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Abstract
Many graph optimization problems, such as theMaximum Weight-
ed Independent Setproblem, are NP-hard. For large scale graphs
that have billions of edges or vertices, these problems are hard to
be computed directly even using popular data-intensive framework-
s like MapReduce or Pregel that are deployed on large computer-
clusters, because of the extremely high computational complexity.
On the other hand, many studies have shown the existence of poly-
nomial time algorithms on graphs with bounded treewidth, which
makes it possible to solve these problems on large graphs. However,
the algorithms are usually difficult to be understood or parallelized.

In this paper, we propose a novel programming framework
which provides a user-friendly programming interface and auto-
matic in-black-box parallelization. The programming interface,
which is a simple and straightforward abstraction called Generate-
Test-Aggregate (GTA for short), is used to describe a set of graph
problems. We propose to derive bottom-up dynamic programming
algorithms on tree decompositions from the user-specified GTA
algorithms, and further transform the bottom-up algorithms to par-
allel ones which run in a divide-and-conquer manner on a listof
subtrees. Besides, balanced tree partition strategies arediscussed
for efficient parallel computing. Our preliminary experimental re-
sults on the Maximum Weighted Independent Set problem demon-
strate the practical viability of our approaches.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; I.2.2 [Automatic Program-
ming]: Program transformation; G.2.2 [Mathematics of Comput-
ing]: Discrete Mathematics, Graph Theory, Graph algorithms

General Terms Algorithms, Design

Keywords graph problems, parallelization, GTA, tree decomposi-
tion, treewidth, transformation
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1. Introduction
Many practical computing problems concern large graphs such as
social networks and linked data [8, 13, 33], which may contain bil-
lions of edges or vertices. The computational complexity ofsuch
large datasets has exhausted the limits of a single computer, which
demands parallelization of graph problems on parallel systems.
Thus the approaches of using MapReduce-like frameworks to han-
dle large graphs are actively studied [13, 15, 27], and also some
specialized graph-programming frameworks such as Pregel [33],
GraphLib [32] and PowerGraph [20] are developed to more effi-
ciently resolve large-graph computation problems. However, many
graph optimization problems, such as theMaximum Weighted In-
dependent Setproblem, are NP-hard. For large input graphs, these
problems are hard to be computed even using MapReduce or Pregel
that are deployed on large computer clusters, because such graph
computations are often exponential in the size of the input graphs.

Arnborg et al. [4] showed that many NP-hard problems posed in
monadic second-order logic can be solved in polynomial timeus-
ing dynamic programming techniques on input graphs with bound-
ed treewidth. Many problems on graph, such as graph optimization
problems (e.g.,Minimum Vertex Cover, Maximum Weighted Inde-
pendent Set), can be solved via tree decomposition using bottom-up
dynamic recursive algorithms. Despite more and more researchers
have investigated the possibility for applying treewidth in innova-
tive ways to help solve their problems [1, 5, 21, 28, 49], much less
work are forcused on parallelizing the algorithms for graphprob-
lems which are based on tree decomposition. Sullivan et al. [46]
was the first one to parallelize algorithms for optimizationproblem-
s. Their task-oriented bottom-up dynamic programming approach
is shared-memory environment centered and is hard to be imported
to MapReduce-like frameworks thus hardly handle bigger dataset-
s that beyond the capacity of a single machine. Moreover, since
the parallelization of their approach is only on the leaf nodes, the
performance would be very inefficient if the shape of the treede-
composition is ill-balanced.

To parallelize the optimization problems on graphs and provide
good programmability, we propose a novel programming frame-
work which provides a user-friendly programming interfaceand
automatic in-black-box parallelization. As a tree decomposition of
a graph is an instance of the tree data structure, our paralleliza-
tion approach for graph problems is based on both tree decomposi-
tion and tree parallelization. For tree parallelization, it is a known
challenge to provide an efficient divide-and-conquer parallel algo-



rithm on trees with good load balance. Morihata et al. [41] de-
veloped a method for systematically constructing scalabledivide-
and-conquer parallel programs on trees based onthe third homo-
morphism theoremand the zipper structure. However, the division-
s of subtrees in a zipper may be imbalanced, making the parallel
program inefficient. In our approach, we extend the third homo-
morphism theorem to tree decomposition to develop parallelalgo-
rithms, and we further extend the zipper for balanced tree partition.
Our parallel algorithms, which run in a divide-and-conquerman-
ner, have good load balance even when the shape of tree decom-
positions is ill-balanced. Our programming interface is anexpres-
sive and general pattern ofGenerate-Test-Aggregate (GTA
for short). The GTA programming pattern is simple and straight-
forward: firstly, thegenerate function generates all possible so-
lutions candidates (e.g., all permutations), secondly, thetest func-
tions filters the candidates with certain predicates, and finally the
aggregate function aggregates valid solutions. Users do not need
to understand the parallelization details but just need to know this
naive GTA abstraction and do sequential programming. Then our
framework will transform the user-specified GTA programs toeffi-
cient parallel programs (e.g., MapReduce-like programs).

Our technical contributions in this paper are threefold. First, we
propose the GTA abstraction for users to easily specify optimiza-
tion problems on graphs with bounded treewidth. Second, we ex-
tend the application of the third homomorphism theorem to tree de-
compositions, and propose an approach to transforming bottom-up
dynamic programming algorithms on tree decomposition to divide-
and conquer parallel algorithms on zipper. Third, we propose a par-
allelization framework to automatically transform user-specified G-
TA algorithms to parallel ones which are suitable to be implement-
ed on MapReduce-like framework.

The rest of this paper is organized as follows. Section2 briefly
reviews some preliminary knowledge. Section3 introduces our
parallelization framework. Section4 and Section6 illustrate our
framework with some examples. Section5 discusses tree paral-
lelization. Section7 shows the preliminary experimental results.
Related work is discussed in Section8. Finally, Section9 concludes
the paper with the future work.

2. Preliminaries
2.1 Notations

In this paper, the notations are mainly based on the functional
language Haskell [6]. The parentheses for function applications
may be omitted, i.e.,f a equals tof(a). Functions are curried and
bound to the left, thusf a b equals to(f a) b. Function application
has higher priority than those for operators, thusf a⊕b = (f a)⊕b.
Operator◦ denotes a function composition, and its definition is
(f ◦ g)(x) = f(g(x)).

Tuples are written like(a, b) or (a, b, c). A list is denoted by
brackets split by commas. We use[ ] to denote an empty list, and
++ to denote list concatenation. A list that has only one element is
called asingleton. Operator[·] takes a value and returns a singleton
with it.

Function id is the identity function. Functionfst (snd, thd)
extracts the first (the second, the third) element of the input tuple.

2.2 List homomorphism and the third homomorphism
theorem

DEFINITION 1 (List homomorphism [7]). Functionh :: [A]→ B
is said to be alist homomorphism if there exists functionf ::
A→ B and an associative operator⊙ :: B → B → B such that

h [ ] = ı⊙
h [a] = f a
h (x++ y) = h x⊙ h y

hold, whereı⊙ is the unit of⊙.

List homomorphism is useful for developing parallel programs
on list. The associativity of⊙ guarantees that a list can be divided
at anywhere and the computation result is the same. [41]

THEOREM1 (The third homomorphism theorem [19]). Function
h is a list homomorphism iff there exist two binary operators⊕ and
⊗ such that the following equations hold.

h([a] ++ x) = a⊕ h x

h(x++ [a]) = h x⊗ a.

The third homomorphism theorem states that if a function can
be computed in both leftward and rightward manners, then there
exists a divide-and-conquer parallel algorithm to evaluate the func-
tion.

Morihata et al. [41] extend the third homomorphism theorem to
regular data structures, including trees.

2.3 List homomorphisms on MapReduce

Google’s MapReduce [15] is a popular programming model for
processing large datasets in a massively parallel manner.

List homomorphisms fit well with MapReduce, because their
input can be freely divided into sub-lists which can be distributed
among machines. Then on each machine the programs are com-
puted independently, and the final result can be got by a merging
procedure. In fact, it has been shown that list homomorphisms can
be efficiently implemented using MapReduce [31]. Therefore, if
we can derive an efficient list homomorphism to solve a problem,
we can solve the problem efficiently with MapReduce, enjoying its
advantages such as automatic load-balancing, fault-tolerance, and
scalability.

2.4 Graph definitions

Formally, agraphG = (V,E) is a set of verticesV and a set of
edgesE formed by unordered pairs of vertices. All graphs in this
paper are assumed to be finite, simple and undirected.

In a weighted graph, each edge or vertex is associated with some
value (weight). Theweightof a vertex is denoted asw(v). We say
H = (W,F ) is asubgraphof G = (V,E), denoted asH ⊆ G,
if both W ⊆ V andF ⊆ E. An induced subgraphis one that
satisfies(x, y) ∈ F for every pairx, y ∈ W such that(x, y) ∈ E.
We denote the induced subgraph ofG with verticesX ⊆ V asGX .

2.5 Graph optimization problems

In this paper we are interested in a class of important graph prob-
lems that optimally select a set of nodes from a given graph. We
assume each vertex in a graph is assigned with an int weight val-
uew(v). If the weight of each vertex is one, these problems are
to maximize or minimize the size of the selection set satisfying a
certain condition.

Maximum Weighted Independent Set Given a graphG =
(V,E), an independent set (S) of the graph is a set of vertex satis-
fies the following condition:

∀v, u ∈ S =⇒ ¬(v, u) ∈ E

The Maximum Weighted Independent Setproblem is to find an
independent set with the maximum total weight.

Minimum Weighted Vertex Cover Given a graphG = (V,E), a
vertex cover (S) of the graph is a set of vertex satisfies the following
condition:

∀(v, u) ∈ E =⇒ v ∈ S ∨ u ∈ S



The Minimum Weighted Vertex Coverproblem is to find a vertex
cover with the minimum total weight.

Minimum Weighted Dominating Set Given a graphG = (V,E),
a dominating set (S) of the graph is a set of vertex satisfies the
following condition:

∀v ∈ V =⇒ v ∈ S ∨ (∃u, (v, u) ∈ E ∧ u ∈ S)

TheMinimum Weighted Dominating Setproblem is to find a domi-
nating set with the minimum total weight.

Apart from these optimization problems, we will also discuss
about an important NP-hard satisfiable problem on graph.

Vertex Coloring Given a graphG = (V,E), assign a colorcv to
each vertexv ∈ V such that the following holds:

∀(v, u) ∈ E =⇒ cv 6= cu

2.6 Tree decomposition and treewidth

Tree decomposition and treewidth were first introduced by Robert-
son and Seymour [44] in their fundamental work on graph minors.

DEFINITION 2 (Tree decomposition [21]). A tree decomposition
of a graph G = (V, E) is a pair ({Bt, t ∈ I}, T ) where
Bt ⊆ V, I = {1, ..., n}, and T = (I, F ) is a tree such that
the following conditions are satisfied:

• the union of the subsetsBt equals the vertex setV (1 ≤ t ≤ n),
i.e.

⋃

t∈I
Bt = V ;

• for every edge(v, u) ∈ E, there is ant ∈ I with u, v ∈ Bt;
and

• for everyv ∈ V , if Bi and Bj contain v for somei, j ∈
{1, 2, ..., n}, thenBk also containsv for all k on the (unique)
path inT connectingi and j. In other words, the set of nodes
whose subsets containv form a connected subtree ofT .

The subsetsBi are often referred to asbagsof vertices. The
widthof a tree decomposition({Bt, t ∈ I}, T ) ismax t∈I |Bt|−1.
The treewidthτ (G) of G is the minimum width over all tree de-
compositions ofG. Figure.1 shows an example of a tree decompo-
sition of width two.

Figure 1:An example of a tree decomposition of width two: blue circles
(big circles) denote the bags; red dashed lines connect the same vertices
between adjacent bags.

2.7 Zippers on binary trees

A zipper [41] is a list whose elements are contexts that are left
after a walk. Based on walking downward from the root of a tree,
we construct a zipper as follows: when we go down-right from a
node, we add its left child to the zipper; when we go down-left, we
add the right child to the zipper. For example, Figure.2 shows the
correspondence between a zipper and a walk from the root to the
black leaf.

Figure 2:A zipper structure, which expresses a path from the root to the
black leaf. The path is shown in the blue line.

Figure 3:The MapReduce computation model

2.8 Functional description of MapReduce

To formally describe our MapReduce implementation later, we
introduce the following functional description of MapReduce (as
in [31]). As shown in Figure.3, the MapReduce model consists of
three phases: MAP, SHUFFLE&SORT and REDUCE.

To make the discussion precise, we introduce a specificationof
the MapReduce programming model in a functional programming
manner. The standard programming interface of the MapReduce
framework contains the following four functions.1

• FunctionfMAP is invoked during the MAP phase and applied
on each input key-value pair. Its type is defined as follows.

fMAP :: (k1, v1)→ [(k2, v2)].

Function fMAP takes a key-value pair and returns a list of
intermediate key-value pairs.

• FunctionfHASH is a parameter function for the shuffling and
grouping process, which takes the key of an intermediate key-
value pair, and generates a key with which the key-value pairis
grouped. Its type is defined as follows.

fHASH :: k2→ k3.

• FunctionfCOMP is a parameter function for the sorting process,
which compares two keys in sorting the values in a group. Its
type is defined as follows.

fCOMP :: k2→ k2→ {-1, 0, 1}.

• Function fREDUCE is invoked during the REDUCE phase,
which takes a key and a list of values associated with the key
and merges the values. Its type is defined as follows.

fREDUCE :: (k3, [v2])→ (k3, v3).

1 In order to distinguish them with the functions in Haskell, we change their
names.



Now a functional specification of the MapReduce framework
can be given as follows, which accepts four functionsfMAP,
fHASH, fCOMP andfREDUCE and transforms a set of key-value
pairs to another set of key-value pairs.

MapReduce fMAP fHASH fCOMP fREDUCE input
= let sub1 = mapS fMAP input

sub2 = mapS (λ(k′, kvs).
(k′,map snd (sortKey fCOMP kvs)))

(shuffleKey fHASH sub1 )
inmapS fREDUCE sub2

FunctionmapS is a set version of themap function: i.e., it
applies the input function to each element in the set. Function
shuffleKeytakes a functionfHASH and a set of lists of key-value
pairs, flattens the set, and groups the key-value pairs basedon the
new keys computed byfHASH. The result type aftershuffKeyis
{(k3, {k2, v2})}. FunctionsortKey takes a functionfCOMP and
a set of key-value pairs, and sorts the set into a list based onthe
relation computed byfCOMP .

3. Overview

Figure 4:The transformation flow of our parallelization framework.

In this section, we introduce our high-level parallelization
framework for solving graph optimization problems. Users only
need to write the problem-specific code in the style of Generate-
Test-Aggregate (GTA) [17] and our framework will automatically
derive a parallel program to solve the corresponding problem. Ev-
erything related to the transformation of data structures and work-
load distribution would also be handled by the framework.

Figure.4 shows the transformation flow of our parallelization
framework, which presents the transformations both in the data
structure level and the algorithm level. Given a graph with bound-
ed treewidth and an algorithm on the graph which is defined us-
ing the GTA abstraction, we first derive a bottom-up dynamic pro-
gramming algorithm from the GTA algorithm to reduce the com-
putational complexity to polynomial time. Then we transform the
bottom-up algorithm to a parallel algorithm on zipper to further
speed up the computation.

3.1 Transformation of data structures

In the data structure level, our framework first transforms the input
graph to a tree decomposition, then transforms the tree decomposi-
tion to zipper structures.

Graphs to tree decompositions A tree decomposition is con-
structed from the input graph, which is an instance of the tree data
structure. The data type for a tree decomposition is defined as:

data Tree b = Node b [Tree b] | Leaf

For an input graph with bounded treewidthw, the value ofw can
be recognized, and a corresponding widthw tree decomposition
be constructed in linear time[10]. The time dependence of this
algorithm onw is exponential.

There are many existing algorithms and tools construct tree
decompositions. In our current framework, we use INDDGO [21]
to generate tree decompositions for input graphs.

Tree decompositions to zippers Morihata et al. gave a definition
of zipper on binary trees in [41]. As a tree decomposition is usually
not a binary tree, we extend the definition of zipper on binarytrees
to that on tree decomposition.

A zipper on a tree decomposition is a list whose elements are
contexts that are left after a walk. The elements in the list are trees
with one hole.

A good feature of a tree decomposition is that, the order of the
children of a node is not significant during the computation.Thus,
we can consider the hole is always the rightmost child of a node.
Figure.5 shows a zipper on tree decomposition in this view.

Figure 5:An example of zipper on tree decompositions, which expresses
a path from the root to theblack leaf. The path is shown in the blue line.

The data type for the tree elements in the zipper can be defined
as:

data Tree
′ b = Node

′ b [Tree b] | Leaf ′

The zipper structures for tree decompositions can be specified
in the following type.

type Zipper b = [Tree′ b]

We use functionwalk to construct a zipper from a tree decom-
position.

walk :: Tree → Zipper

To restore a zipper to a tree decomposition (not necessarilythe
original one), we use a leftward combination on the zipper tofill
the hole of the previous element as the rightmost child.

z2t :: Zipper → Tree
z2t [] = Leaf
z2t ([Node ′ b ts] ++ l) = Node b (ts++ z2t l )

3.2 Transformation of algorithms

In the algorithm level, our framework derives bottom-up dynamic
programming algorithms on tree decompositions from the user-
specified Generate-Test-Aggregate (GTA) algorithms, thenfurther
transforms the bottom-up algorithms to parallel ones whichrun in
a divide-and-conquer manner on zipper.

GTA algorithms on graphs First, we use the GTA abstraction as
interfaces to describe graph problems. The GTA, which is user-
friendly and straightforward, represents three conceptual phases in
solving a graph problem.

Generateis to generate all possible solution candidates for a
graph problem. For instance, thegeneratefunction for Maximum-
Weighted-Independent-Set (MWIS) is to list all subsets of the ver-
tices of the input graph.

Test is to test if a solution candidate satisfies certain desired
properties and filter out unsatisfied ones. For instance, thetest
function for MWIS is to test whether a subset of vertices is an
independent set of the input graph.



Aggregateis to select a valid solution or make a summary of
valid solutions with an aggregating computation. For instance, the
aggregatefunction for MWIS is to find an independent set with the
maximum total weight.

Bottom-up dynamic programming algorithm on tree decomposi-
tion Then we derive a bottom-up dynamic programming algorith-
m from the GTA algorithm.

In general, the algorithms to solve graph problems using tree
decomposition have the following scheme. First, a tree decompo-
sition of the input graph is constructed. Then, a dynamic program-
ming algorithm is executed on the tree decomposition. For each
node of the tree decomposition, a table is computed. For a decision
problem, the table for the root of the treeT shows the answer.

B.Courcelle [14] showed a large set of problems that can be
solved in polynomial time using tree decomposition when thegraph
is restricted to bounded treewidth. These problems are usually
solved by bottom-up dynamic algorithms. Nevertheless, it is dif-
ficult to give a uniform algorithm to solve these problems.

By providing a uniform abstraction to describe graph problems,
we are able to derive bottom-up dynamic programming algorithms
for a class of interesting graph problems. The GTA functionsde-
fined by users are used as part of the bottom-up algorithms. Thus,
the bottom-up algorithms for different graph problems havesimilar
structures, the differences lie only in the user defined algorithms
using the GTA abstraction.

The transformation from a GTA algorithm to a dynamic pro-
gramming algorithm will be illustrated with an example in Sec-
tion 4.

Parallel algorithm on zippers At last, we transform the bottom-
up algorithms to parallel algorithms on zipper.

The advantage zipper offers to conquer-and-divide computing
is twofold. First, zipper is an easy and efficient way to partition
trees, and it is feasible to do it evenly, which we will discuss in
Section 5. Second, there are solid theoretical result to guarantee
the correctness using zipper to parallel computing problems on tree
decomposition.

Morihata et al. [41] proved that, for a problem on regular da-
ta structures, if there are two sequential algorithms, a bottom-up
(upward)one and a top-down (downward) one, compute the same
value, then there is a parallel version to solve the problem.

One feature of a tree decomposition of an undirected graph
is that, the root of the tree decomposition is not fixed. So we
may choose any node as the root, and the bottom-up dynamic
programming algorithm will get the same result. Take the tree
decomposition in Figure.6 as an example, if we consider the node
A as the root of the tree decomposition, we can write a bottom-up
algorithmP ; if we select the leaf nodeB as the root, thenP can
be considered as a top-down algorithm in the path alongB to A.
As the data type of a tree decomposition is regular, we can extend
the parallelization result in [41] from tree to tree decomposition,
using the third homomorphism theorem to guarantee the existence
of divide-and-conquer parallel algorithms.

Here, we extend the definition of decomposition on binary
trees [41] to that on tree decompositions.

DEFINITION 3 (function decomposition on tree).A decomposi-
tion of functionh :: Tree → A is triple (φ,⊙, ϕ) that consist-
s of associate operator⊙ :: B → B → B and two functions
φ :: Tree′ → B andϕ :: B → A such that

ϕ ◦ h′ = h ◦ z2t
h′[] = ı⊙
h′[b] = φ b
h′[x++ y] = h′x⊙ h′y.

hold, whereı⊙ is the unit of⊙.

Figure 6:An example to help illustrate bottom-up and top-down in a tree
decomposition.

It is worth noting that a function decompositionh′ can be seen
as a list homomorphism (see DEFINITION1) on zippers. Thus, if
we can provide the three associative operators(φ,⊙, ϕ), we can
get a scalable divide-and-conquer parallel program. The parallel
programp can be expressed bymapandreduceas:

p = ϕ ◦ reduce (⊙) ◦map φ

Our approach of the parallel algorithm on zipper is that, foreach
subtree in a zipper, we carry out the bottom-up algorithm in parallel
to generate partial results for subtrees and then merge the partial
results. One difficulty here is how to merge the partial results in a
consistent and efficient way. We will present our approach via an
example in Section4.

4. Algorithm Parallelization Example
Maximum-Weighted-Independent-Set (MWIS) is a well-known
NP-hard graph optimization problem. In this section, we will use
the MWIS problem as an example to illustrate the algorithm trans-
formations of our parallelizaiton framework.

4.1 GTA algorithms on graphs

First, we express the algorithm (mwisG) for the MWIS problem in
the form of GTA. We useg@(vs, es) to represent an instance of
graph with vertex set asvs and edge set ases.

G = (V,E)

generate :: [V ]→ [[(V,Bool)]]
generate [] = [[]]
generate ([v] ++ vs) = [[(v, e)] ++ ls|

e← [True ,False],
ls← generate vs]

test :: G→ [(V,Bool)]→ Bool

test g@(vs, es) xs =
∧

/[¬((v,True) ∈ xs
∧(u,True) ∈ xs)|
(v, u)← es]

weight :: [(V,Bool)]→ Int
weight xs = +/[w(v)|(v, b)← xs, b == True]

mwisG :: G→ Int

mwisG g@(vs, es) = max [weight(xs)|
xs← generate vs,
test g xs]

Here,⊕/ is defined as:

⊕/[a1, a2, ..., an] = a1 ⊕ a2 ⊕ ...⊕ an

For each vertexv in V , we useTrue (or False) to annotate
the selecting state ofv. A selection set of a set of verticesV , is



a list of all thev in V and its corresponding selecting state, i.e.
[(V,Bool)]. Functiongenerate lists all the possible selection sets.
Function test accepts two parameters, a graphG and one of its
selection setxs, and decides whetherxs satisfies the property that
it is an independent set of the graph. Functionweight computes
the total weight of all the selected vertices in a selection set. The
aggregate function in MWIS is to find the one with the maximum
weight of all the selection sets.

If we naively compute a graph problem in the form of GTA, it
takes exponential time of the input size, as GTA is actually abrute-
force approach. In this example, it takesO(2|V |) time to solve the
MWIS problem on graphG = (V,E) using the GTA algorithm.

4.2 Bottom-up algorithm on tree decomposition

Using bottom-up dynamic programming algorithms on tree decom-
position to solve MWIS has been discussed in [11, 21]. We first fol-
low the idea and derive a bottom-up functionmwis on tree decom-
position using the GTA functions as part of the implementation. We
definegbt as the induced subgraph ofg on vertices inbt.

Figure 7:An example to help illustrate the bottom-up algorithm to solve
MWIS. The number in a circle in the left graph represents boththe id and
weight of the node.

mwis (Node bt []) = [(xs,weight xs)
∣

∣

xs← generate bt,
test gbt xs]

mwis (Node bt children) = [(xs,weight xs+
(+/[inherit xs t′

∣

∣

t′ ← children ]))
∣

∣

xs← generate bt,
test gbt xs]

where inherit xs t′ = max [(value ′−
weight(xs ∩ xs′))

∣

∣

(xs′, value ′)← mwis(t′),
consistent(xs, xs′)]

consistent (xs, xs′) =
∧

/[(b == b′)
∣

∣

(v, b)← x,
(v′, b′)← x′,
v == v′]

mwisvalue tree = max (map snd(mwis tree))

For example, in Figure.7, if we run functionmwis on leafb0,
it first generates all the possible selection sets of vertices in bag
b0, then tests if they are independent sets in the induced graphgb0 .
Functionmwis returns a list of tuples of selection setxs and its
corresponding weight sum. For example, on leafb0:

mwis (Node b0 []) = [([], 0), ([1], 1), ([2], 2)]

Similarly, on leafb1 :

mwis (Node b1 []) = [([], 0), ([4], 4), ([5], 5)]

Carrying out functionmwis on nodeb2, similar to the procedure
on a leaf node, first generates and tests all the possible independent

Figure 8: computation on zipper

sets in the induce graphgb2 , then functioninherit is used to pass
up the weight contributions of the vertices in its children nodes. For
each independent setxs, we choose theconsistent selection set
which maximizes the contributed weight each of its children. Here,
consistent means for the same vertices appearing in two different
nodes, the selecting states should be the same.

mwis (Node b2 [b0, b1]) =
[([], 0 + 1 + 5), ([2], 2 + 5), ([3], 3 + 1 + 5), ([4], 1 + 4)]

If the treewidth isw, there are at most2(w+1) many generating
marking ways on each node, and there areO(|V |) many nodes
in a tree decomposition. The MWIS problem can be solved in
O(|V | · 2(w+1)) using the bottom-up algorithm.

4.3 The parallel algorithm on zippers

In the bottom-up algorithm, we need to remember the selecting
statexs in the root of current subtree, which is used for the further
computation of ancestors (testingconsistent condition). While on
zipper, as shown in figure8, we should remember the marking way
of the leftmost and the rightmost subtree roots, for the leftwards
and rightwards merging of partial results in zipper.

We first duplicate the selecting state at the root of each subtree:

mwis
′
tree = [(xs, xs, value)|(xs, value)← mwis tree ]

We modify the bottom-up functionmwis on tree decomposition
t to get a leftwards sequential functionmwisup on t’s correspond-
ing zipper.

mwisup = mwis ′ ◦ z2t
mwisup[(Node ′ bt children)] = mwis ′(Node bt children)
mwisup([a] ++ ls) = [(xsa, xs

′
ls, valuea + valuels

−weight(xsa ∩ xs′ls))
∣

∣

(xsa, xs
′
a, valuea)← mwisup a,

(xsls, xs
′
ls, valueb)← mwisup ls,

consistent xs′a xsls]

If the root of the rightmost subtree of zipper is considered as the
root of its original tree decomposition, similar tomwisup, we can
compute the Maximal-Weighted-Independent-Set in rightwards
manner (similarly tomwisup([a]++ls), we can getmwisdown(ls++
[a]) from mwisdownls andmwisdowna). When a function can be
evaluated in both leftwards and rightwards manners, the third ho-
momorphism theorem guarantees the existence of a parallel algo-
rithm.

We, therefore, construct a parallel algorithm in the following
way, with the definition of associative operator⊙:

mwispar = mwis ′ ◦ z2t

mwispar[(Node ′ bt children)] = mwis ′(Node bt children)



⊙ :: [[(V,Bool)]]→ [[(V,Bool)]]→ [[(V,Bool)]]

mwispar(a++ b) = mwispar a⊙mwispar b
= [(xsa, xs

′
b, valuea + valueb

−weight(xs′a ∩ xsb))
∣

∣

(xsa, xs
′
a, vlauea)← mwispar a,

(xsb, xs
′
b, valueb)← mwispar b,

consistent xs′a xsb]

mwisvalue tree = max (map thdmwispar(walk tree))

For each subtree, we can use functionmwis ′ to compute the
partial results in parallel. Independent sets of two successive lists
can be merged, if the selecting states of the rightmost root of the
left list and the leftmost root of the right list areconsistent .

If there arep processors, and the size of zipper isn, it takes
O(|V | ·2(w+1)/p) time to compute the result of sub-list in parallel.
A merging of two sub-list result takesO(22(w+1)) many computa-
tions. It takesO((n log n)/p · 22(w+1)) in the merging procedure.
From the practical view, the merging procedure is much faster, as
the size of the pairs of selecting state can be largely reduced with
theconcistent condition.

5. Tree Parallelization
In this section, we present how to parallelize the computations on
tree decompositions. We discuss in detail how to partition atree
decomposition to a zipper-based structure and how to apply parallel
algorithms on this zipper-based structure to the MapReducemodel.

As a tree decomposition is an instance of the tree structure,we
will not distinguish betweentree decompositionand tree in this
section.

5.1 Overview

There are three basic approaches to parallelizing the computations
on trees: the leaf-level bottom-up approach, the tree contraction/re-
duction approach and the divide-and-conquer approach. Theleaf-
level bottom-up approach, in which parallelization is onlyon the
leaf nodes, performs bad on ill-balanced trees (such as the monadic
tree). Tree contraction, which requires a set of operationsto satis-
fy a certain condition, is hard to use [41]. And tree contraction is
mainly designed for the shared memory environment. The divide-
and-conquer approach, which partitions a tree into subtrees and
computes independent subtrees in parallel, is suitable formodern
parallel environments such as distributed memory environment and
cloud.

A zipper is a path (zipper is not a path, element left long a
path)from the root node to a leaf node. The original tree can be
partitioned into subtrees along the path. change toA tree can be
partitioned into a set of subtrees after a root-down walk.However,
the nodes of subtrees in a zipper may be imbalanced, making the
parallel program inefficient. To this end, we propose a concept of
recursive partition on zipper to achieve good partition on trees.

5.2 Tree partition

Tree partition is an important part of the divide-and-conquer ap-
proach. There are two goals in partitioning a tree: one is to partition
a tree evenly, so that the tree can be computed in parallel with good
load balance; the other is to minimize the dependencies between
partitioned trees so that communication between processors can be
decreased.

From Figure.2 we can see that, all the subtrees in a zipper have
a uniform structure: each subtree has a hole and the hole is either
the left child or the right child of the root node. This feature not
only provides a uniform way to design algorithms on subtreesbut
also limits dependencies only to two adjacent subtrees in a zipper.

To achieve the two goals in partitioning a general tree, we ex-
tend the zipper for binary trees to ahierarchical zipperfor general
trees. Our idea is: to keep a uniform structure, we only choose the
leftmost child or the rightmost child when selecting a path from the
root to a leaf node; if the size of a subtree in a zipper is larger than
a threshold, we partition the subtree again to a new zipper. Such re-
cursive partition forms ahierarchical zipper(see Figure.9) which
is a tree. Each node in the tree is a zipper.

Path selection strategy Here, we describe two strategies in walk-
ing downward from the root node to a leaf node.

Random strategy.We randomly pick the leftmost child or the
rightmost child as the next node in the path. In this strategy, we
don’t need preprocessing on the tree.

Maximum descendants strategy.Each time, we choose the child
node with the maximum number of descendants. This strategy can
decrease the height of the resultant hierarchical zipper tree in most
cases. However, this strategy needs preprocessing on the tree: for
each node, we need to record the size of the tree rooted at the node,
i.e. the number of descendants.

Deciding threshold In our partition, we limit the size of each
subtree to a threshold. The threshold is decided using the following
equation:

T = N/(P ∗ 2)

whereN is the number of tree nodes, andP is the number of
processors andT is the threshold value.

Underlying implementation We describe our underlying imple-
mentations of the hierarchical zipper. Figure.9 gives an example of
a hierarchical zipper.

Figure 9:An example of a hierarchical zipper: the subtrees in red dotted
rectangles are partitioned to new zippers pointed by the arrows; the id of a
subtree is shown on its top.

Subtree id.Each subtree in the hierarchical zipper has an id in
the form of X-Y.X is the id of the zipper the subtree belongs to
andY is its index in the zipper. The id of a zipper is the same with
the subtree the zipper is partitioned from.

We add a T to the head of an id for easy description. For
example, in Figure.9, the id T1-2-1 means the subtree is the first
element in the zipper for subtree T1-2.

Subtree flag.Each subtree has a flag which records whether
a subtree is the last element in a zipper. This flag is used in the
combination of the results of subtrees in a zipper. The combination
is finished if the result of the last subtree in the zipper has been
combined, For example, in Figure.9, the flag for subtree T3-1 is
false because T3-1 is the first element in the zipper.

Storage.All the subtrees are stored in a list in a post-order
traversal of the hierarchical zipper. For example, the subtrees in
Figure.9 are stored as [T1-2, T1-2-1 ,T1-2-2 ,T2, T3-1, T3-2].

5.3 Parallel algorithm on hierarchical zipper

To provide a parallel algorithm on the hierarchical zipper,we pre-
pare the following four functions. In the following,Tree′ is the



type of a subtree,B is the type of the intermediate result of a sub-
tree andA is the type of final result for the problem.

• compute :: Tree ′ → B

Compute and return the intermediate result of a subtree. This
function corresponds to theφ operation in DEFINITION3.

• combine :: B → B → B

Merge the results of two subtrees. This function corresponds to
the⊙ operation in DEFINITION3.

• recover :: B → B → B

Recover from the combined result of a zipper to the result of its
original subtree.

• extract :: B → A

Compute the final result of the complete tree from the result
of a hierarchical zipper. This function corresponds to theϕ
operation in DEFINITION3.

The recover function When we design algorithms on zipper, we
usually compute auxiliary information to help to combine subtrees.
For example, the height example in [41] computes the height of
a subtree as its first result and the depth of the hole as its sec-
ond result. For a subtreet with height h, the result of the sub-
treecompute t is (h, 1). However, if we partition the subtree to
another zipperz and combine the results of all the subtrees, i.e.
reduce combine z, the result tuple will be(h, x). Here,x is the
final depth of the hole, which equals the size of subtrees in the zip-
per. Thus, we need arecover function to guarantee that the result
on zipper can be recovered to the result on the subtree.

On the other hand, when a subtree is partitioned to a zipper, the
root node of the subtree becomes the root node of the first subtree
in the zipper (see nodea1 in Figure.9). As the hole is always in
the root node and the first subtree contains the root node, we can
recover the result from the result on zipper and the result ofthe first
subtree in the zipper.

Algorithm description The parallel algorithm on hierarchical zip-
per consists of a map process and a reduce process.

Map process.In the map process, we perform thecompute
function on each subtree and passes the intermediate results to the
reduce process.

Reduce process.In the reduce process, we group the received
intermediate results by zipper id and sort the elements in each
group by index. In each group, we apply thecombine function
on intermediate results with consecutive indices. If all the results
in a group have been combined, we use therecover function to
recover the result and sent the result to the reduce process.The
reduce process is repeated until the result of the top-levelzipper has
been computed. Then theextract function is performed to compute
the final result.

Apply to the MapReduce model We show how to apply the par-
allel algorithm to the MapReduce model in an iterative manner. We
divide the MapReduce passes (rounds) into a working pass andit-
erative passes. The iterative pass repeats until the top-level zipper
has been computed. In the following, we summarize the two kinds
of MapReduce passes.

Here,K is the type of the subtree id. Thesplit function splits an
id into a zipper id and an index, and return them in a pair with the
zipper id as the first result. Thecompfunction will return 1 if the
first argument is greater than the second, 0 if the two arguments are
equal and -1 otherwise.

The working pass of MapReduce.The first pass of MapReduce
is the working pass, which computes the results of all the subtrees

and combines parts of the results. The input to the MAP phase is a
list of key-value pairs of ids and subtrees, while thefMAP1 function
takes one pair and performscompute on the subtree. In the SUF-
FLE&SORT phase, thefHASH function is used to group results by
zipper id and thefCOMP function is used to sort the elements in
each group by index. Finally, the REDUCE phase combines the
results in each group. The working pass of MapReduce can be rep-
resented as follows:

MapReduce fMAP1 fHASH fCOMP fREDUCE

where

fMAP1 :: (K,Tree ′)→ [(K,B)]

fMAP1 (k, t) = [(k, compute t)]

fHASH :: K → K

fHASH k = fst (split k)

fCOMP :: K → K → {−1, 0, 1}

fCOMP k1 k2 = comp (snd (split k1)) (snd (split k2))

fREDUCE :: (K, [B])→ (K,B)

fREDUCE (k, as) = (k, recover (reduce combine as))

The iterative passes of MapReduce.Other passes of MapReduce
except the first one are iterative passes. The iterative passes com-
bine remaining parts of the results. In an iterative pass, the MAP
phase does no computation and the other two phases are the same
as in the working pass. The iterative pass of MapReduce can be
represented as:

MapReduce ([·]) fHASH fCOMP fREDUCE

Result extraction.When all the MapReduce passes end, we get
a result kay-value pair(k, b). Then theextract function is applied
to compute the final result, which is represented as:

extract ◦ snd

6. More Examples
6.1 More optimization problems

Using the GTA abstraction, we can parallelize algorithms solving
more optimization problems such as vertex cover and independent
set with constraints.

Similar to the MWIS problem, we first use thegenerate func-
tion to list all the possible selecting set of vertices, thenuse the
test function, which indicates the properties of the selected set, to
filter the legal marking way. As for the minimal vertex cover set
problem, thetest function can be expressed as:

test :: G→ [(V,Bool)]→ Bool

test g@(vs, es) xs =
∧

/[(v,True) ∈ xs
∨(u,True) ∈ xs|
(v, u)← es]

Its aggregate function ismin.

Thetest function could be a combination of several properties.
For example, if we want to compute the maximal weighted inde-
pendent set of even weighted vertices, thetest function could be
defined as:

test :: G→ [(V,Bool)]→ Bool



test1 g@(vs, es) xs =
∧

/[¬((v,True) ∈ xs
∧(u,True) ∈ xs)|
(v, u)← es]

test2 g@(vs, es) xs =
∧

/[w(v)%2 == 0|
(v, b)← xs,
b == True ]

test g@(vs, es) xs = (test1 g@(vs, es) xs)
∧(test2 g@(vs, es) xs)

Then the correspondingaggregate function ismax .

Further, we can rewrite functionmwis andmwispar with the
new definedtest function to derive parallel algorithms for the
corresponding problems.

6.2 The vertex coloring problem

Vertex coloring is an important NP-hard satisfiable problemon
graph. For graph of bounded treewidth, H. Bodlaender [9] proposed
how to compute vertex coloring in polynomial time using tree
decomposition. We briefly present here how to expressk vertex
coloring in form of GTA, and how to use our parallel frameworkto
solve it.

G = (V,E)
data Color = C1|C2|...|Ck

generate :: [V ]→ [[(V,Color)]]
generate [] = [[]]
generate ([v] ++ vs) = [[(v, e)] ++ ls|

e← [C1, C2, ..., Ck],
ls← generate vs]

test :: G→ [(V,Bool)]→ Bool

test g@(vs, es) xs =
∧

/[cv 6= cu|
(v, u)← es,
(v, cv)← xs,
(u, cu)← xs]

weight :: [(V,Bool)]→ Int
weight xs = 0

exist t = if t 6= ∅ then 0
else −∞

mwisG :: G→ Int

mwisG g@(vs, es) = exist [weight(xs)|
xs← generate vs,
test g@(vs, es) xs]

For a graphG, thegenerate function lists all the possible color-
ing ways of the vertices, and thetest function filters legal coloring
ways. If there is a legal coloring way, we use the aggregate function
exist to set its value as 0, otherwise as−∞. A parallel algorithm
can be derived by rewriting the one of MWIS with a new defini-
tion of generate , test andaggregate functions. More specifically,
we useexist to replacemax as theaggregate function, which can
guarantee the if an induced subgraph cannot be k-colored (the ag-
gregated weight value is−∞), then the whole graph can not be
k-colored (summation of−∞ with anything is−∞). However,
the parallel algorithm for vertex coloring generated by ourgeneral
framework is not optimal. For more optimization for vertex color-
ing algorithm, one can refer to [9].

Many practical problems such as job scheduling [34] and reg-
ister allocation in program analysis [12] can be reduced to vertex
coloring. A parallel algorithm of vertex coloring is promising to
efficiently solve these problems.

6.3 Further discussion on the domination-type problems

For the minimal dominating set problem, it can be expressed in the
form of GTA, but the generated parallel algorithm would be incor-
rect if we naively use the approach we do for MWIS. We have ob-
served the following fact: for a selection setxs failing certification
of test , which contains vertices that are neither of selecting state
nor dominated by vertices of selecting state, might become legal
in the further computation as the un-dominated vertices might be
dominated by vertices appearing in the ancestor nodes. Thatmeans,
we will miss some selection set candidates for the minimal domi-
nating set problem if we do parallelization like that for MWIS.

The minimum dominating set problem can be efficiently solved
via tree decomposition [2, 47]. Telle [47] showed how to describe
domination-type problems with the state of each vertex and its
neighbors. In order to parallelize a class of domination-type prob-
lems, we will introduce functiontest alive, which is to remember
some selection sets that fail certification oftest for the current state
but might satisfytest later.

Due to the limitation of scope, here we mainly present our o-
riginal idea of parallelizing graph program via tree decomposition
and introduce a high-level parallelization frameworkOur frame-
work can solve graph combinatorial optimization problems whose
selected vertices set with global properties are satisfied in induced
sub-graphs.One important part of our future work is to extend the
domain of graph problems of our parallelization approach, which
includes solving dominating-like problems with parallel algorithms
and derivingtest alive function fromtest automatically.

7. Evaluation
As a proof of concept and feasibility, we experimentally validate
our approach through a very preliminary experiment.

7.1 Experiment environment

All experiments in this section are performed on a Linux (Ubun-
tu 12.04 64-bit) compute node equipped with 8GB of RAM and
two processors each with 4 cores (Intel(R) Xeon(R) CPU E5620@
2.40GHz). All our experiments are conducted on an implementa-
tion of the MapReduce model using Java multi-thread. Results are
averaged over 5 iterations.

7.2 Experiment on graph problems

We conducted experiments on the Maximum Weighted Indepen-
dent Set problem.

Graph Data Our graph data is a partialk-tree generated by keep-
ing 100% of the edges from a random 10-tree on 100,000 n-
odes [21]. The graph has 100,000 nodes and 999,945 edges, and
the treewidth is 10.

We use an open-source tool, INDDGO [21], to construct tree
decomposition of the graph. After construction, the tree decompo-
sition of the graph has 72,523 nodes. The height of the tree decom-
position is 22 and the maximum degree is 149.

Results The running time result of this experiment is shown in
Figure.10.

The speedup result of this experiment is shown in Figure.11.
From the figure we can see that, the parallel algorithm for the
MWIS problem achieves a nearly linear speedup over the sequen-
tial version.

8. Related Work
In this section, we discuss some related work in the areas of graph
and tree parallelization, and tree decomposition and treewidth.
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8.1 Graph parallelization

Graph parallelization, especially on large scale graphs, has been
studied intensively in recent years. There are two directions in this
research that are most related to our work.

Graph-parallel abstractions Several works proposed graph-
parallel abstractions. Pregel [33] is a bulk synchronous message
passing abstraction in which all vertex-programs run simultaneous-
ly in a sequence of super-steps. GraphLab [32] is an asynchronous
distributed shared-memory abstraction in which vertex-programs
have shared access to a distributed graph with data stored onevery
vertex and edge. Gonzalez et al. [20] showed that the natural graphs
commonly found in the real-world have power-law degree distribu-
tions, which challenge the assumptions made by these abstractions.
So they proposed the PowerGraph [20] abstraction which exploits
the Gather-Apply-Scatter model of computation to factor vertex-
programs over edges, splitting high-degree vertices and exposing
greater parallelism in natural graphs. Our works differ with theirs
in that our Generate-Test-Aggregate abstraction is designed to de-
scribe graph problems, such as graph optimization problems, while
their abstractions are designed to specify general computations on
graphs.

Solving graph problems in parallel Silvio Lattanzi et al. [29] p-
resented a design technique called filtering, which uses theparal-
lelization of MapReduce to reduce the size of the input so that the

resulting problem instance can be solved on a single machine. They
gave algorithms for several graph problems such as minimum span-
ning trees, maximal matchings, approximate weighted matchings,
approximate vertex and edge covers and minimum cuts. Howev-
er, their algorithms for graph problems are still on graphs while
ours are transformed to algorithms on tree decompositions.Sulli-
van et al. [46] proposed a task-oriented parallel bottom-up dynamic
programming algorithm on tree decomposition to solve the maxi-
mum weighted independent set problem. Their approach is shared-
memory environment centered and would be inefficient if the shape
of the tree decomposition is imbalanced. Our approach, however,
can derive a parallel divide-and-conquer algorithm with good load
balance.

8.2 Tree decomposition

Recently, tree decomposition and treewidth get growing attention
from researchers. Hicks et al. [23] gave a general overview of
tree decomposition technique for discrete optimization. Though
tree decomposition is the basis of our work, how to constructtree
decompositions from graphs is not our focus in this paper.

Tree decomposition and treewidth Arnborg et al. [3] proved that
determining whether a graphG has a treewidth of at mostk is NP-
complete. But for an input graph with bounded treewidthw, the
value ofw can be recognized, and a corresponding widthw tree
decomposition constructed in linear time[10]. Existing algorithms
for determining or approximating treewidth can be categorized into
exact algorithms, upper bound algorithms and lower bound algo-
rithms. Overviews of these algorithms are given in [11, 23]. Fu [18]
gave a detailed description of these algorithms, implemented some
of the algorithms and made a comparison of the implemented algo-
rithms by category through experiments. Groer et al. [21] also made
a comparison of the performance of elimination ordering heuristics
on a set of test graphs. Sullivan et al. [46] presented their imple-
mentation for parallelizing the construction of tree decomposition.

Applications of tree decomposition or treewidth The probably
first tree decomposition based algorithm that has been shownof
practical interest is given by Lauritzen and Spiegelhalter[30]. They
solve the inference problem for probabilistic (or Bayesianbelief)
networks by using tree decompositions. Ogawa et al. [42] proposed
an approach for program analysis, such as dead code detection
and register allocation, through recursive graph traversal instead of
iterative procedures based on the fact that most programs have well-
structured control flow graphs, ie. graphs with bounded treewidth.
Wei [49] proposed a method to answer shortest-path queries based
on tree decompositions. Akiba et al. [1] designed algorithms and
data structures for efficient shortest-path query processing for two
specific classes of graphs: graphs with small treewidth and complex
networks. However, they didn’t consider about parallelization of
their algorithms.

8.3 Tree parallelization

Using tree decomposition, we are able to reduce algorithms for
some graph problems to algorithms on tree decompositions (trees).
Thus, existing tree parallelization techniques can be usedto paral-
lelize computations on the tree decomposition, so as to parallelize
the graph problems. Here, we give a brief overview of these tech-
niques.

Parallel tree contraction Tree contraction, which was first pro-
posed by Miller and Reif [40], is a useful framework for developing
parallel programs on trees, and many computations have beenim-
plemented on it. However, parallel tree contraction is hardto use,
because it requires a set of operations that satisfy a certain condi-
tion [41]. To this end, Matsuzaki et al. [37] proposed a systematic



method of deriving efficient tree contraction algorithms from recur-
sive functions on trees.

Parallel tree reduction Tree reductions are often implemented
with a tree contraction algorithm. Matsuzaki et al. [39] developed
a code generation system based on tupled-ring property to auto-
matically transform user’s recursive reduction programs with an-
notations into parallel programs. Kakehi et al. [25, 26] developed
a framework for parallel reductions on trees over distributed mem-
ory environment by exploiting serialized trees as the data repre-
sentation and a property called extended distributivity. Emoto and
Imachi [16] proposed a MapReduce algorithm for tree reductions
and implemented it on Hadoop.

Parallel tree skeleton Parallel skeletons provide parallelizable
computational patterns in a concise way and conceal the complicat-
ed parallel implementations from users. Skillicorn [45] first formal-
ized a set of binary-tree skeletons. Matsuzaki et al. [35] proposed
an implementation of these parallel tree skeletons on binary trees
on distributed systems. Matsuzaki et al. [36] also proposed two par-
allelization transformations to help programmers to systematically
derive efficient parallel programs using tree skeletons. Later, they
presented rose trees in the form of binary trees and proposeda set of
rose-tree skeletons [38] which are implemented on their binary-tree
skeleton library.

Homomorphism-based parallelization Skillicorn [45] modeled
operations on structured text such as XML using parameterized tree
homomorphism functions on binary trees. Morihata et al. [41] gen-
eralized the third homomorphism theorem [19] to trees and devel-
oped a method for systematically constructing scalable divide-and-
conquer parallel programs on trees from two sequential programs.
Our approach is based on their idea.

Tree partition Tree partition plays an important role in the divide-
and-conquer approach. A zipper is a list of trees, which ideawas
first described by Huet [24] in 1997. Morihata et al. [41] consid-
ered a zipper as a one-hole context and proposed recursive division
on one-hole contexts to divide a tree. Our tree partition approach is
also based on zipper, but in a different division strategy. M-bridge
is another approach to partition a tree. Miller et al. [43] gave def-
initions of M-bridge and proved some properties of M-bridge. M-
bridge finds a set of vertices that subdivide a tree into independent
subtrees of approximately equal size. It will be interesting to see if
we can make use of this approach in our tree partition process.

9. Conclusions and Future Work
In this paper, we present an approach to transforming bottom-up
dynamic programming algorithms on tree decomposition to paral-
lel algorithms on zipper. As far as we know, our approach is the first
one to parallelize computations on tree decompositions in adivide-
and-conquer manner with good load balance, which is suitable for
the MapReduce model. We also introduce the GTA abstraction for
easy programming of graph problems. Our proposed paralleliza-
tion framework can transform the user-specified GTA programs to
efficient parallel programs automatically. Our preliminary results
show that the algorithms we proposed are not only interesting from
a theoretical viewpoint, but also are viable and useful in practice.

We aim to solve practical problems via tree decomposition and
tree parallelism. Well structured programs are proved to have a s-
mall treewidth [22, 48], and the notions of tree decomposition and
treewidth provide a new and efficient approach for program anal-
ysis [42]. Tree decomposition is also potential to promote com-
puting in social networks. The target set selection problem[5] in
social networks can be reduced to independent-like or domination-
like problem on graph. We believe our parallelization framework is
towards solving such practical problems.

For future work, as discussed in Section6.3, we are actively
extending the domain of graph problems of our parallelization
approach. We also plan to implement the parallelization framework
as a library, for example on Hadoop [50], so that large scale graph
problems can be tackled in distributed memory environments. As
the graphs we considered in this paper are undirected graphs, our
another future work is to extend our framework to directed graphs.
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