
Towards Variability Management
In Bidirectional Model Transformation

Xiao He
School of Computer and Communication

Engineering, University of Science and

Technology Beijing, Beijing 100083, China

Email: hexiao@ustb.edu.cn

Zhenjiang Hu
National Informatics Institute, Tokyo, Japan

Email: hu@nii.ac.jp

Yi Liu
National Computer Network

Emergency Response Technical

Team/Coordination Center of China

Abstract—The bidirectional model transformation (BX) com-
prises a forward transformation get and a backward transfor-
mation put. Given that get may be an information-loss trans-
formation, the behavior of put may be uncertain. An uncertain
put produces many valid outputs that fit different application
scenarios. This paper proposes an approach to variability man-
agement in BX to enable put to generate an output model with
several variation points that can be configured to adapt this
output for different uses. Firstly, this paper proposes a variability
metamodel and management framework, which are used to
characterize and configure variation points in a transformation
result model. Secondly, this paper extends a BX language to
specify a BX with variability. Thirdly, this paper presents a BX
engine, which can execute a BX with variability and generate
a model that contains variation points. Lastly, an evaluation is
presented to show the feasibility and scalability of our approach.

I. INTRODUCTION

In Model-Driven Engineering, there is an increasing need

for model synchronization [1], [2], [3], [4] to support iterative,

collaborative, and/or multi-view development, in which the

models that are created at different development phases, by

different developers and/or from different views of the same

system, must be synchronized.

Bidirectional model transformation (BX) [5], [6], [7], [8]

is a promising solution to model synchronization and has

attracted many attentions from academia [9]. A BX can be

defined either asymmetrically or symmetrically. Without losing

generality, this paper adopts the asymmetric definition [10] that

defines a BX as the following pair of functions:

get : S → V
put : S × V → S

where, the forward transformation (get) produces a view

model from a source model, and the backward transformation

(put) converts the original source model and the updated

view model into an updated source model. With regard to the

symmetric case [6], we can combine two asymmetric BXs to

realize a symmetric BX.

In practice, get can be an information-loss transformation,

and consequently, the behavior of put becomes uncertain. Take

the classic transformation UMLtoRDBMS [11] between UML

Class Diagram and Relational Database Management System

(RDBMS) model as an example. The forward transformation

<<table>> 
e1’

<<class>>
<<persistent>>

e1

<<class>>
<<persistent>>

e1
<<table>> 

e1’

DEL

variant 1 variant 2

DEL

source view

original

updated

get

put
<<class>>

<<non-persistent>>
e1

Fig. 1: Example of uncertainty

converts all persistent classes into tables. Nevertheless, as

shown in Fig. 1, the deletion of a table may be propagated back

to the Class Diagram at least in the following two ways: 1)

deleting the class that corresponds to this table, or 2) changing

the corresponding class into a non-persistent class.

These two variants of propagating the deletion of a table, as

in Fig. 1, may be applied in different scenarios. Consider the

following example scenarios: 1) Scenario 1 adopts variant 1

that deletes all the classes whose counterparts are deleted; 2)

Scenario 2 adopts variant 2 that changes all the classes whose

counterparts are deleted into non-persistent classes; And 3)

scenario 3 combines variants 1 and 2 that delete some of the

classes, whose counterparts are deleted, while convert the rest

into non-persistent classes.

Intuitively, we can develop three separate BXs to cover the

above three scenarios. Nevertheless, this solution suffers from

high development costs and poor maintainability.

In conventional software engineering, the concept of vari-
ability has been proven in practice an effective technique that

enables an application to be configured for use in different

contexts [12]. This paper attempts to adapt software variability

for (bidirectional) model transformation so that a single BX

can be used in different scenarios.

This paper proposes model transformation variability by

adapting software variability. Transformation variability can

be defined at two different levels, namely, the specification

and the instance levels, as follows:

• The specification-level variability is the ability of a

transformation specification to be configured for use in a

specific context, e.g., [13], [14].

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.252

224



• The instance-level variability is the ability of the trans-

formation output to be configured for use in a specific

context, e.g., [15].

The specification-level variability implies that a transfor-

mation specification contains several variation points. We

can change the behavior of this model transformation via

configuring these variation points.

The instance-level variability means that a model transfor-

mation can produce a model that contains several variation

points We can configure these variation points to adapt the

output model for different uses.

This paper focuses on the instance-level variability within

the context of bidirectional model transformation. Firstly, we

propose a variability metamodel that is adapted from COVA-

MOF [16], a well-established conceptual model of software

variability. Secondly, we extend our BX language and engine

to support instance-level variability. The extended language

and engine can declare and produce instance-level variation

points during backward transformation. We also propose a

variability management framework that is used to configure

instance-level variation points in transformation output model.

There is another concept, called ambiguity that is similar

to but different from variability discussed in this paper. Both

ambiguity and variability originate from the nature of uncer-

tainty. However, variability refers to intentional, useful, and

controlled uncertain features in a BX, but ambiguity represents

unintentional and uncontrolled features.

The rest of this paper is structured as follows: Section

II introduces the basic concepts and presents the motivating

example; Section III presents our approach to transformation

variability management and demonstrates how to integrate the

approach into bidirectional model transformation; Sections IV

and V present our tool support and evaluation of our approach;

Section VI discusses the related research efforts; The last

section concludes the paper and the future work.

II. BACKGROUND AND MOTIVATION

A. Bidirectional Model Transformation

A bidirectional model transformation converts a source

model into a view model, and vice-versa. We can straight-

forwardly realize a BX using two separate unidirectional

transformations. Such realization is difficult to assure the

round-trip properties (discussed in Section III-D) of this BX,

therefore systematical BX approaches that make BX easy and

maintainable have been actively studied within the past decade.

There are three major systematical BX approaches, namely,

the relation-based, get-based and putback-based.

Relation-based approaches (e.g., [3], [5], [7]) specify a BX

as a set of bidirectional consistency relations between the

source and view models. Afterwards, a pair of forward and

backward transformations (get and put), which satisfies round-

trip properties, is automatically derived from these consistency

relations. Get-based approaches (e.g., [4]) specify a BX using

a forward transformation (i.e., get), and then automatically

derives the corresponding put from get. The relation-based and

get-based approaches usually suffer from ambiguity problems

[17], [10] that hinder developers from controlling the behavior

of their BXs.

Putback-based bidirectional programming [10] has been

proposed to tackle ambiguity problems. BiFluX [8], a putback-

based BX language for XML, has been designed based on put-
back-based bidirectional programming. The key of a putback-

based bidirectional programing is to describe how to update

source model according to an updated view model. A putback-

based BX is specified in the form of a backward transformation

put. The putback-based BX is free from ambiguity problems

because a unique get can always be derived from a well-

defined put [10]. Putback-based bidirectional programming

offers developers full control over the BX behavior.

We adapted BiFluX for bidirectional model transformation

by combining BiFluX with OCL. Our language, which is the

base of this paper, adopts the core language of BiFluX to

interpret a BX over models, while OCL instead of XPath is

used to specify the patterns and the expressions of models.

Listing 1: Example rule of putback-based BX

rule class2table(source p : Package, view s : Schema) {
cn : String;
update p:Package{classes=c:Class{name=cn, persistent=true,

abstract=false}}
with s:Schema{tables=t:Table{name=cn}} by
match-> attribute2column(c, t)
unmatchs-> delete c

/* ALTERNATIVE:
unmatchs-> enforce c:Class{persistent=false}

*/
unmatchv-> enforce c:Class{name=cn,
persistent=true, abstract=false}

}

Listing 1 shows a putback rule defined in our BX language,

which specifies how to update a class using a table. The rule

means that a persistent class c in the package p must be

updated by a table t in the schema s, where the names of

c and t must be identical. If such table t exists, then go on

updating the attributes of c with the columns of t by calling

the rule attribute2column (i.e., the match clause). If

such table is missing, then delete class c in the result (i.e., the

unmatchs clause). If such class is missing, then create a new

class c (i.e., the unmatchv clause) and go on excuting the

match clause. Assuming that we want to change class c into a

non-persistent class when the corresponding table is missing,

we replace the unmatchs clause with the ALTERNATIVE
line of code in Listing 1.

B. Variability Management and COVAMOF

In COVAMOF [16], one of the major concepts is the

variation point. Variation points are places in software artifacts

that identify locations at which variation occurs [18]. Each

variation point is associated with a set of variants. Each variant

represents an alternative structure of the associated variation

point. A variant may require or exclude other variants. Those

types of dependencies among variants restrict variant selection.

The variability of a software artifact can be represented

as a variability model that defines a set of variation points.

Configuring a variability model is to select a variant for each

variation point.

225



<<table>>
e3’

<<table>>
e2’

l1
l2

DEL DEL

VP1 VP2

VP3 VP4
V1.1

V1.2

V2.1

V2.2
V3.1

V3.2

V4.1

V4.2

delete

keep

delete

keep
delete

keep

delete

keep

put

configuration 1

configuration 2

configuration n

l1

l2

……

…
…

RDBMS Model  
(view model)

Class Diagram 
(intermediate output)

Variability Model

Class Diagram 
(final output after configuration)

Variation Point

Variant

Dependency 
(Require)

<<table>>
e1’

<<class>>
e1

<<class>>
e2

<<class>>
e3 <<class>>

e1
<<class>>

e2

<<class>>
e1

<<class>>
e2

<<class>>
e3

Fig. 2: Running example

C. Running Example

This paper uses the transformation UMLtoRDBMS men-

tioned in Section I as a motivating example. Assume that this

BX ignores any information related to non-persistent classes.

As shown in Fig. 1, the deletion of a table in the view model

will result in a variation point in the updated source model

with two variants.

Fig. 2 shows a more complex example of variability in this

BX. Assume that the original source model contains three

classes, namely, e1, e2 and e3, where e1 inherits from e2
(i and e2 inherits from e3. After the forward transformation,

three tables, namely, e1’, e2’ and e3’ (consistent with their

counterpart), are created in the view model, respectively.

Assume that tables e2’ and e3’ are deleted from the view

model (the top-left part of Fig. 2). The deletion of these two

tables will cause several variation points in the output of the

backward transformation.

Firstly, consider how we can update classes e2 and e3.

Based on Fig. 1, e2/e3 can be either deleted or converted into a

non-persistent class. We identify two variation points, namely,

VP1 and VP2, for classes e2 and e3, respectively. VP1/VP2
has two variants, namely, V1.1/V2.1 and V1.2/V2.2.

V1.1/V2.1 means deleting class e2/e3, while V1.2/V2.2
means changing class e2/e3 into a non-persistent one.

Inheritance relationship between e1 and e2 (called l1) and

inheritance relationship between e2 and e3 (called l2), can also

be updated in different ways, depending on how classes e2 and

e3 are updated. We identify two variation points, namely, VP3
and VP4, to represent how to update l1 and l2, respectively. If

e2 is deleted, then l1 and l2 must be deleted by default. If e3 is

deleted, then l2 must be deleted by default. If e2 is preserved,

then l1 may be either deleted (i.e., variant V3.1) or preserved

(i.e., variant V3.2). If e2 and e3 are both preserved, then l2
may be either deleted (i.e., variant V4.1) or preserved (i.e.,

variant V4.2). Obviously, V3.1 and V3.2 depend on V1.2,

and V4.1 and V4.2 depend on both V1.2 and V2.2.

By using our variability metamodel proposed in Section

III-B, the output of the backward transformation that is

described above can be specified as the bottom-left part of

Fig. 2. This output model comprises an intermediate output

and a variability model that stores the variation points and

variants existing in the intermediate output. We obtain different

final output models that fit different needs by configuring the

variability model in different ways, . As shown in the right part

of Fig. 2, configuration 1 comprises V1.2, V2.1 and V3.2,

and configuration 2 comprises V1.2, V2.2, V3.1 and V4.2.

III. TRANSFORMATION VARIABILITY MANAGEMENT

A. Overview of Our Approach
Instance-level transformation variability is the ability of the

transformation output to be configured for use in a specific

context. A (bidirectional) model transformation must can pro-

duce an output model with variation points to support instance-

level transformation variability.
We identify the following requirements of transformation

variability management:

1) We must provide full control over transformation vari-

ability. Developers must can specify what types of

variation points and variants exist. Take UMLtoRDBMS
as an example. If developers regard variant 2 in Fig. 1

unnecessary, then they must can exclude this variant.

2) We must provide the support for managing dependencies

among variation points and variants. As demonstrated in

Section II-C, a variant may depend on other variants.

Such dependency must can be specified, established,

stored and validated.

This section proposes our instance-level transformation vari-

ability approach that fulfills the above two requirements. Fig.

3 shows the overview of our approach that comprises the

following three major steps:

1) Developers define a variability-aware BX using our BX

language.

2) The variability-aware BX is performed on our

variability-aware BX engine. This engine captures vari-

ation points at runtime, and then produces an interme-

diate transformation output associated with a variabil-

ity model. This transformation output is intermediate

226



Technical Contributions of This Paper

Transformation 
Engine

Variability 
Management 
Framework

supporting the instance-level 
variability

an intermediate output and a 
variability model

the input model(s) supporting variability 
management

final output 
model(s)

a variability-aware BX specification 

 developers define 
a variability-aware 
BX specification

  the engine interprets the 
BX and generates a result 

with variation points

 the user of transformation output configures 
the variability model and derives a final output 
using our variability management framework

1. A variability metamodel and a variability 
management framework for BX

2. A variability-aware BX language and a 
supporting engine

Fig. 3: Overview of our approach

because it contains variation points that are externally

stored in the associated variability model as first-class

elements. Developers turn the intermediate output into

a final output after configuring all variation points.

3) The variability model (as well as the intermediate out-

put) is loaded into our variability management frame-

work. Afterwards, the user of the transformation output

creates a configuration by selecting variants existing in

the variability model. Lastly, the framework derives the

final transformation output from the intermediate output

according to this configuration.

Specifically, we propose 1) a variability metamodel and a

management framework that are used to declare and configure

variability models respectively, and 2) a variability-aware BX

language and its engine, as a prototype implementation and a

demonstration of integrating variability into BX.

B. Variability Metamodel and Framework

1) Metamodel: Firstly, we propose a variability metamodel

that is adapted from COVAMOF [16] for BX to define

a variability model that comprises several variation points

and variants associated with a transformation output. This

variability metamodel is shown in Fig. 4.

VariabilityModel represents the root element of a variability

model. It comprises a list of VariationPoints, each of which

represents a location in the intermediate transformation output

to be further customized. It is also associated with one or more

intermediate result Models, each of which will be replaced by

an implementation-specific model artifact.

A VariationPoint is associated with a set of Variants each

of which denotes an alternative of the VariationPoint. Within

the context of BX, a Variant is defined as a sequence of

ModelOperations. For instance, in our running example in

Section II-C, V1.1 is to delete the class e2, while V1.2 is

to change the class into a non-persistent one.

A ModelOperation specifies a modification to the interme-

diate transformation output. In this paper, we identify four

ModelOperation

*  {ordered} variationPoints

* 
operations 
{ordered}

* dependencies {ordered}

AddOperation SetOperation ReplaceOperation RemoveOperation

VariabilityModel

VariationPoint

identifier:String

Variant

identifier:String

ModelintermediateResults 
*

*
variants

Fig. 4: Variability metamodel for BX

EMF1-specific operations as concrete subclasses of ModelOp-
eration, namely, AddOperation, SetOperation, ReplaceOpera-
tion and RemoveOperation. These four operations are directly

supported by EMF. In theory, they can be replaced by other

model change operations, e.g., [20].

An AddOperation can add (or insert) a value into a mul-

tivalued feature (i.e., property or relationship) of a certain

model element. A SetOperation can change the value of a

feature of a model element. A ReplaceOperation can replace

a model element within a collection with another element. A

RemoveOperation is used to remove a value from a multi-

valued feature of a model element. For instance, V1.1 in our

running example can be realized by a RemoveOperation, while

V1.2 a SetOperation.

A Variant may depend on other Variants. It means that

the selection of the dependent requires all the depended

Variants to be selected. This relation, denoted by dependencies
in our variability model, is simplified from the concept of

Dependency in COVAMOF to fit the context of BX.

2) Framework: Using the variability metamodel, we can

define a variability model that specifies variation points and

variants in an intermediate transformation output (in our ap-

proach, this variability model is automatically generated by our

1Eclipse Modeling Framework, an open-source implementation of OMG’s
Meta Object Facility [19]. http://www.eclipse.org/modeling/emf/

227



engine). We present a transformation variability management

framework to manage this variability model.

Our variability management framework has the following

major functions: Firstly, it provides a configuration editor to

users to configure a variability model that complies with the

variability metamodel; Secondly, it can validate the configura-

tion of the variability model; Thirdly, it can interpret a valid

configuration and convert a intermediate output model into a

final output that does not contain variation points.

Configuring a variability model is to select variants for

all variation points. For a configuration that comprises a set

of Variants selected, our variability management framework

can determine whether this configuration is valid using the

following validation rules:

Rule 1: For each VariationPoint vp, only one of its Variants
can be selected, i.e.,

∀vp(v1, v2 ∈ vp.variants ∧ v1, v2 are selected ⇒ v1 = v2)

For instance, in our running example, V1.1 or V1.2 can be

selected, but they cannot be selected meanwhile.

Rule 2: If Variant v is selected, then all Variants v depends

on must also be selected because v requires all of them, i.e.,

∀v(v is selected ⇒ ∀v′(v′ ∈ v.dependencies∧v′ is selected)
)

For example, if V4.2 is selected, V1.2 and V2.2 must also

be selected.

Rule 3: For each VariationPoint vp, at least one of its

associated Variants that are selectable must be selected, i.e.,

∀vp(S(vp) �= ∅ ⇒ ∃v(v ∈ S(vp) ∧ v is selected)
)

where S(vp) ≡ {v|v ∈ vp.variants∧ isSelectable(v)}. This

rule means that all VariationPoints must be configured.

The function isSelectable determines whether a Variant can

be selected. Variant v is selectable iff none of its sibling Vari-
ants is selected and all Variants v depends on are selectable.

isSelectable(v) is defined as follows:

∀v′(v, v′ ∈ vp.variants ∧ v′ �= v ⇒ v′ is not selected)
∧∀v′′(v′′ ∈ v.dependencies ⇒ isSelectable(v′′) = true)

When a configuration of a variability model is valid, our

framework can interpret it by applying all ModelOperations
that are associated with the selected Variants in this configu-

ration to the intermediate output in a proper order to derive a

final output model.

We define a partial order ≺ to determine the execution order

of two ModelOperations. o1 ≺ o2 means that o1 must be

executed before o2. Assuming that two ModelOperations o1
and o2 are associated with two Variants v1 and v2 respectively,

≺ is defined as follows:

• If v1 = v2 = v and v.operations.indexOf(o1) <
v.operations.indexOf(o2), then o1 ≺ o2.

• If v1 ∈ v2.dependencies, then o1 ≺ o2. Specifically, if

v2 depends on v1, all operations associated with v1 must

be performed before the operations associated with v2.

• Provided that v1 ∈ vp1.variants, v2 ∈ vp2.variants
and VariationPoints vp1 and vp2 belong to Variability-
Model vm, if vm.variationPoints.indexOf(vp1) >
vm.variationPoints.indexOf(vp2), then o1 ≺ o2.

With the help of ≺, our framework interprets a configuration

according to Algorithm 1.

Algorithm 1: Interpreting a configuration

Input: conf , a valid configuration; mI , a intermediate

transformation output model

Output: mF , a final output model

1 V = {all Variants selected in conf};

2 O =
⋃

vi∈V

{o|o is a ModelOperation associated with vi};

3 sort O using the order ≺;

4 mF = apply all ModelOperations in O successively to

mI ;

5 return mF ;

C. Variability-Aware BX

We must extend a BX language and its execution engine

for specifying and performing variability-aware BXs. We use

our putback-based BX language and its engine introduced

in Section II to demonstrate how to integrate instance-level

variability into model transformation. We assume that the same
idea can also be applied to other transformation languages.

1) Language: We proposes the following new types of

statements to specify the instance-level variability, i.e., the

variable and maybe statements:

variable [identifier] {statement+ }
maybe [identifier] (when [identifier]+)? statement

A variable statement declares a scope with variability.

Each execution of this statement will result in a VariationPoint
in the intermediate output. A variable statement has an

identifier expression, which is used to uniquely identify

a VariationPoint in a variability model.

A variable statement comprises several maybe state-

ments each of which declares a Variant. A maybe statement

also has an identifier expression, which is used to

uniquely identify a Variant within a VariationPoint created

from the variable statement that contains this maybe
statement. A maybe statement may own a when clause to

specify what Variants this maybe statement depends on by

using a list of identifiers.

Within a variable statement, all the model modification

statements must be placed under a certain maybe statement.

Thereby, our transformation engine can capture all the changes

to the result model, and can record them in the Variant element

created by the maybe statement.

Listing 2: Examples of variability declaration

variable[’table deletion’+c] {
maybe[’delete’] delete c;
maybe[’keep’] enforce c:Class{persistent=false}

}

228



variable[’super’+c+p] {
maybe[’remove’] when[’table deletion’+c+’keep’]
delete c.super=p;

maybe[’preserve’] when[’table deletion’+c+’keep’] {}
}

Listing 2 shows two variable statements. The first

variable statement (lines 1 to 4) declares that how to

propagate the deletion of a table to class c is a variation point

(e.g., VP1 and VP2 in our running example). It comprises

two maybe statements that denote two variants, i.e., deleting

c (e.g., V1.1 and V2.1) and changing c into a non-persistent

one (e.g., V1.2 and V2.2). Given that we must associate a

variation point that is created by this variable statement

with class c, the identifier expression of this variable
statement is a concatenation of string “table deletion” and c.
We can replace the delete statement in line 7 of Listing

1 (i.e., the unmatchs statement) with the first variable
statement in Listing 2 to integrate this variability into the BX.

Thereby, when a table is deleted, a VariationPoint will be

created for the class corresponding to this table by executing

this variable statement.

The second variable statement (lines 5 to 9) in Listing

2 declares a variation point about how to update the super-

relationship between classes p and c (e.g., VP3 in our running

example), when the table corresponding to c has been deleted.

Therefore, the identifier expression of this variable state-

ment is a concatenation of string “super” and classes c and p.

This variable statement comprises two maybe statements

(lines 6 and 8) that denote two variants, i.e., deleting the

relationship (e.g., V3.1) and preserving the relationship (e.g.,

V3.2), when c is not deleted. The two maybe statements

depend on the second maybe statement in the first variable
statement (line 3). Such dependency is specified by two when
clauses, in which we combine the identifiers of the first

variable statement and its second maybe statement (i.e.,

“table deletion”+c+“keep”).

2) Execution: We extend our bidirectional model transfor-

mation engine to support the proposed variable and maybe
statements. We assume that the same idea can also be applied

to other model transformation technologies.

During backward transformation, variable and maybe
statements are executed to produce VariationPoints and Vari-
ants. A variable statement is performed based on Algo-

rithm 2. Briefly, our engine creates a VariationPoint vp and

pushes vp onto a stack of VariationPoints. Afterwards, the

inner statements of the variable statement being executed

(including all maybe statements) are executed.

A maybe statement is executed based on Algorithm 3.

Firstly, our engine calculates the required Variants (lines 1 to

7) according to the when clause of the maybe statement being

executed. If any required Variant is missing, then the engine

will skip this maybe statement (line 4 and 5). Secondly, our

engine creates and initialize a new Variant v (lines 8 to 13).

Thirdly, our engine performs all ModelOperations that belong

to the Variants recursively depended by v (lines 16 to 18).

Afterwards, our engine executes all statements contained in

this maybe statement and captures all model changes that

Algorithm 2: executeVariableStatement(vs)

Input: vs, the variable statement to be executed

1 vp = new VariationPoint;

2 variationPointStack.push(vp);
3 foreach statement s included by vs do
4 execute s;

5 variationPointStack.pop();

Algorithm 3: executeMaybeStatement(vs)

Input: ms, the maybe statement to be executed

1 dvs = ∅;

2 foreach identifier expression vi in when clause of vs do
3 dv = the Variant, previously created, whose identifier

is equal to the value of vi;
4 if dv is null then
5 return ; // skip this maybe statement
6 else
7 dvs.add(dv);

8 v = new Variant;

9 v.identifier = the value of the identifier expression

belonging to ms;

10 rvs =
{
x|x ∈ dvs∨∃y(y ∈ rvs∧x ∈ y.dependencies

)}
;

11 v.dependencies = dvs ∪ {variantStack.top()};

12 vp = variationPointState.top();
13 vp.variants.add(v);
14 copy current runtime state;

15 variantStack.push(v);
16 ops =

⋃

x∈rvs
x.operations;

17 sort ops using the partial order ≺;

18 execute all ModelOperations in ops;

19 foreach statement s included by ms do
20 execute s and record all ModelOperations when s is

being executed;

21 v.operations = {all recorded ModelOperations};

22 undo all ModelOperations in v.operations and ops;

23 variantStack.pop();
24 restore runtime state;

25 return;

happen during the execution of the inner statements (lines 19

to 21). Lastly, our engine undoes all ModelOperations in the

reversed order and restores the runtime state (lines 22 to 24).

Take the first variable statement in Listing 2 as an

example. When this variable statement is executed, its two

maybe statements are executed successively. When the first

maybe statement is executed, the class bound to c is deleted,

and our engine creates a RemoveOperation for this change.

Afterwards, the runtime state is restored, and then the second

maybe statement is executed, resulting a new Variant with

a SetOperation that changes the class bound to c into a non-

persistent class. Finally, the runtime state is restored again and

229



a VariationPoint with two Variants is produced.

During forward transformation, executing variable and

maybe statements will cause a runtime exception because our

approach does not support variability of forward transforma-

tion. Not supporting variability in the forward transformation

can make it easier for developers to define a correct BX.

It is worthwhile to notice that in our approach, a variability-

aware BX is still executed in a deterministic way, despite that

it produces an output model with variation points.

D. Round-trip Property of BX with Variability

The most important BX properties are round-trip properties,

i.e., the GetPut and PutGet laws. Without variability, round-

trip properties are defined [10] as follows:

put
(
s, get(s)

)
= s (GETPUT)

get
(
put(s, v)

)
= v (PUTGET)

After integration of variability into BX, the backward trans-

formation put returns a set of candidate outputs that can be

derived from an intermediate output and a variability model.

Therefore, put with variability can be characterized as follows

(where P(S) is the power set of S):

put : S × V → P(S)

Based on the new definition of put, the round-trip properties

of a BX with variability are redefined as follows:

put
(
s, get(s)

)
= {s} (GETPUT)

∀s′(s′ ∈ put(s, v) ⇒ get(s′) = v
)

(PUTGET)

The GetPut law says that the result of the backward trans-

formation carried out immediately after the forward transfor-

mation should be equal to the original source model. The

PutGet law says that for any candidate final result s′ obtained

by transforming a view model v in the backward direction,

the result of converting s′ in the forward direction should be

equal to v. Currently, the developers must assure the round-trip

property of the BX they defined. How to verify the round-trip

property automatically is our future work.

IV. TOOL SUPPORT

We have implemented a tool2 support to BX variability,

including our extended BX engine and a variability manage-

ment tool. Fig. 5 presents a screenshot of our BX editor and

variability management tool.

Fig. 5: Screenshot of tool support

2Source code is available at https://bitbucket.org/ustbmde/morel/wiki/Home

V. EVALUATION

The objective of this section is to evaluate the feasibility
and the performance of the proposed approach. The objective

is further refined by the following two research questions:

RQ1: Can the proposed approach be used to handle the
instance-level variability in BXs, which come from different
application domains? RQ2: What is the performance loss
incurred by the proposed approach, compared with the BXs
without variability? To answer RQ1, we make two variability-

aware BXs having variability to demonstrate the feasibility of

our approach. With regard to RQ2, we conduct an experiment

in performance that compares these variability-aware BXs with

corresponding BXs without variability, respectively.

A. UML to RDBMS

The first BX is UMLtoRDBMS, our running example. This

BX is intended to demonstrate that our approach can support

complex variant points and dependencies. We identify four

types of variation points in total.

The first two types of variation points are about how to

propagate the deletion of a table and how to update the

super-relationships among classes. Given that they have been

presented in Listing 2 and explained in Section III-C, this

section omits their details.

The third type of variation points is about converting a

column of a table back to an attribute of a class. Given a

column cl in a table t and a class c corresponding to t, assume

that we cannot find an attribute in class c that corresponds to

cl. To convert cl, we must determine whether cl can match

any attribute inherited from any superclass of c. Due to the

influence of the first two types of variation points, we have

several possible strategies of converting cl as follows: starting

from each direct superclass sc of c,

• if sc is a persistent class and contains an attribute which

matches cl, then return (this is the default update strategy

rather than a Variant);
• if sc is or is changed into a non-persistent class and the

inheritance from c to sc is preserved, go on searching in

superclasses of sc;
• otherwise, stop searching, and then create a new attribute

that matches cl in c.

The last two cases can be specified as Listing 3. Lines 2 and 3

specify the second case, and lines 4 and 5 the third case. Notice

that in Listing 3, we specify dependencies among Variants
using when clauses.

Listing 3: Variation point of updating super attributes

variable[’update super attribute’+c+sc+cl.name] {
maybe[’go on’] when[’super’+c+sc+’keep’]
... /* go on searching in the superclasses of sc */

maybe[’stop’] when[’super’+c+sc+’delete’]
enforce c:Class{attributes=a:Attribute{name=cl.name}}

}

The fourth type of variation points is about how to propagate

the deletion of a foreign key back to an association in Class

Diagram. In UMLtoRDBMS, a foreign key fk, which connects

two tables, is transformed from an association assoc, which

230



<<class>> 
<<non-persistent>> 

e2
a2

<<class>> 
e2

<<table>> 
e1’

a1 
e2-a2 
e2-e3-a3

<<table>> 
e2’

a2 
e3-a3

<<table>> 
e3’

a3

a1 
e2-a2

a2 a3
l1 l2

DEL

VP1 VP4
VP2 VP3

V1.1

V1.2

V4.1

V4.2

V2.1

V2.2

V3.1

V3.2

delete

keep

delete

keep

delete

keep

delete

keep

put

RDBMS Model 
(view model)

Class Diagram 
(intermediate output)

Variability Model

r1

e3-r1-e2:foreignKey
DEL

VP5

V5.1

V5.2

go on

stop

VP6

V6.1

V6.2

go on

stop

output 1

output 2

output 3

Class Diagram 
(final outputs)

V1.2, V2.2, 
V3.2, V4.2, 
V5.1, V6.1

V1.2, V2.2, 
V3.1, V4.2, 
V5.1, V6.2

V1.2, V2.1, 
V3.2, V4.1, 
V5.2

Configuration 
(selected 
variants)

<<class>> 
e1

<<class>> 
e3

<<class>> 
e1

<<class>> 
e3

a1 
e2-a2

a3
r1

l1 l2

<<class>> 
<<non-persistent>> 

e2

<<class>> 
e1

<<class>> 
e3

a2
a3

r1

l1 l2

a1 
e2-a2 
e2-e3-a3

<<class>> 
e1

<<class>> 
e3

a3

l2

a1 
e2-a2 
e2-e3-a3

<<class>> 
<<non-persistent>> 

e2
a2

Fig. 6: Example of UMLtoRDBMS

connects two classes. If only fk is deleted while the associated

tables are preserved, then delete assoc. If fk and at least

one of the associated tables (e.g., t) are deleted, there are

two variants as follows: 1) delete assoc; 2) when the class tc
that corresponds to t is changed into a non-persistent class,

then preserve assoc because this BX does not convert any

information related to non-persistent classes, as mentioned in

Section II-C. The two variants are encoded as Listing 4:

Listing 4: Variation point of updating associations

variable[’deletion of foreign key’+sc+tc+an] {
maybe[’delete’] delete assoc;
maybe[’keep’] when[’table deletion’+tc+’keep’] {}

}

Fig. 6 shows an example that contains all types of variation

points. In the original source model, there are three classes,

namely, e1 to e3, and an association r1 from e3 to e2. e1,

e2 and e3 have three attributes a1, a2 and a3, respectively.

Besides, e1 inherits from e2, and e2 inherits from e3. The

original source model results in a view model that contains

three tables and a foreign key (called e3-r1-e2).

Assume that both table e2 and foreign key e3-r1-e2 are

deleted. The backward transformation generates an intermedi-

ate output and a variability model as shown in the bottom left

part of Fig. 6. VP1, VP2 and VP3 in Fig. 6 are similar to VP1,

VP3 and VP4 in Fig. 2, respectively. VP4 denotes the variation

point about how to update r1, which is created according to

Listing 4. VP5 and VP6 denote the variation points about how

to convert column e2-e3-a3 back to an attribute in class e1,

which is created according to Listing 3.

V5.1, which depends on V2.2, represents the case that l1
is preserved; V5.2, which depends on V2.1, represents the

case that l2 is deleted. V6.1, which depends on V5.1 and

V3.2, represents the case that both l1 and l2 are preserved;

V6.2, which depends on V5.1 and V3.1, represents the case

that l1 is preserved and l2 is deleted.

The middle part of Fig. 6 shows several final output models

derived from the intermediate model and the variability model,

and the rightmost part of Fig. 6 shows the corresponding

configurations. For example, result 3 is derived from V1.1,

V2.1, V3.2, V4.1 and V5.2.

B. Hierarchical Statechart to Flat Statechart
The BX between a hierarchical statechart (HSM) and a flat

statechart (FSM), which was studied by Eramo et al. [15], also

has variability. This example is used to demonstrate that our

approach can handle the BX studied by others.
In brief, the forward transformation converts a HSM (i.e.,

a statechart owning composite states) into a FSM (i.e., a

statechart without composite states). A top-level state s in a

HSM will be converted into a state s’ in a FSM. A transition

that starts from or ends with a top-level state s or an inner

state of s will be converted into a transition that starts from

or ends with a state s’ in the FSM. Besides, the transitions

within a composite state will be ignored.
A variability issue arises during the backward transforma-

tion when a transition is created from or to a state in a FSM

that corresponding to a composite state s owning inner states

in the HSM: s and any inner state of s can be the source or

target of tis transition in the HSM.

S1

S2

S3 S4

S5
S1

S2

S5 S1

S2

S5

vt

S1

S2

S3 S4

S5

st1
st2

st3get update put

Fig. 7: Example of HSMtoFSM

As shown in Fig. 7, a new transition vt is created from

S2 to S5 in the view model. In the updated source model,

the corresponding transition st can be inserted from S2, S3
or S4, to S5. To handle this variability, Listing. 5 specifies

how to connect the source and target of a transition using two

variable statements. They imply that the source/target of

the transition can be the top-level state s or any of the inner

states of s obtained by iterating eAllContents of s.

231



Listing 5: Variation point declaration in HSMtoFSM

variable[’source’+vt] {
maybe[’to’+s] enforce st:hsm!Transition{source=s};
foreach s:hsm!CompositeState{eAllContents=inner:hsm!State{}}
->maybe[’to’+inner] enforce st:hsm!Transition{source=inner}

}}
variable[’target’+vt] {
maybe[’to’+s] enforce st:hsm!Transition{target=s};
foreach s:hsm!CompositeState{eAllContents=inner:hsm!State{}}
->maybe[’to’+inner] enforce st:hsm!Transition{target=inner}

}}

The approach of Eramo et al. generates all possible final

output models automatically by using constraint solving. De-

velopers cannot design the variability of a BX, specifically,

they cannot precisely specify what particular variation points

and variants this BX has. Compared with Eramo’s approach,

our approach provide more control over BX variability without

losing the processing ability of transformation variability.

C. Performance Loss

To evaluate the impact on performance of our approach,

we compare the execution time tV of a BX having variability

with the time tD of the same BX without variability. Then,

we calculate the performance loss incurred by our approach,

which is calculated as

(tV − tD)/tD

Subject BXs. We use the two BXs (i.e., UMLtoRDBMS
and HSMtoFSM) presented in Sections V-A and V-B as the

subjects to be studied. The control groups are derived from

the subject BXs, as follows: 1) for UMLtoRDBMS, a BX

(called UMLtoRDBMS-d), which always removes the class

when the table is deleted in the view model, is developed; 2)

for HSMtoFSM, a BX (called HSMtoFSM-d), which always

connects the new transition with top-level states, is developed.

Process. The experiment is conducted on a MacBook Pro

with an Intel Core i7 2.8Ghz processor and 16Gb RAM. For

each BX as well as its control group, we use a random model

generator [21] to generate an original source model. Then,

we execute the forward transformation, and obtain a view

model. After that, we create a set of modified view models,

which result in different numbers of variation points (i.e., 0,

10, 20, 30, 40, and 50 variation points). For UMLtoRDBMS,

the original source model contains 1000 model elements (i.e.,

300 classes, 600 attributes, and 100 associations). The updated

view models are created by renaming tables repeatedly. For

HSMtoFSM, the original source model also contains 1000

model elements (i.e., 100 composite states, 350 states, and

550 transitions). The updated view models are created by

renaming transitions repeatedly. Renaming an element will be

recognized by the BXs as an element insertion following a

deletion, and will not change the size of the view model.

Finally, we execute the backward transformations, including

the subject BX and its control group, and capture the average

execution times (excluding I/O).

Results. The result of case UMLtoRDBMS is shown in Fig.

8a. Since the size of the view model is constant, the execution

times of UMLtoRDBMS and UMLtoRDBMS-d did not vary a

lot. The performance loss ranged from 5.87% to 9.07%, which

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

2500

2575

2650

2725

2800

Number of Variation Points
0 10 20 30 40 50

UMLtoRDBMS UMLtoRDBMS-d

6.
30

% 6.
21

%

5.
87

% 6.
90

%

9.
07

%

8.
97

%

(tV ) (tD)

(a) Result of UMLtoRDBMS

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

450

562.5

675

787.5

900

Number of Variation Points
0 10 20 30 40 50

HSM2FSM HSM2FSM-d 

8.
88

% 20
.6

4%

32
.2

7% 45
.0

3%

59
.8

4%

61
.8

1%

(tV ) (tD)

(b) Result of HSMtoFSM

Fig. 8: Results of experiment in performance loss

is acceptable. The result of case HSMtoFSM is shown in Fig.

8b. The execution times of HSMtoFSM-d increased slightly.

However, the execution times of HSMtoFSM increased linearly

with the number of variation points, and the performance

loss increased (almost linearly) from 8.88% to 61.81%. It is

because HSMtoFSM has to traverse all the inner states of top-

level composite states, while HSMtoFSM-d does not. Hence,

the more variation points there are, the more inner states

HSMtoFSM visited, and consequently, the more performance

loss is incurred. Overall, this experiment shows that the

performance loss incurred by our approach is reasonable.

D. Threats to Validity

The first threat to validity is the choice of the two example

BXs studied, which are relatively simple. However, they are

sufficient to demonstrate the feasibility and the usage of our

approach. The second threat to validity is the complexity of

the test input models. In the future, we plan to conduct more

experiments to validate the scalability of our approach to

mitigate this threat.

VI. RELATED WORK

Variability management in model transformation has been

discussed from both the theoretical and the solution aspect.

From the theoretical aspect, Stevens [17] analyzed the uncer-

tainty issue, which may result in variability in practice, in

the context of bidirectional transformation; Diskin et al. [22]

proposed a formal framework of delta-lens supporting uncer-

tainty. They both can be used as a guide to the development

of concrete solutions.

Concrete solutions to variability management in (bidirec-

tional) model transformation can be roughly divided into

two groups: the specification-level and the instance-level,

232



as discussed in Section I. Strüber et al. [14] proposed a

specification-level approach to variability-based model trans-

formation. Their approach enables developers to define a

model transformation containing variation points. Given a

valid configuration, a classical transformation that has no

variation point can be derived. To facilitate defining variability-

based transformations, they also proposed a rule merging

algorithm [13]. Salay et al. [23] also proposed an approach

that lifts model transformation to product lines. However, their

approach is designed for the variability in input models.

As for the instance-level solutions, Eramo et al. [15] pro-

posed a metamodel-based approach. The basic idea of their

approach is to automatically derive an uncertainty metamodel

from the metamodel used by a BX. Afterwards, they encode

this BX and uncertainty metamodel into a constraint solving

problem. Therefore, a constraint solver can find all models

each of which conforms to the uncertainty metamodel and

represents a variant output of the BX. However, they did not

discuss how to support dependencies among variants. The

constraint-solving-based BX approach, proposed by Macedo

et al. [7], also has the potential to support the instance-

level variability by asking the solver to find all possible

result models. However, this kind of approach may not be

scalable when there are a lot of variation points. Our approach,

which is also an instance-level approach, differs from the

above approaches. Instead of asking a solver to explore the

search space freely, our approach provides developers with

full control over their BXs. Developers can explicitly specify

what types of variation points, variants and dependencies may

exist in the BX output, and how to produce them.

VII. CONCLUSION AND FUTURE WORK

The major contributions of this paper are summarized as fol-

lows: 1) a variability metamodel and management framework

for model transformation; 2) a BX language and an engine as

a demonstration to support the definition and execution of a

BX with variability; 3) two examples of BXs with variability

that illustrated the feasibility of the proposed approach.

In the future, we plan to explore how to use our approach

to support the specification-level variability. Besides, during

our evaluation, we observed that many human efforts were

required to configure the variability model when there were

a number of variation points. Although our tool support can

check, filter and highlight available variants to ease the config-

uration, we assume that more the usability of our tool can be

further enhanced. Lastly, more case studies and experiments

will be conducted to evaluate our approach.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China (61300009, 61472180).

REFERENCES

[1] Z. Diskin, “Algebraic models for bidirectional model synchronization,”
in Model Driven Engineering Languages and Systems. Springer, 2008,
pp. 21–36.

[2] H. Giese and R. Wagner, “From model transformation to incremental
bidirectional model synchronization,” Software & Systems Modeling,
vol. 8, no. 1, pp. 21–43, 2009.

[3] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun, and
H. Mei, “Supporting runtime software architecture: A bidirectional-
transformation-based approach,” Journal of Systems and Software,
vol. 84, no. 5, pp. 711–723, 2011.

[4] Y. Xiong, H. Song, Z. Hu, and M. Takeichi, “Synchronizing concur-
rent model updates based on bidirectional transformation,” Software &
Systems Modeling, vol. 12, no. 1, pp. 89–104, 2013.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “JTL:
a bidirectional and change propagating transformation language,” in
Software Language Engineering. Springer, 2010, pp. 183–202.

[6] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas,
“From state-to delta-based bidirectional model transformations: The
symmetric case,” in Model Driven Engineering Languages and Systems.
Springer, 2011, pp. 304–318.

[7] N. Macedo and A. Cunha, “Implementing qvt-r bidirectional model
transformations using alloy,” in Fundamental Approaches to Software
Engineering. Springer, 2013, pp. 297–311.

[8] H. Pacheco, T. Zan, and Z. Hu, “Biflux: A bidirectional functional update
language for xml,” in Proceedings of the 16th International Symposium
on Principles and Practice of Declarative Programming. ACM, 2014,
pp. 147–158.

[9] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu, “Feature-based classification of
bidirectional transformation approaches,” Software & Systems Modeling,
pp. 1–22, 2015.

[10] S. Fischer, Z. Hu, and H. Pacheco, “The essence of bidirectional
programming,” Science China Information Sciences, vol. 58, no. 5, pp.
1–21, 2015.

[11] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
specification v1.2,” Object Management Group, Tech. Rep. formal/15-
02-01, 2015.

[12] J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Proceedings 2001 Working IEEE/IFIP
Conference on Software Architecture. IEEE, 2001, pp. 45–54.

[13] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger,
RuleMerger: Automatic Construction of Variability-Based Model Trans-
formation Rules. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 122–140.

[14] D. Strüber, J. Rubin, M. Chechik, and G. Taentzer, “A variability-
based approach to reusable and efficient model transformations,” in
Fundamental Approaches to Software Engineering. Springer, 2015,
pp. 283–298.

[15] R. Eramo, A. Pierantonio, and G. Rosa, “Managing uncertainty in
bidirectional model transformations,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, 2015, pp. 49–58.

[16] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “COVAMOF: A
framework for modeling variability in software product families,” in
Software product lines. Springer, 2004, pp. 197–213.

[17] P. Stevens, “Bidirectional model transformations in QVT: semantic
issues and open questions,” Software & Systems Modeling, vol. 9, no. 1,
pp. 7–20, 2010.

[18] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: architecture,
process and organization for business success. ACM Press/Addison-
Wesley Publishing Co., 1997.

[19] Object Management Group, OMG Meta Object Facility (MOF)
Core Specification Version 2.4.1, 2011. [Online]. Available: http:
//www.omg.org/spec/MOF/2.4.1

[20] I. Ráth, G. Varró, and D. Varró, Change-Driven Model Transformations.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 342–356.

[21] X. He, T. Zhang, C.-J. Hu, Z. Ma, and W. Shao, “An mde performance
testing framework based on random model generation,” Journal of
Systems and Software, 2016.

[22] Z. Diskin, R. Eramo, A. Pierantonio, and K. Czarnecki, “Incorporating
uncertainty into bidirectional model transformations and their delta-lens
formalization,” in Proceedings of the Fifth International Workshop on
Bidirectional Transformations (Bx 2016), Eindhoven, The Netherlands,
April 8, 2016 2016.

[23] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and M. Chechik, “Lifting
model transformations to product lines,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
117–128.

233


