want a safe
(but not necessarily efficient) representation of the environment type, in the sense
that the indices into the environment should be exactly the variable positions of
the pattern, and we want that to be enforced statically by typechecking. In other
words, this environment type depends on the pattern, and a way to compute this
type is to encode it as a second index of the Pat datatype:

data Pat a env where
PVar :: Eq a ⇒ Pat a (Var a)
PConst :: Eq a ⇒ a → Pat a ()
PProd :: Pat a a ′ → Pat b b′ b′′ → Pat (a, b) (a ′, b′)
PLeft :: Pat a a ′ → Pat (Either a b) a ′

PRight :: Pat b b′ → Pat (Either a b) b′

PIn :: InOut a ⇒ Pat (F a) b → Pat a b

Notice that an environment type is just a product of Var types—for example,
the environment type computed for the cons pattern (3) is

(Var a,Var [a ]) (4)

We will discuss Var later, which is simply defined by

newtype Var a = Var a

Now we can define the (strongly typed) pattern matching operation:
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deconstruct :: Pat a env → a → Maybe env
deconstruct PVar x = return (Var x )
deconstruct (PConst c) x = if c = = x then return () else Nothing
deconstruct (l ‘PProd ’ r) (x , y) = liftM2 (, ) (deconstruct l x )

(deconstruct r y)
deconstruct (PLeft p) (Left x ) = deconstruct p x
deconstruct (PLeft ) = Nothing
deconstruct (PRight p) (Right x ) = deconstruct p x
deconstruct (PRight ) = Nothing
deconstruct (PIn p) x = deconstruct p (out x )

and its inverse (which is total):

construct :: Pat a env → env → a
construct PVar (Var x ) = x
construct (PConst c) = c
construct (l ‘PProd ’ r) (envl , envr) = (construct l envl , construct r envr)
construct (PLeft p) env = Left (construct p env)
construct (PRight p) env = Right (construct p env)
construct (PIn p) env = inn (construct p env)

Precisely speaking, we have

deconstruct p x = Just e ⇔ construct p e = x

for all p ::Pat a env , x ::a, and e ::env , establishing a (half-) partial isomorphism
between env and a.

λ-expressions for rearrangement and their evaluation. Now consider view
rearrangement, which evaluates a “simple” pattern-matching λ-expression on
the view and continues execution with the transformed view. The body of the
λ-expression refers to the variables appearing in the pattern. How do we represent
such references? We have seen that an environment type is a product, i.e., a
binary tree; to refer to a component in an environment, we can use a path that
goes from the root to a sub-tree. In BiGUL, these paths are called directions:

data Direction env a where
DVar :: Direction (Var a) a
DLeft :: Direction a t → Direction (a, b) t
DRight :: Direction b t → Direction (a, b) t

The type of a direction is indexed by the environment type it points into and the
component type it points to. Note that the type of DVar is specified to work with
only environment types marked with Var ; this is for ensuring that a direction
goes all the way down to an actual component at a variable position of the
pattern, rather than stopping half-way and pointing to a sub-tree which include
more than one component. For example, for the environment type (4) for the cons
pattern, only two directions are valid, namely DLeft DVar and DRight DVar ,
whereas DVar alone would point to the entire environment instead of one of
the variable positions, and is ruled out by typechecking (in the sense that it is
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impossible for DVar to have type Direction (Var a,Var [a ]) b for any b). It is
easy to extract a component from an environment following a direction:

retrieve :: Direction env a → env → a
retrieve DVar (Var x ) = x
retrieve (DLeft d) (x , ) = retrieve d x
retrieve (DRight d) ( , y) = retrieve d y

Now we can define expressions, which are similar to patterns but include direc-
tions rather than variables, to represent the body of rearranging λ-expressions:

data Expr env a where
EDir :: Direction env a → Expr env a
EConst :: (Eq a) ⇒ a → Expr env a
EProd :: Expr env a → Expr env b → Expr env (a, b)
ELeft :: Expr env a → Expr env (Either a b)
ERight :: Expr env b → Expr env (Either a b)
EIn :: (InOut a) ⇒ Expr env (F a) → Expr env a

For example, the rearranging λ-expression

λ(x : xs) → (x , xs) (5)

is represented by the cons pattern (3) and the pair expression

EProd (EDir (DLeft DVar)) (EDir (DRight DVar)) (6)

Evaluating an expression under an environment is similar to inverse pattern
matching:

eval :: Expr env a → env → a
eval (EDir d) env = retrieve d env
eval (EConst c) env = c
eval (l ‘EProd ’ r) env = (eval l env , eval r env)
eval (ELeft e) env = Left (eval e env)
eval (ERight e) env = Right (eval e env)
eval (EIn e) env = inn (eval e env)

The type of RearrV is then:

RearrV :: Pat v env → Expr env v ′ → BiGUL s v ′ → BiGUL s v

Note that in the type of RearrV , the types of the pattern and expression share
the same environment type index, ensuring that the directions in the expression
can only refer to the variable positions in the pattern. And the put behaviour of
RearrV is simply:

put (RearrV p e b) s v = do env ← deconstruct p v
put b s (eval e env)
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Inverse evaluation of rearranging λ-expressions. For the get direction,
after executing the inner BiGUL program to obtain an intermediate view, we
should reverse the roles of the pattern and body in the rearranging λ-expression
λp → e, using e as a (possibly non-linear) pattern to match the intermediate
view, and computing the final view by evaluating p. For example, the put direc-
tion of view rearrangement with the λ-expression (5) turns a view list into a pair,
on which the inner program operates; in the get direction, the inner program will
extract from the source an intermediate view pair, which should be converted
back to a list by the inverse λ-expression λ(x , xs) → (x :xs). In more detail, given
an intermediate view pair (x , xs), we match it with the pair expression (6), and
see that x is associated with the direction DLeft DVar and xs with DRight DVar .
From such associations we can reconstruct an environment of type (4) with x
and xs in the right places, and then we can evaluate the cons pattern (3) in this
reconstructed environment, arriving at the final view x : xs.

In general, the intermediate view will be decomposed according to the body
expression, and eventually each of its components will be paired with a direction
indicating which variable position the component should go into in the recon-
structed environment. To do the reconstruction, we can prepare a “container”
which is similar to an environment except that the variable positions are ini-
tially empty. For each pair of a component and a direction, we try to put that
component into the place in the container pointed to by the direction; if two
components are put into the same position (indicating that the λ-expression
uses a variable more than once), then they must be equal. In the end, we check
that all places in the container are filled, and then use it as an environment to
evaluate the pattern. Again, to compute the type of containers from a pattern,
we add a third index to Pat :

data Pat a env con where
PVar :: Eq a ⇒ Pat a (Var a) (Maybe a)
PConst :: Eq a ⇒ a → Pat a () ()
PProd :: Pat a a ′ a ′′ → Pat b b′ b′′ → Pat (a, b) (a ′, b′) (a ′′, b′′)
PLeft :: Pat a a ′ a ′′ → Pat (Either a b) a ′ a ′′

PRight :: Pat b b′ b′′ → Pat (Either a b) b′ b′′

PIn :: InOut a ⇒ Pat (F a) b c → Pat a b c

A container type is just like an environment type except that the variable posi-
tions give rise to Maybe instead of Var . For the cons example, the computed
container type is

(Maybe a,Maybe [a ]) (7)

The first step—matching a value with an expression—can then be implemented
as:

uneval :: Pat a env con → Expr env b → b → con → Maybe con
uneval p (EDir d) x con = unevalD p d x con
uneval p (EConst c) x con = if c = = x then return con
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else Nothing
uneval p (EProd l r) (x , y) con = uneval p l x con >>= uneval p r y
uneval p (ELeft e) (Left x ) con = uneval p e x con
uneval p (ELeft ) x con = Nothing
uneval p (ERight e) (Right x ) con = uneval p e x con
uneval p (ERight ) x con = Nothing
uneval p (EIn e) x con = uneval p e (out x ) con
unevalD :: Pat a env con → Direction env b → b → con → Maybe con
unevalD PVar DVar x (Just y) = if x = = y

then return (Just x )
else Nothing

unevalD PVar DVar x Nothing = return (Just x )
unevalD (PConst c) x con = return con
unevalD (l ‘PProd ’ r) (DLeft d) x (conl , conr) = liftM (, conr)

(unevalD l d x conl)
unevalD (l ‘PProd ’ r) (DRight d) x (conl , conr) = liftM (conl , )

(unevalD r d x conr)
unevalD (PLeft p) d x con = unevalD p d x con
unevalD (PRight p) d x con = unevalD p d x con
unevalD (PIn p) d x con = unevalD p d x con

This function uneval initially takes an empty container, which is generated by:

emptyContainer :: Pat v env con → con
emptyContainer PVar = Nothing
emptyContainer (PConst c) = ()
emptyContainer (l ‘PProd ’ r) = (emptyContainer l , emptyContainer r)
emptyContainer (PLeft p) = emptyContainer p
emptyContainer (PRight p) = emptyContainer p
emptyContainer (PIn p) = emptyContainer p

And then we can try to convert a container to an environment, checking whether
the container is full in the process:

fromContainerV :: Pat v env con → con → Maybe env
fromContainerV PVar Nothing = Nothing
fromContainerV PVar (Just v) = return (Var v)
fromContainerV (PConst c) con = return ()
fromContainerV (l ‘PProd ’ r) (conl , conr) = liftM2 (, )

(fromContainerV l conl )
(fromContainerV r conr)

fromContainerV (PLeft p) con = fromContainerV pat con
fromContainerV (PRight p) con = fromContainerV pat con
fromContainerV (PIn p) con = fromContainerV pat con

We can let out a sigh of relief once we successfully get hold of an environment,
since the last step—inverse pattern matching—is total. To sum up:
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get (RearrV p e b) s = do v ′ ← get b s
con ← uneval p e v ′ (emptyContainer p)
env ← fromContainerV p con
return (construct p env)

To be concrete, let us go through the steps of inverse rearranging in the
cons example. Starting with an intermediate view (x , xs) and an empty con-
tainer (Nothing ,Nothing) of type (7), uneval will invoke unevalD twice, the
first time updating the container to (Just x ,Nothing) and the second time to
(Just x , Just xs). The resulting container is full, and thus fromContainerV will
successfully turn it into an environment (Var x ,Var xs) of type (4), in which
we evaluate the cons pattern (3) and obtain x : xs.

Conceptually, this is just reversing pattern matching and expression evalua-
tion. To actually prove the well-behavedness, though, we need to reason about
stateful computation (which is what uneval essentially is), which involves com-
ing up with suitable invariants and proving that they are maintained throughout
the computation.

It is interesting to mention that there would be a catch if we designed this
combinator from the get direction: It is tempting to think that, since a rear-
ranging λ-expression gives rise to a partial isomorphism, which can be lifted to
a lens, we can simply compose the lens lifted from the isomorphism with the
inner lens to give a lens semantics to RearrV . This would result in a redundant
computation of an intermediate source which is immediately discarded, and now
the success of the whole computation would unnecessarily depend on that of the
intermediate source. To eliminate the redundant computation, we would need to
use a special composition which composes a lens directly with an isomorphism
on the right. Such a need would be hard to notice since the get behaviour of the
two compositions are the same; that is, we really have to think in terms of put
to see that the special composition is needed.

5.7 Summary

In one (long) section, we have examined the internals of BiGUL. After seeing the
definition of (well-behaved) lenses that takes partiality explicitly into account, we
have gone through the development of most of BiGUL’s constructs and justified
their well-behavedness—in the case of Prod , we have even seen a more formal
and detailed well-behavedness proof. The Case construct is the most interesting
one in terms of its design for achieving bidirectionality, while the rearrangement
operations showcase more advanced datatype-generic programming techniques
in Haskell for guaranteeing type safety. We will now shift our focus back to
BiGUL programming, this time looking at some larger examples.

6 Position-, Key-, and Delta-Based List Alignment

In the next three sections, we will talk about some applications in BiGUL, start-
ing with the list alignment problem. List alignment is one of the tasks that
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frequently show up when developing bidirectional applications. When the source
and view are both lists, and the get direction (i.e., the consistency relation) is
a map, how do we put an updated view—the updates on which might involve
insertions, deletions, in-place modifications, and reordering—into the source?
This topic has be treated by Barbosa et al.’s matching lenses [1], which are
special-purpose lenses into which several fixed alignment strategies are hard-
coded. Below we will see how a number of alignment strategies can be pro-
grammed with BiGUL’s general-purpose constructs, instead of having to extend
the language with special-purpose alignment constructs.

Throughout the section, we use a concrete example to introduce three vari-
ations of list alignment. Suppose that we represent a payroll database as a list.
(This is a slightly inadequate setting for explaining list alignment, because entries
in a database are usually unordered. But let us assume that order matters.)
Each entry is a triple—more precisely, a pair whose second component is again
a pair—consisting of an identification number (“id” henceforth), a name, and a
salary number:

type Source = (Id , (Name,Salary))
type Id = Int
type Name = String
type Salary = Int

For example, here is a sample payroll database:

employees :: [Source ]
employees = [ (0, ("Zhenjiang", 1000))

, (1, ("Josh" , 400 ))
, (2, ("Jeremy" , 2000))]

Suppose that the human resource department is in charge of hiring or sacking
employees but does not handle salary numbers, so the entries of the database
are presented to them only as pairs of ids and names:

type View = (Id ,Name)

For example, employees is presented to them as

[(0, "Zhenjiang"), (1, "Josh"), (2, "Jeremy")]

on which they can make modifications. It is easy to write a BiGUL program to
synchronize the source and view elements:

bx :: BiGUL Source View
bx = $(rearrV [[λ(id ,name) → (id , (name, ())) ]])$

Replace ‘Prod ’ (Replace ‘Prod ’ Skip (const ()))

The problem is then how the correspondences between sources and views in the
two lists can be determined, so that bx can be applied to the right pairs.
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6.1 Position-Based Alignment

As a first exercise, we consider the simplest strategy, which matches source and
view elements by their positions in the lists. If the source list has more elements
than the view list, the extra elements at the tail are simply dropped; if the source
list has fewer elements, then new source elements have to be created, which we
can specify as a function:

cr :: View → Source
cr (i ,n) = (i , (n, 0))

The salary is set to zero, which could be taken care of by, say, the accounting
department later. We will use bx and cr as the element synchronizer and creator
respectively for our payroll database throughout this section, but our alignment
programs will not be restricted to the payroll database setting—we will develop
our alignment programs generically, setting the source and view types as poly-
morphic type parameters (s and v below) and also the element synchronizer and
element creator as parameters (b and c below), so the alignment programs can
be widely applicable. Here is how we implement position-based alignment, which
is fairly standard:

posAlign :: (Show s,Show v) ⇒ BiGUL s v → (v → s) → BiGUL [s ] [v ]
posAlign b c = Case

[ $(normalSV P [[ [ ] ]] P [[ [ ] ]] P [[ [ ] ]])
=⇒ $(update P [[ [ ] ]] P [[ [ ] ]] D[[ ]])

, $(normalSV P [[ : ]] P [[ : ]] P [[ : ]])
=⇒ $(update P [[ x : xs ]] P [[ x : xs ]] D[[ x = b; xs = posAlign b c ]])

, $(adaptiveSV P [[ : ]] P [[ [ ] ]])
=⇒ λ → [ ]

, $(adaptiveSV P [[ [ ] ]] P [[ : ]])
=⇒ λ (v : ) → [c v ]

]

The normal branches deal with the situations where both lists are empty or non-
empty, and the adaptive branches remove or create elements when the lengths
of the two lists differ.

The get direction of posAlign does exactly what we want it to do:

*Alignment> get (posAlign bx cr) employees
Just [(0,"Zhenjiang"),(1,"Josh"),(2,"Jeremy")]

It should be quite obvious, though, that the put direction is not so useful for our
purpose. If we sack Josh:

updatedEmployees0 :: [View ]
updatedEmployees0 = [(0, "Zhenjiang"), (2, "Jeremy")]

then the database will be updated to:
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*Alignment> put (posAlign bx cr) employees updatedEmployees0
Just [(0,("Zhenjiang",1000)),(2,("Jeremy",400))]

where Jeremy inadvertently gets Josh’s original salary. Even if we do not remove
any employee, we may still want to reorder them:

updatedEmployees1 :: [View ]
updatedEmployees1 = [(2, "Jeremy"), (0, "Zhenjiang"), (1, "Josh")]

and now everyone gets the wrong salary:

*Alignment> put (posAlign bx cr) employees updatedEmployees1
Just [(2,("Jeremy",1000)),(0,("Zhenjiang",400)),(1,("Josh",2000)

)]

This first exercise shows that the alignment problem is inherently one that should
be solved from the put direction. It is easy to implement the get direction cor-
rectly, but what matters is the put behavior.

6.2 Key-Based Alignment

A more reasonable strategy is to match source and view elements by some key
value. In our example, we can use the id as the key. Key-based alignment might
seem much more complex than position-based alignment, but, in fact, we can
just revise posAlign to get a BiGUL program for key-based alignment!

First of all, we need to somehow obtain the keys. In our example, on both
the source and view we can use fst to extract the key value. In general, we
can further parametrize the alignment program with key extraction functions
ks :: s → k and kv :: v → k for some type k of key values:

keyAlign :: (Show s,Show v ,Eq k)
⇒ (s → k) → (v → k) → BiGUL s v → (v → s) → BiGUL [s ] [v ]

The first normal branch of posAlign still works perfectly. As for the second
normal branch, we should revise the main condition to also require that the
head elements of the two lists have the same key value:

λ(s : ss) (v : vs) → ks s = = kv v

The first adaptive branch, again, works well. The second adaptive branch, on
the other hand, is no longer applicable: since the main condition of the second
normal branch has been tightened, it is no longer the case that this adaptive
branch will receive only empty source lists. In fact, whether the source list is
empty or not is irrelevant here—what matters now is whether the key of the
first view is in the source list. If it is, then we bring the (first) source element
with the same key value to the head position, and the second normal branch can
take over; otherwise, we create a new source element. This gives us key-based
alignment:
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keyAlign :: forall s v k . (Show s,Show v ,Eq k)
⇒ (s → k) → (v → k) → BiGUL s v → (v → s) → BiGUL [s ] [v ]

keyAlign ks kv b c = Case
[$(normalSV P [[ [ ] ]] P [[ [ ] ]] P [[ [ ] ]])

=⇒ $(update P [[ [ ] ]] P [[ [ ] ]] D[[ ]])
, $(normal [[λ(s : ss) (v : vs) → ks s = = kv v ]] P [[ : ]])

=⇒ $(update P [[ x : xs ]] P [[ x : xs ]] D[[ x = b; xs = keyAlign ks kv b c ]])
, $(adaptiveSV P [[ : ]] P [[ [ ] ]])

=⇒ λ → [ ]
, $(adaptive [[λss (v : vs) → kv v ∈ map ks ss ]])

=⇒ λss (v : ) → uncurry (:) (extract (kv v) ss)
, $(adaptiveSV P [[ ]] P [[ : ]])

=⇒ λss (v : ) → c v : ss
]
where
extract :: k → [s ] → (s, [s ])
extract k (x : xs) | ks x = = k = (x , xs)

| otherwise = let (y , ys) = extract k xs
in (y , x : ys)

Note that the program does not assume that keys are unique—if there are n view
elements having the same key, then the first n source elements with that key will
be retained and synchronised with those view elements in order. This strategy
is a somewhat arbitrary choice, but can be changed by, for example, using a
different extract . (On the other hand, in practice it is probably wiser to enforce
uniqueness of keys, so that we can be sure which source element will be used
to match a view element, and do not need to rely on the choices made by the
implementation.)

Back to our payroll database example. The get direction behaves the same:

*Alignment> get (keyAlign fst fst bx cr) employees
Just [(0,"Zhenjiang"),(1,"Josh"),(2,"Jeremy")]

Unlike position-based alignment, view element deletion can now be reflected
correctly:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees0

Just [(0,("Zhenjiang",1000)),(2,("Jeremy",2000))]

And reordering as well:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees1

Just [(2,("Jeremy",2000)),(0,("Zhenjiang",1000)),(1,("Josh",400)
)]

So it seems that key-based alignment is just what we need. Indeed, key-
based alignment usually works well, but there is an important assumption: the
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key values should not be changed. If, for example, we decide to assign a different
id to Josh:

updatedEmployees2 :: [View ]
updatedEmployees2 = [(0, "Zhenjiang"), (100, "Josh"), (1, "Jeremy")]

Then the effect is the same as sacking Josh and then hiring him again, and his
salary is thus reset:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees2

Just [(0,("Zhenjiang",1000)),(100,("Josh",0)),(1,("Jeremy",400))
]

The problem is that we cannot distinguish modification from deletion and inser-
tion pairs. To be able to have such distinction, we need the notion of deltas [4],
which allows us to explicitly represent and keep track of the correspondences
between source and view elements.

6.3 Delta-Based Alignment

A (horizontal) delta between a source list and a view list is a list of pairs of
corresponding positions:

type Delta = [(Int , Int)]

For example, the delta we have in mind between the source list employees and
the view list updatedEmployees2 is [(0, 0), (1, 1), (2, 2)], which, in particular, asso-
ciates the source and view entries for Josh since (1, 1) is included, instead of
[(0, 0), (2, 2)], which indicates that Josh’s source entry does not correspond to
any view entry and should be deleted, and that Josh’s view entry does not
correspond to any source entry and is thus new. Deltas can easily represent
reordering as well. For example, we would supply the delta between employees
and updatedEmployees1 as [(0, 1), (1, 2), (2, 0)], associating the 0th element in
the source—namely the one for Zhenjiang—with the 1st element in the view,
and so on. Comparing this treatment with the key-based one, we might say that
keys are “poor man’s correspondences”, which are not as explicit and unam-
biguous as Delta. A Delta between source and view lists directly describes the
accurate correspondences between them, whereas with keys the correspondences
can only be inferred, sometimes inaccurately.

So the input now includes not only source and view lists but also a delta
between them. Recall key-based alignment: what it does overall is to bring the
first matching source element to the front for each view element, so the source
list is updated throughout execution, with the links between the source and view
elements gradually and implicitly restored. If we are doing something similar with
delta-based alignment, then when the source list is updated, the delta should
also be updated to reflect the restored consistency. This suggests that the delta
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should be paired with the source list, so that it can be updated. The type we
use for the delta-based alignment program is thus:

deltaAlign :: (Show s,Show v)
⇒ BiGUL s v → (v → s) → BiGUL ([s ],Delta) [v ]

Here we take a simpler approach to implementing deltaAlign, analyzing the
problem into just two cases: The delta can tell us either that the source and
view elements are all in correspondence, in which case a simple position-based
alignment suffices, or that we need to do some rearrangement of the source
elements, which can be done by adaptation. In BiGUL:

idDelta :: [s ] → Delta
idDelta ss = [(i , i) | i ← [0 . . length ss ]]
deltaAlign :: (Show s,Show v)

⇒ BiGUL s v → (v → s) → BiGUL ([s ],Delta) [v ]
deltaAlign b c = Case

[$(normal [[λ(ss, d) vs → length ss = = length vs ∧ d = = idDelta ss ]]
P [[ ]])

=⇒ $(rearrV [[λvs → (vs, ()) ]])$posAlign b c ‘Prod ’ Skip (const ())
, $(adaptive [[λ → otherwise ]])

=⇒ λ(ss, d) vs →
let d ′ = map swap d

ss ′ = [maybe (c v) (ss!!) (lookup j d ′) | (v , j ) ← zip vs [0 . . ]]
in (ss ′, idDelta ss ′)

]

The source and view lists are in full correspondence if and only if they have the
same length and the delta associates all their elements positionally. This full
positional delta can be computed by idDelta. When this is the case, it suffices to
call posAlign to carry out element-wise synchronization, since no rearrangement
is required. Otherwise, we enter the adaptive branch, which constructs a new
source list in full correspondence with the view list, drawing elements from the
original source list or creating new ones as the delta dictates. The new source
list is in full correspondence with the view list, so the delta we pair with it is
the one computed by idDelta.

Only when performing put does a delta make sense. When performing get ,
however, we still need to supply a delta since it is part of the source; but there
is a natural choice, namely idDelta. So we define:

putDeltaAlign :: (Show s,Show v)
⇒ BiGUL s v → (v → s) → [s ] → Delta → [v ] → Maybe [s ]

putDeltaAlign b c ss d vs = fmap fst (put (deltaAlign b c) (ss, d) vs)
getDeltaAlign :: (Show s,Show v)

⇒ BiGUL s v → (v → s) → [s ] → Maybe [v ]
getDeltaAlign b c ss = get (deltaAlign b c) (ss, idDelta ss)
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It is easy to prove that, given the same b and c, these two functions do form a
lens. The key observation is that the delta produced by put (deltaAlign b c) is
necessarily the one computed by idDelta, so, for example, in PutGet, throwing
away the delta in the put direction is fine because it can be recomputed by
idDelta, and the get direction can resume from exactly the same source pair.

Back to our example. We can now update Josh’s id without resetting his
salary by providing a full delta indicating that there are only in-place updates:

*Alignment> putDeltaAlign bx cr employees [(0,0), (1,1), (2,2)]
updatedEmployees2

Just [(0,("Zhenjiang",1000)),(100,("Josh",400)),(1,("Jeremy
",2000))]

Besides obvious modifications like reordering, we can also do some fairly sub-
tle modifications now: If we actually sack Josh and replace him with a new
Josh (inheriting the original Josh’s id) whose salary should be reset (to be re-
considered by the accounting department), we can say so by providing a partial
delta:

*Alignment> putDeltaAlign bx cr employees [(0,0), (2,2)] =<<
getDeltaAlign bx cr employees

Just [(0,("Zhenjiang",1000)),(1,("Josh",0)),(2,("Jeremy",2000))]

One alignment to rule them all. Where do deltas come from? In general, we
may provide a special view editor which monitors how the view is modified and
produces a suitable delta. But in more specialized scenarios, deltas can simply
be computed by, for example, comparing the source and view. We can formalize
this delta computation as:

type DeltaStrategy s v = [s ] → [v ] → Delta

and further parametrize putDeltaAlign:

putDeltaAlignS :: (Show s,Show v) ⇒ DeltaStrategy s v
→ BiGUL s v → (v → s) → [s ] → [v ] → Maybe [s ]

putDeltaAlignS dst b c ss vs = putDeltaAlign b c ss (dst ss vs) vs

Position-based and key-based alignment can then be seen as special cases of
delta-based alignment using specific delta-computing strategies. For position-
based alignment, we simply compute the identity delta:

byPosition :: DeltaStrategy s v
byPosition ss = idDelta ss

And for key-based alignment, we compute a delta associating source and view
elements with the same key:

byKey :: Eq k ⇒ (s → k) → (v → k) → DeltaStrategy s v
byKey ks kv ss vs =
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let sis = zip ss [0 . . ]
in catMaybes [ fmap (λ( , i) → (i , j )) (find (λ(s, ) → ks s = = kv v) sis)

| (v , j ) ← zip vs [0 . . ]]

We can check that these strategies indeed give us position-based and key-based
alignment:

*Alignment> putDeltaAlignS byPosition bx cr employees
updatedEmployees0

Just [(0,("Zhenjiang",1000)),(2,("Jeremy",400))]
*Alignment> putDeltaAlignS (byKey fst fst) bx cr employees

updatedEmployees1
Just [(2,("Jeremy",2000)),(0,("Zhenjiang",1000)),(1,("Josh",400)

)]

7 Bidirectionalizing Relational Queries with BiGUL

In work on relational databases, the view-update problem is about how to trans-
late update operations on the view table to corresponding update operations on
the source table properly2. Relational lenses [3] try to solve this problem by pro-
viding a list of combinators that let the user write get functions (queries) with
specified updated policies for put functions (updates); however this can only
provide limited control of update policies. To resolve this problem, we define
a new library Brul [17], where two putback -based combinators (operators) are
designed to specify update policies, from which forward queries (selection, pro-
jection, join) can be automatically derived.

– align is to update a source list with a view list by aligning part of source
elements filtered by a predicate with view elements according to a matching
criteria between source element and view element;

– unjoin is to decompose a join view to update two sources.

In this section, we will focus on align. As will be seen in Sect. 7.3, it can
describe more flexible update strategies (related to selection/projection queries)
than relational lenses, while the well-behavedness is guaranteed for free.

7.1 Relational Database Representation

A relational table (RT ) is denoted by a list of records (where the order does
not really matter), and each record (Record) is denoted by a list of attributes of
type RType, which could be an integer, a string, a floating point number, or a
double-precision floating point number.

type RT = [Record ]
type Record = [RType ]

2 The text of this section is adapted from our BX 2016 paper [17].
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Fig. 1. Source table

data RType = RInt Int
| RString String
| RFloat Float
| RDouble Double
deriving (Show ,Eq ,Ord)

To allow pattern matching on the newly defined algebraic data type RType in
BiGUL, we need to add the following declaration.

deriveBiGULGeneric ''RType

Consider the table in Fig. 1 that stores five music track records, and each
record contains its Track name, release Date, Rating, Album, and the Quantity
of this Album. We can represent it as follows, where all the records have the
same structure.

s = [[RString "Lullaby" ,RInt 1989,RInt 3,RString "Galore",RInt 1]
, [RString "Lullaby" ,RInt 1989,RInt 3,RString "Show" ,RInt 3]
, [RString "Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1]
, [RString "Lovesong",RInt 1989,RInt 5,RString "Paris" ,RInt 4]
, [RString "Trust" ,RInt 1992,RInt 4,RString "Wish" ,RInt 5]
]

7.2 Relation Alignment

The alignment of two relational tables, which is related by a selection/projection
query, is similar to the key-based list alignment in Sect. 6. The difference is that
we need to consider filtering on (i.e., selection of) the source records based on a
condition.

Let us see how to extend keyAlign (in Sect. 6) to implement the new align
pAlign that can deal with filtering of source elements. We extend keyAlign with
two new arguments; one is the predicate p for filtering source elements, and the
other is the function h for hiding/concealing source elements if their correspond-
ing elements are removed from the view. As seen below, pAlign has a similar case
structure as that of keyAlign, except that we refine the third case of keyAlign
into two cases (the third and the fourth cases of pAlign): the third case says that
if the view v is empty but the first record in the source satisfies p, we should hide
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this record using h, and the fourth case says that if the first record of the source
does not satisfy p, we simply ignore it and continue with the remaining records.

pAlign :: forall s v k . (Show s,Show v ,Eq k)
⇒ (s → Bool) -- predicate
→ (s → k) → (v → k) → BiGUL s v → (v → s)
→ (s → Maybe s) -- conceal function
→ BiGUL [s ] [v ]

pAlign p ks kv b c h = Case
[$(normalSV P [[ [ ] ]] P [[ [ ] ]] P [[ [ ] ]])

=⇒ $(update P [[ [ ] ]] P [[ [ ] ]] D[[ ]])
, $(normal [[λ(s : ss) (v : vs) → p s ∧ ks s = = kv v ]] [[λ(s : ss) → p s ]])

=⇒ $(update P [[ x : xs ]] P [[ x : xs ]] D[[ x = b; xs = pAlign p ks kv b c h ]])
, $(adaptive [[λ(s : ss) v → p s ∧ null v ]])

=⇒ λ(s : ss) v → maybe [ ] (:[ ]) (h s) ++ ss
, $(normal [[λ(s : ss) v → not (p s) ]] [[λ(s : ss) → not (p s) ]])

=⇒ $(update P [[ : xs ]] P [[ xs ]] D[[ xs = pAlign p ks kv b c h ]])
, $(adaptive [[λss (v : vs) → kv v ∈ map ks (filter p ss) ]])

=⇒ λss (v : ) → uncurry (:) (extract (kv v) ss)
, $(adaptiveSV P [[ ]] P [[ : ]])

=⇒ λss (v : ) → filterCheck p (c v) : ss
]
where
extract :: k → [s ] → (s, [s ])
extract k (x : xs) | p x ∧ ks x = = k = (x , xs)

| otherwise = let (y , ys) = extract k xs
in (y , x : ys)

filterCheck p v | p v = v
| otherwise = error "error in filter checking"

To test, recall the example in Sect. 6. Consider the following use of pAlign,
denoting that the view is selected from those records from the source whose salary
is greater than 1000, and that if a view record is removed, the corresponding
record in the source will be removed (and thus hidden).

pSelProj = pAlign (λ(k , (n, s)) → s > 1000) fst fst bx cr ′ (const Nothing)
where cr ′ (k ,n) = (k , (n, 2000))

We have:

*Brul> get pSelProj employees
Just [(2,"Jeremy")]
*Brul> put pSelProj employees updatedEmployees0
Just [(0,("Zhenjiang",1000)),(1,("Josh",400)),(0,("Zhenjiang

",2000)),(2,("Jeremy",2000))]
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7.3 Describing Update Policies in Selection/Projection

With pAlign, we can describe various update policies for the selection/projection
queries. To be concrete, consider the following selection/projection query:

select Track ,Rating ,Album,Quantity as v

from s

where Quantity > 2

which extracts the track, rating, album and quality information from those music
tracks in the source s whose quantity is greater than 2. Let us see how to write a
single BiGUL program so that its get does the above query and its put describes
a specific update policy.

The first BiGUL program is u0 below.

u0 :: RType → BiGUL [Record ] [Record ]
u0 d = pAlign

(λr → (r !! 4) > RInt 2)
(λs → (s !! 0, s !! 3))
(λv → (v !! 0, v !! 2))
$(update P [[ (t : : r : a : q : [ ]) ]]

P [[ (t : r : a : q : [ ]) ]]
D[[ t = Replace; r = Replace; a = Replace; q = Replace ]])

(λ(t : r : a : q : [ ]) → (t : d : r : a : q : [ ]))
(const Nothing)

It tries to match the source records whose Quantity is greater than 2 with the
view records by the key (Track ,Album). There are three cases:

– A source record is matched with a view record: we first use a rearrangement
function to rearrange the view from a four-element list [t , r , a, q ] to a five-
element list [t , , r , a, q ] with the second element matched against a widecard.
This rearrangement function reshapes the view to match the shape of the
source. Then, the element in the source is Replaced by the corresponding
element in the view.

– A view record that has no matching source record: a new source record is
created with a default value d filled into the Date.

– A source record that has no matching view record: we simply delete this
record by returning Nothing .

Now if we wish to hide the source record by setting its Quantity to 0 rather
than deleting it if it has no matching view record, we could simply change the
last line of u0 and get u1 as follows.

u1 :: RType → BiGUL [Record ] [Record ]
u1 d = pAlign

(λr → (r !! 4) > RInt 2)
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(λs → (s !! 0, s !! 3))
(λv → (v !! 0, v !! 2))
$(update P [[ (t : : r : a : q : [ ]) ]]

P [[ (t : r : a : q : [ ]) ]]
D[[ t = Replace; r = Replace; a = Replace; q = Replace ]])

(λ(t : r : a : q : [ ]) → (t : d : r : a : q : [ ]))
(λ(t : d : r : a : : [ ]) → Just (t : d : r : a : RInt 0 : [ ]))

To test, let us see some concrete running examples of using u0 . Recall s
defined in Sect. 7.1. We can confirm that get performs the query given at the
start of this subsection.

*Brul> get (u0 (RInt 2000)) s

Just [[RString "Lullaby", RInt 3, RString "Show", RInt 3],[RString "

Lovesong", RInt 5,RString "Paris",RInt 4],[RString "Trust",RInt 4,

RString "Wish",RInt 5]]

Now suppose that we change the above result (view) to the following by
raising the rating of Lullaby from 3 to 4, raising the quality of lovesong from 4
to 7, and deleting Trust :

v = [[RString "Lullaby",RInt 4,RString "Show",RInt 3]
, [RString "Lovesong",RInt 5,RString "Paris",RInt 7]
]

We can reflect these changes to the source by performing put with u0 .

*Brul> put (u0 (RInt 2000)) s v

Just [[RString "Lullaby",RInt 1989,RInt 3,RString "Galore",RInt 1],[

RString "Lullaby",RInt 1989,RInt 4,RString "Show",RInt 3],[RString

"Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1],[RString "

Lovesong",RInt 1989,RInt 5,RString "Paris",RInt 7]]

In the updated source, the changes of rating and quality are correctly
reflected, and the music track Trust is removed. Note that we may reflect the
changes to the source by performing put with u1 , another update strategy, and
we will keep the music track Trust while setting its quality to be 0.

*Brul> put (u1 (RInt 2000)) s v

Just [[RString "Lullaby",RInt 1989,RInt 3,RString "Galore",RInt 1],[

RString "Lullaby",RInt 1989,RInt 4,RString "Show",RInt 3],[RString

"Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1],[RString "

Lovesong",RInt 1989,RInt 5,RString "Paris",RInt 7],[RString "Trust

",RInt 1992,RInt 4,RString "Wish",RInt 0]]

8 Parsing and Reflective Printing

When we mention the front-end of a compiler, we usually think of a parser that
turns concrete syntax, which is designed to be programmer-friendly and provides
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convenient syntactic sugar, into abstract syntax, which is concise, structured, and
easily manipulable by the compiler back-end. There is another direction, though,
in which a printer turns abstract syntax back into concrete syntax. This is
useful, for example, for reporting the result of compiler optimizations done on
abstract syntax to the programmer, who knows only concrete syntax. In this
case, though, we would want to print the optimized program in a form that is as
close to the original program as possible, so the programmer can spot what has
changed—and not changed—correctly and more easily. This is where the notion
of reflective printing comes in: By taking both the original concrete program and
the optimized abstract program as input, we can try to retain the look of the
original program as much as possible. Below we will use a simplified arithmetic
expression language to explain how reflective printing can be implemented in
BiGUL.

8.1 Well-Behavedness

It is probably obvious that the idea of reflective printing comes from put trans-
formations; parsing, then, is the get direction. Before we proceed to implement
parsing and reflective printing in BiGUL, a natural question to ask is: is well-
behavedness meaningful in the context of parsing of reflective printing? The
answer is yes, especially for PutGet: An abstract syntax tree (AST) may be
thought of as a concise and canonical representation of a concrete program, so
it would be strange if a concrete program printed from an AST could not be
parsed back to the same AST. GetPut, on the other hand, is in fact not strong
enough for our purpose, as it only says that, when an AST is unmodified, print-
ing it reflectively to the original program does not change anything, whereas we
would have liked to also say that “small” changes to the AST lead to only “small”
changes to the concrete program. That is, we would like reflective printing to
conform to some sort of least-change principle, a topic which is still unsettled
and actively investigated by the BX community. It is at least a good start to have
GetPut, though. We thus conclude that BiGUL is indeed a suitable language
for implementing reflective printers and corresponding parsers.

8.2 Additive Expressions

Here we use a minimal example which is simple and yet can demonstrate what
reflective printing is capable of. Consider the following abstract syntax of arith-
metic expressions consisting of integer constants, addition, and subtraction:

data Arith = Num Int
| Add Arith Arith
| Sub Arith Arith
deriving Show

This is a nice representation for the compiler, but we cannot expect the pro-
grammer to write something like “Sub (Num 1) (Add (Num 2) (Num 3))”, and
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should provide a concrete syntax so that they can write “1 − (2 + 3)”. Such a
concrete syntax is usually defined in terms of a BNF grammar:

Exp → Exp '+' Factor
| Exp '-' Factor
| Factor

Factor → Int
| '-' Factor
| '(' Exp ')'

The two-level structure of Exp and Factor ensures that plus and minus associate
to the left by default; to change association, we should use parentheses. And, to
spice up the problem a little, we allow minus to be used also as a negative sign, as
specified by the second production rule for Factor . BiGUL deals with structured
data only, so we should represent a string generated using this grammar as a
concrete syntax tree of the following type:

data Exp = Plus Exp Factor
| Minus Exp Factor
| EF Factor
| ENull

data Factor = Lit Int
| Neg Factor
| Paren Exp
| FNull

Again, we need to provide one deriveBiGULGeneric statement for each of the
above datatypes to allow BiGUL to operate on them:

deriveBiGULGeneric ''Arith
deriveBiGULGeneric ''Exp
deriveBiGULGeneric ''Factor

Apart from the Null constructors, which are inserted to represent incomplete
trees that can occur during reflective printing, these two datatypes are in direct
correspondence with the grammar, so it is easy to recover the string from a
concrete syntax tree:

instance Show Exp where
show (Plus e f ) = show e ++ "+" ++ show f
show (Minus e f ) = show e ++ "-" ++ show f
show (EF f ) = show f
show ENull = "."

instance Show Factor where
show (Lit n) = show n
show (Neg f ) = "-" ++ show f
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show (Paren e ) = "(" ++ show e ++ ")"
show FNull = "."

Conversely, using modern parser technologies like Haskell’s parsec parser com-
binator library, we can easily implement a “concrete parser” that turns a string
into a concrete syntax tree:

parseExp :: String → Exp

The rest of the job is then to write a BiGUL program between Exp and Arith.

8.3 Reflective Printing in BiGUL

The program is basically a case analysis: For example, when the concrete side is
a plus and the abstract side is an addition, they match, and we can go into their
sub-trees recursively. For the concrete side, the right sub-tree is of type Factor
instead of Exp, so in fact we will write two (mutually recursive) programs:

pExpArith :: BiGUL Exp Arith
pExpArith = Case ⊥
pFactorArith :: BiGUL Factor Arith
pFactorArith = Case ⊥

The branch for plus and addition can then be written as:

$(update P [[Plus l r ]] P [[Add l r ]] D[[ l = pExpArith; r = pFactorArith ]])

Following the same line of thought, we can fill in other branches to relate all
abstract constructors with concrete production rules:

pExpArith :: BiGUL Exp Arith
pExpArith = Case

[$(normalSV P [[Plus ]] P [[Add ]] P [[Plus ]])
=⇒ $(update P [[Plus l r ]] P [[Add l r ]]

D[[ l = pExpArith; r = pFactorArith ]])
, $(normalSV P [[Minus ]] P [[Sub ]] P [[Minus ]])

=⇒ $(update P [[Minus l r ]] P [[Sub l r ]]
D[[ l = pExpArith; r = pFactorArith ]])

, $(normalSV P [[EF ]] P [[ ]] P [[EF ]])
=⇒ $(update P [[EF t ]] P [[ t ]]

D[[ t = pFactorArith ]])
]

pFactorArith :: BiGUL Factor Arith
pFactorArith = Case

[$(normalSV P [[Lit ]] P [[Num ]] P [[Lit ]])
=⇒ $(update P [[Lit i ]] P [[Num i ]] D[[ i = Replace ]])
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, $(normalSV P [[Neg ]] P [[Sub (Num 0) ]] P [[Neg ]])
=⇒ $(update P [[Neg t ]] P [[Sub (Num 0) t ]] D[[ t = pFactorArith ]])

, $(normalSV P [[Paren ]] P [[ ]] P [[Paren ]])
=⇒ $(update P [[Paren t ]] P [[ t ]] D[[ t = pExpArith ]])

]

This covers only “normal” cases though, namely when the source and view are
“the same” except for parentheses and literals. What about the cases where the
source and view have mismatched shapes? For these cases, we need adaptation.
Corresponding to each branch we have already written, we add an adaptive
branch which looks at the shape of the view only, throws away a mismatched
source, and creates an incomplete one whose shape matches that of the view;
the source will be completely created through recursive processing. For example,
corresponding to the plus/addition branch, we write:

$(adaptiveSV P [[ ]] P [[Add ]])
=⇒ λ → Plus ENull FNull

The full programs are:

pExpArith :: BiGUL Exp Arith
pExpArith = Case

[$(normalSV P [[Plus ]] P [[Add ]] P [[Plus ]])
=⇒ $(update P [[Plus l r ]] P [[Add l r ]]

D[[ l = pExpArith; r = pFactorArith ]])
, $(normalSV P [[Minus ]] P [[Sub ]] P [[Minus ]])

=⇒ $(update P [[Minus l r ]] P [[Sub l r ]]
D[[ l = pExpArith; r = pFactorArith ]])

, $(normalSV P [[EF ]] P [[ ]] P [[EF ]])
=⇒ $(update P [[EF t ]] P [[ t ]]

D[[ t = pFactorArith ]])
, $(adaptiveSV P [[ ]] P [[Add ]])

=⇒ λ → Plus ENull FNull
, $(adaptiveSV P [[ ]] P [[Sub ]])

=⇒ λ → Minus ENull FNull
, $(adaptiveSV P [[ ]] P [[ ]])

=⇒ λ → EF FNull
]

pFactorArith :: BiGUL Factor Arith
pFactorArith = Case

[$(normalSV P [[Lit ]] P [[Num ]] P [[Lit ]])
=⇒ $(update P [[Lit i ]] P [[Num i ]] D[[ i = Replace ]])

, $(normalSV P [[Neg ]] P [[Sub (Num 0) ]] P [[Neg ]])
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=⇒ $(update P [[Neg t ]] P [[Sub (Num 0) t ]] D[[ t = pFactorArith ]])
, $(normalSV P [[Paren ]] P [[ ]] P [[Paren ]])

=⇒ $(update P [[Paren t ]] P [[ t ]] D[[ t = pExpArith ]])
, $(adaptiveSV P [[ ]] P [[Num ]])

=⇒ λ → Lit 0
, $(adaptiveSV P [[ ]] P [[Sub (Num 0) ]])

=⇒ λ → Neg FNull
, $(adaptiveSV P [[ ]] P [[ ]])

=⇒ λ → Paren ENull
]

8.4 Reflecting Optimizations and Evaluation Sequences

The BiGUL programs, being bidirectional, can be executed in the put direction
as a reflective printer, or in the get direction as a parser. Let us look at parsing
first. For example:

*BiYacc> get pExpArith (parseExp "(-(3+0))")
Just (Sub (Num 0) (Add (Num 3) (Num 0)))

Note that a unary minus is regarded as syntactic sugar, and is desugared into
a subtraction whose left operand is zero. Also note that parentheses are turned
into correct structure of the abstract syntax tree, and nothing more—excessive
parentheses are cleanly discarded.

For reflective printing, as we mentioned, one application is reporting what
compiler optimizations do. We can optimize the sub-expression 3 + 0 by getting
rid of the superfluous +0, for example, and the reflective printer will be able to
retain the excessive parentheses:

*BiYacc> put pExpArith (parseExp "(-(3+0))") (Sub (Num 0) (Num
3))

Just (-(3))

Notice also that the unary minus is preserved. If the original concrete expression
uses a binary minus instead, it will be preserved as well:

*BiYacc> put pExpArith (parseExp "(0-(3+0))") (Sub (Num 0) (Num
3))

Just (0-(3))

In the above example, the pair of parentheses around 3 is also preserved. This
is more a coincidence, though—if we change Sub to Add , for example, the pair
of parentheses will not be preserved:

*BiYacc> put pExpArith (parseExp "(0-(3+0))") (Add (Num 0) (Num
3))

Just (0+3)



Principles and Practice of Bidirectional Programming in BiGUL 147

This behavior is indeed what we described with our BiGUL program: the con-
crete binary minus does not match the abstract Add , so the whole concrete
expression 0-(3+0) inside the outermost pair of parentheses is discarded, and a
new concrete expression 0+3 is generated by adaptation. This behavior does not
give us “least change”, however: the pair of parentheses around 3 could have been
kept. This is one example showing that, while GetPut (no view change implies
no source change) is guaranteed by BiGUL, least-change behavior (small view
change implies small source change) is another matter completely, and requires
extra care and effort to achieve.

Another thing we can do is reflecting the steps in an evaluation sequence of
an abstract syntax tree to concrete syntax. For example, starting from:

*BiYacc> get pExpArith (parseExp "1+(2+3)")
Just (Add (Num 1) (Add (Num 2) (Num 3)))

it takes two steps to evaluate this expression:

*BiYacc> put pExpArith (parseExp "1+(2+3)") (Add (Num 1) (Num 5)
)

Just 1+(5)
*BiYacc> put pExpArith (parseExp "1+(5)") (Num 6)
Just 6

This means that if we have an evaluator on the abstract syntax, we will auto-
matically get an evaluator on the concrete syntax!

A reflective printer can also be used as an ordinary printer by setting the
original source to an empty one. For example:

*BiYacc> put pExpArith ENull (Sub (Num 0) (Add (Num 1) (Num 1)))
Just 0-(1+1)

Note that the subtraction is reflected as a binary minus instead of a unary
one, despite that the left operand is zero. This behavior is easily customizable:
By adding an adaptive branch before the one dealing generically with Sub in
pExpArith:

$(adaptiveSV P [[ ]] P [[Sub (Num 0) ]])
=⇒ λ → EF FNull

the above abstract syntax tree can be printed as:

*BiYacc> put pExpArith ENull (Sub (Num 0) (Add (Num 1) (Num 1)))
Just 0-(1+1)

8.5 A Domain-Specific Language

As a final remark, the above programs may look long, but at the core of them
are merely the correspondences between concrete production rules and abstract
constructors. We can design a domain-specific language (DSL) that expresses
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such correspondences concisely, and then expand programs in this DSL into
BiGUL. In fact, we have already done so, and the DSL is called BiYacc. For
example, all the programs we have written can be generated from the following
eight-line BiYacc program:

Arith +> Exp
Add l r +> (l +> Exp) '+' (r +> Factor);
Sub l r +> (l +> Exp) '-' (r +> Factor);
f +> (f +> Factor);

Arith +> Factor
Num n +> (n +> Int);
Sub (Num 0) r +> '-' (r +> Factor);
f +> '(' (f +> Exp) ')';

See our SLE 2016 paper [18] for more interesting experiments about reflective
printing, done on a more realistic imperative language.

9 Conclusion

We have given an introduction to BiGUL programming, explained the underlying
design of its putback-based language constructs, and presented a number of
applications. BiGUL in its current form is merely one step toward a versatile
bidirectional programming language, though. We conclude this chapter by laying
out some future directions.

While BiGUL is designed to ensure that programmers can freely describe
whatever consistency restoration strategies they have in mind and guarantees
that the described strategies are well-behaved, well-behavedness guarantees may
be trivial if a described strategy is not actually well-behaved and consequently
fails some dynamic checks at runtime. Working with the current BiGUL can thus
involve a lot of tedious testing to see if those dynamic checks can go through; also,
since we must keep the dynamic checks in place to ensure well-behavedness, at
runtime they can incur serious performance overheads. We need ways to precisely
characterize the behavior of the dynamic checks, so that it is possible to know
that they are redundant and can be safely skipped during execution.

Also we have observed that, as consistency relations or consistency restora-
tion strategies become more complex, BiGUL programs can quickly become awk-
ward to write and hard to read. It is also not that easy to develop reusable
libraries because BiGUL programs are not easily composable. (The only general
composition operator, namely the classical lens composition, behaves obscurely
in the putback direction and is difficult to understand in practice. A discussion of
this problem is offered by, e.g., Diskin et al. [4, Sect. 2.2].) We need to design new
language constructs that improve composability of BiGUL programs, discover
programming patterns and architectures, and eventually build reusable libraries
to facilitate program development.

Apart from language-specific issues, there are also challenges faced by the
functional programming approach to BXs in general. For one, graphs have always
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been a kind of data structure that is hard to deal with in functional program-
ming, but the application domains of other BX sub-communities usually require
the ability to work with graphs; this is an area where BiGUL and other func-
tional programming–based languages/tools need to catch up. More fundamen-
tally, while programmable from one single direction, asymmetric lenses are a less
expressive BX formalism, and we probably should not restrict the future version
of BiGUL and new bidirectional languages to the framework of asymmetric lenses.
We should recognize that the essence of BiGUL is its full programmability of
bidirectional behavior, not the framework of asymmetric lenses which it currently
supports, and we should strive to bring this programmability into other existing
BX formalisms, or, if that is difficult, come up with new formalisms that are
designed with such programmability in mind.
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