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Abstract

Many graph optimization problems, such as Ma&ximum Weight-
ed Independent Seroblem, are NP-hard. For large scale graphs
that have billions of edges or vertices, these problems are to

be computed directly even using popular data-intensivadrgork-

s like MapReduce or Pregel that are deployed on large compute
clusters, because of the extremely high computational texityp

On the other hand, many studies have shown the existencéysf po
nomial time algorithms on graphs with bounded treewidthictvh
makes it possible to solve these problems on large grapheevés,

the algorithms are usually difficult to be understood or palizaed.

In this paper, we propose a novel programming framework
which provides a user-friendly programming interface antba
matic in-black-box parallelization. The programming nfidee,
which is a simple and straightforward abstraction calledéate-
Test-Aggregate (GTA for short), is used to describe a setayty
problems. We propose to derive bottom-up dynamic programgmi
algorithms on tree decompositions from the user-specified G
algorithms, and further transform the bottom-up algorghmpar-
allel ones which run in a divide-and-conquer manner on eofist
subtrees. Besides, balanced tree partition strategiedissassed
for efficient parallel computing. Our preliminary experintal re-
sults on the Maximum Weighted Independent Set problem demon
strate the practical viability of our approaches.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming: Parallel programming; [.2.2 Automatic Program-
ming: Program transformation; G.2.Mathematics of Comput-
ing]: Discrete Mathematics, Graph Theory, Graph algorithms

General Terms  Algorithms, Design

Keywords graph problems, parallelization, GTA, tree decomposi-
tion, treewidth, transformation
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1. Introduction

Many practical computing problems concern large graphb sic
social networks and linked dat&, [13, 33], which may contain bil-
lions of edges or vertices. The computational complexitguth
large datasets has exhausted the limits of a single computiéerh
demands parallelization of graph problems on parallelesyst
Thus the approaches of using MapReduce-like frameworkarte h
dle large graphs are actively studiet3[ 15, 27], and also some
specialized graph-programming frameworks such as Pr&ggl [
GraphLib B2] and PowerGraph20] are developed to more effi-
ciently resolve large-graph computation problems. Howawany
graph optimization problems, such as tileximum Weighted In-
dependent Seiroblem, are NP-hard. For large input graphs, these
problems are hard to be computed even using MapReduce alPreg
that are deployed on large computer clusters, because saph g
computations are often exponential in the size of the inpaplgs.

Arnborg et al. #]] showed that many NP-hard problems posed in
monadic second-order logic can be solved in polynomial tirsie
ing dynamic programming techniques on input graphs witmbeu
ed treewidth. Many problems on graph, such as graph optiioiza
problems (e.g.Minimum Vertex CoveMaximum Weighted Inde-
pendent Sétcan be solved via tree decomposition using bottom-up
dynamic recursive algorithms. Despite more and more rekees
have investigated the possibility for applying treewidthinnova-
tive ways to help solve their problems, 5, 21, 28, 49, much less
work are forcused on parallelizing the algorithms for grapbb-
lems which are based on tree decomposition. Sullivan et#§]. [
was the first one to parallelize algorithms for optimizafwablem-

s. Their task-oriented bottom-up dynamic programming aagin

is shared-memory environment centered and is hard to beriatho
to MapReduce-like frameworks thus hardly handle biggeasktt

s that beyond the capacity of a single machine. Moreovecesin
the parallelization of their approach is only on the leafemdhe
performance would be very inefficient if the shape of the ttee
composition is ill-balanced.

To parallelize the optimization problems on graphs and igiev
good programmability, we propose a novel programming frame
work which provides a user-friendly programming interfaaoel
automatic in-black-box parallelization. As a tree decosifion of
a graph is an instance of the tree data structure, our piézalle
tion approach for graph problems is based on both tree dexsimp
tion and tree parallelization. For tree parallelizatidrisia known
challenge to provide an efficient divide-and-conquer pelralgo-



rithm on trees with good load balance. Morihata et 4l] [de-
veloped a method for systematically constructing scaldbliele-
and-conquer parallel programs on trees basetherthird homo-
morphism theorerand the zipper structure. However, the division-
s of subtrees in a zipper may be imbalanced, making the phrall
program inefficient. In our approach, we extend the third dom
morphism theorem to tree decomposition to develop paraligl-
rithms, and we further extend the zipper for balanced trettios.
Our parallel algorithms, which run in a divide-and-conqu®n-

hold, wherei is the unit of®.

List homomorphism is useful for developing parallel progsa
on list. The associativity ob guarantees that a list can be divided
at anywhere and the computation result is the sad#. [

THEOREM1 (The third homomorphism theoremid]). Function
his a list homomorphism iff there exist two binary operaterand
® such that the following equations hold.

ner, have good load balance even when the shape of tree decom-

positions is ill-balanced. Our programming interface iseapres-
sive and general pattern Generate-Test-Aggregate (GTA
for short). The GTA programming pattern is simple and straig
forward: firstly, thegenerate function generates all possible so-
lutions candidates (e.g., all permutations), secondétéist func-
tions filters the candidates with certain predicates, arall§ithe
aggregate function aggregates valid solutions. Users do not need
to understand the parallelization details but just neechtamkthis
naive GTA abstraction and do sequential programming. Then o
framework will transform the user-specified GTA programsfto
cient parallel programs (e.g., MapReduce-like programs).

Our technical contributions in this paper are threefoldstrive
propose the GTA abstraction for users to easily specifynupt-
tion problems on graphs with bounded treewidth. Second,xwe e
tend the application of the third homomorphism theoremese tte-
compositions, and propose an approach to transformingroetip
dynamic programming algorithms on tree decompositionvadi
and conquer parallel algorithms on zipper. Third, we pregpar-
allelization framework to automatically transform uspesified G-
TA algorithms to parallel ones which are suitable to be im@at-
ed on MapReduce-like framework.

The rest of this paper is organized as follows. Sec#dmiefly
reviews some preliminary knowledge. Secti8rintroduces our
parallelization framework. Sectiof and Sectiorb illustrate our
framework with some examples. Sectidndiscusses tree paral-
lelization. Section7 shows the preliminary experimental results.
Related work is discussed in Secti@rinally, Sectior® concludes
the paper with the future work.

2. Preliminaries
2.1 Notations

In this paper, the notations are mainly based on the furation
language Haskellg]. The parentheses for function applications
may be omitted, i.e.f a equals tof (a). Functions are curried and
bound to the left, thug a b equals tq f a) b. Function application
has higher priority than those for operators, tlffiusbb = (f a)®b.
Operatoro denotes a function composition, and its definition is
(fog)(x) = flg(x). N

Tuples are written likga, b) or (a,b,c). A list is denoted by
brackets split by commas. We usgto denote an empty list, and
+- to denote list concatenation. A list that has only one elédrizen
called asingleton Operator:] takes a value and returns a singleton
with it.

Functionid is the identity function. Functiorist (snd, thd)
extracts the first (the second, the third) element of thetinyple.

2.2 List homomorphism and the third homomorphism
theorem

DEFINITION 1 (List homomorphismT]). Functionh :: [A] — B
is said to be alist homomorphism if there exists functiory ::
A — B and an associative operatad :: B — B — B such that

i = w0
h [a] = fa
h(zx+Hy) = hzOhy

h([a] 4 =)
h(z 4 [a])

The third homomorphism theorem states that if a function can
be computed in both leftward and rightward manners, therethe
exists a divide-and-conquer parallel algorithm to evaluhé func-
tion.

Morihata et al. #1] extend the third homomorphism theorem to
regular data structures, including trees.

a®hx
hzr® a.

2.3 List homomorphisms on MapReduce

Google’s MapReducelp] is a popular programming model for
processing large datasets in a massively parallel manner.

List homomorphisms fit well with MapReduce, because their
input can be freely divided into sub-lists which can be distied
among machines. Then on each machine the programs are com-
puted independently, and the final result can be got by a mgrgi
procedure. In fact, it has been shown that list homomorphicam
be efficiently implemented using MapRedu&l][ Therefore, if
we can derive an efficient list homomorphism to solve a proble
we can solve the problem efficiently with MapReduce, enjgyta
advantages such as automatic load-balancing, faultatode; and
scalability.

2.4 Graph definitions

Formally, agraph G = (V, E) is a set of vertice3” and a set of
edgesE formed by unordered pairs of vertices. All graphs in this
paper are assumed to be finite, simple and undirected.

In a weighted graph, each edge or vertex is associated witk so
value (weight). Theveightof a vertex is denoted as(v). We say
H = (W, F) is asubgraphof G = (V, E), denoted adf C G,
if both W C V and FF C E. An induced subgraplis one that
satisfiez,y) € F for every pairz,y € W such thafz,y) € E.
We denote the induced subgraphofvith verticesX C V asGx.

2.5 Graph optimization problems

In this paper we are interested in a class of important graph-p
lems that optimally select a set of nodes from a given graph. W
assume each vertex in a graph is assigned with an int weidght va
ue w(v). If the weight of each vertex is one, these problems are
to maximize or minimize the size of the selection set satigfya
certain condition.

Maximum Weighted Independent Set Given a graphG
(V, E), an independent sef] of the graph is a set of vertex satis-
fies the following condition:

Yo,u € S = —=(v,u) € E
The Maximum Weighted Independent $ebblem is to find an
independent set with the maximum total weight.

Minimum Weighted Vertex Cover  Given a graptG = (V, E), a
vertex cover §) of the graph is a set of vertex satisfies the following
condition:

V(iv,u) e E=—=veSVues



The Minimum Weighted Vertex Coveroblem is to find a vertex @
cover with the minimum total weight.

(2) A
Minimum Weighted Dominating Set  Given a graplz = (V, E),
a dominating set) of the graph is a set of vertex satisfies the /\ @ |::> @ @ @ @ @
following condition: (ad) AL A NN

/\
YoeV =veSV(3u(vu € EAucS) (@) N\
TheMinimum Weighted Dominating Sgttoblem is to find a domi- VAN
nating set with the minimum total weight.
Apart from these optimization problems, we will also dissus Figure 2:A zipper s‘tructure, yvhich expresses a path from the rooteo th
about an important NP-hard satisfiable problem on graph. black leaf. The path is shown in the blue line.

Vertex Coloring Given a grapiG = (V, E), assign a colot,, to
each vertexw € V such that the following holds: Input Data shuffle&sort phase Output Data

N
«m
= |

V(v,u) € E = ¢y # Cu

2.6 Tree decomposition and treewidth

Tree decomposition and treewidth were first introduced blyeRin
son and Seymou#f] in their fundamental work on graph minors.

DEFINITION 2 (Tree decompositior2l]). A tree decomposition
of a graphG = (V,E) is a pair ({B:,t € I},T) where
B, C V,I = {1,.,n},andT = (I,F) is a tree such that

DO

the following conditions are satisfied: map phase reduce phase
the union of the subsef3; equals the vertex séf(1 <t < .
* _ 1/ 13 eq 81 <t <n), Figure 3:The MapReduce computation model
I'e'UtEI B, =V;
o for every edgdv,u) € E, there is ant € I withu,v € By;
and 2.8 Functional description of MapReduce

e for everyv € V , if B; and B; containv for somei,j €
{1,2,...,n}, thenBy, also contain for all £ on the (unique)
path inT connectingi and j. In other words, the set of nodes
whose subsets containform a connected subtree 6.

To formally describe our MapReduce implementation lateg, w
introduce the following functional description of MapRegu(as

in [31]). As shown in Figure3, the MapReduce model consists of
three phases: MAP, SHUFFLE&SORT and REDUCE.

The subsets3; are often referred to asagsof vertices. The To make the discussion _precise, we introduqe a specificafio_n
widthof a tree decompositiof{ B, t € I}, T) is mazie|Be| — 1. the MapReduce programming mogjel ina functional programgmin
The treewidth7(G) of G is the minimum width over all tree de- manner. The sta_ndard programming mterf_ace of the MapReduc
compositions of>. Figure.1 shows an example of a tree decompo-  framework contains the following four functiorts.

sition of width two. e Function fyrap is invoked during the MAP phase and applied
e e on each input key-value pair. Its type is defined as follows.

faarp o (k1 01) — [(k2,02)].
©

Function fuap takes a key-value pair and returns a list of

intermediate key-value pairs.
Figure 1:An example of a tree decomposition of width two: blue circles ) ] ) )
(big circles) denote the bags; red dashed lines connectatine vertices e Functionfcowmp is a parameter function for the sorting process,
between adjacent bags. which compares two keys in sorting the values in a group. Its
type is defined as follows.

fcoMp k2 — k2 — {-1, 0, 1}.

e Function fuasu is a parameter function for the shuffling and
grouping process, which takes the key of an intermediate key
value pair, and generates a key with which the key-valueipair
grouped. Its type is defined as follows.

fuasu k2 — k3.

2.7 Zippers on binary trees
A zipper [41] is a list whose elements are contexts that are left ¢ Function frepuce is invoked during the REDUCE phase,

after a walk. Based on walking downward from the root of a,tree which takes a key and a list of values associated with the key
we construct a zipper as follows: when we go down-right from a  and merges the values. Its type is defined as follows.
node, we add its left child to the zipper; when we go down-le& frepuce = (3, [v2]) — (k3,v3).

add the right child to the zipper. For example, Fig@@shows the

correspondence between a zipper and a walk from the rooeto th 1in order to distinguish them with the functions in Haskelé ehange their
black leaf. names.




Now a functional specification of the MapReduce framework
can be given as follows, which accepts four functiofisap,
faasu, fcomp and frepuce and transforms a set of key-value
pairs to another set of key-value pairs.

MapReduce fvap fuasu fcomp fREDUCE input
= let subl = mapg fmap input
sub2 = mapg (A(K', kvs).
(', map snd (sortKey fcomp kvs)))
(shuffleKey fuasu subl)
in mapg frEDUCE SUb2

Functionmapg is a set version of thenap function: i.e., it
applies the input function to each element in the set. Fancti
shuffleKeytakes a functionfuasu and a set of lists of key-value
pairs, flattens the set, and groups the key-value pairs aséuke
new keys computed byuasu. The result type afteshuffKeyis
{(k3,{k2,v2})}. Functionsortkeytakes a functionfcomp and
a set of key-value pairs, and sorts the set into a list basetieon
relation computed bycomp -

3. Overview

Generate Bottom-up Dynamic
Test Y Programming —— —=| Parallel Algorithm
Aggregate Algorithm

Tree )
G=(V,E) [—— Decomposition '::>@

Figure 4:The transformation flow of our parallelization framework.

In this section, we introduce our high-level parallelipati
framework for solving graph optimization problems. Usergyo
need to write the problem-specific code in the style of Gearera
Test-Aggregate (GTA)1[7] and our framework will automatically
derive a parallel program to solve the corresponding probkev-
erything related to the transformation of data structureswaork-
load distribution would also be handled by the framework.

Figure.4 shows the transformation flow of our parallelization
framework, which presents the transformations both in thg d
structure level and the algorithm level. Given a graph withirid-

ed treewidth and an algorithm on the graph which is defined us-

ing the GTA abstraction, we first derive a bottom-up dynam@ p
gramming algorithm from the GTA algorithm to reduce the com-
putational complexity to polynomial time. Then we transfiothe
bottom-up algorithm to a parallel algorithm on zipper totffiar
speed up the computation.

3.1 Transformation of data structures

In the data structure level, our framework first transforhesinput
graph to a tree decomposition, then transforms the treentizcsi-
tion to zipper structures.

Graphs to tree decompositions A tree decomposition is con-
structed from the input graph, which is an instance of the deta
structure. The data type for a tree decomposition is defised a

data Tree b = Node b [Tree b] | Leaf

For an input graph with bounded treewidththe value ofw can
be recognized, and a corresponding widittree decomposition
be constructed in linear tim&)]. The time dependence of this
algorithm onw is exponential.

There are many existing algorithms and tools construct tree
decompositions. In our current framework, we use INDD@Q [
to generate tree decompositions for input graphs.

Tree decompositions to zippers Morihata et al. gave a definition
of zipper on binary trees irfl]. As a tree decomposition is usually
not a binary tree, we extend the definition of zipper on birieggs
to that on tree decomposition.

A zipper on a tree decomposition is a list whose elements are
contexts that are left after a walk. The elements in the tistiees
with one hole.

A good feature of a tree decomposition is that, the order ®f th
children of a node is not significant during the computatibinus,
we can consider the hole is always the rightmost child of aenod
Figure.5 shows a zipper on tree decomposition in this view.

[ RR R AR

Figure 5:An example of zipper on tree decompositions, which expeesse
a path from the root to theblack leaf. The path is shown in the line.

The data type for the tree elements in the zipper can be defined
as:

data Tree’ b = Node' b [Tree b] | Leaf’
The zipper structures for tree decompositions can be sepécifi
in the following type.
type Zipper b = [Tree’ b]
We use functionvalk to construct a zipper from a tree decom-
position.
walk :: Tree — Zipper

To restore a zipper to a tree decomposition (not necesstuely
original one), we use a leftward combination on the zippéiilto
the hole of the previous element as the rightmost child.

22t o Zipper — Tree
22t || = Leaf
22t ([Node' bts] #1) = Nodeb (ts+ 22t1)

3.2 Transformation of algorithms

In the algorithm level, our framework derives bottom-up alyric
programming algorithms on tree decompositions from thea-use
specified Generate-Test-Aggregate (GTA) algorithms, theher
transforms the bottom-up algorithms to parallel ones whichin

a divide-and-conquer manner on zipper.

GTA algorithms on graphs  First, we use the GTA abstraction as
interfaces to describe graph problems. The GTA, which is-use
friendly and straightforward, represents three conceioases in
solving a graph problem.

Generateis to generate all possible solution candidates for a
graph problem. For instance, tijeneratefunction for Maximum-
Weighted-Independent-Set (MWIS) is to list all subsetshefver-
tices of the input graph.

Testis to test if a solution candidate satisfies certain desired
properties and filter out unsatisfied ones. For instance tdke
function for MWIS is to test whether a subset of vertices is an
independent set of the input graph.



Aggregateis to select a valid solution or make a summary of
valid solutions with an aggregating computation. For ins& the
aggregatefunction for MWIS is to find an independent set with the
maximum total weight.

Bottom-up dynamic programming algorithm on tree decomposi-
tion Then we derive a bottom-up dynamic programming algorith-
m from the GTA algorithm.

In general, the algorithms to solve graph problems using tre
decomposition have the following scheme. First, a tree igoe
sition of the input graph is constructed. Then, a dynamigjfzm-
ming algorithm is executed on the tree decomposition. Fohea
node of the tree decomposition, a table is computed. Foriaidac
problem, the table for the root of the tréeshows the answer.

B.Courcelle 14] showed a large set of problems that can be
solved in polynomial time using tree decomposition whergtizgh
is restricted to bounded treewidth. These problems arellysua
solved by bottom-up dynamic algorithms. Neverthelesss if-
ficult to give a uniform algorithm to solve these problems.

By providing a uniform abstraction to describe graph proise
we are able to derive bottom-up dynamic programming allyorst
for a class of interesting graph problems. The GTA functides
fined by users are used as part of the bottom-up algorithmss,Th
the bottom-up algorithms for different graph problems hsivelar
structures, the differences lie only in the user definedrélyos
using the GTA abstraction.

The transformation from a GTA algorithm to a dynamic pro-
gramming algorithm will be illustrated with an example incSe
tion 4.

Parallel algorithm on zippers At last, we transform the bottom-
up algorithms to parallel algorithms on zipper.

The advantage zipper offers to conquer-and-divide comguti
is twofold. First, zipper is an easy and efficient way to pinti
trees, and it is feasible to do it evenly, which we will dissus
Section 5. Second, there are solid theoretical result toagtee
the correctness using zipper to parallel computing problemtree
decomposition.

Morihata et al. #1] proved that, for a problem on regular da-
ta structures, if there are two sequential algorithms, #&oboup

Jof

Figure 6:An example to help illustrate bottom-up and top-down in & tre
decomposition.

It is worth noting that a function decompositidn can be seen
as a list homomorphism (see DEFINITIQN on zippers. Thus, if
we can provide the three associative operatgrso, ¢), we can
get a scalable divide-and-conquer parallel program. Thallpa
programp can be expressed gapandreduceas:

p =@ oreduce (®) o map ¢

Our approach of the parallel algorithm on zipper is thatefach
subtree in a zipper, we carry out the bottom-up algorithrreirajpel
to generate partial results for subtrees and then mergeatttialp
results. One difficulty here is how to merge the partial ressul a
consistent and efficient way. We will present our approaehari
example in SectioA.

4. Algorithm Parallelization Example

Maximum-Weighted-Independent-Set (MWIS) is a well-known
NP-hard graph optimization problem. In this section, we wéle
the MWIS problem as an example to illustrate the algorithemdr
formations of our parallelizaiton framework.

4.1 GTA algorithms on graphs

First, we express the algorithmivis) for the MWIS problem in
the form of GTA. We usg@Q(vs, es) to represent an instance of
graph with vertex set ass and edge set ass.

(upward)one and a top-down (downward) one, compute the same G = (V, E)

value, then there is a parallel version to solve the problem.

One feature of a tree decomposition of an undirected graph
is that, the root of the tree decomposition is not fixed. So we
may choose any node as the root, and the bottom-up dynamic
programming algorithm will get the same result. Take the tre
decomposition in Figures as an example, if we consider the node
A as the root of the tree decomposition, we can write a bottpm-u
algorithm P; if we select the leaf nod® as the root, therP can
be considered as a top-down algorithm in the path alBrigp A.

As the data type of a tree decomposition is regular, we camext
the parallelization result indfl] from tree to tree decomposition,
using the third homomorphism theorem to guarantee theesdst
of divide-and-conquer parallel algorithms.

Here, we extend the definition of decomposition on binary
trees B1] to that on tree decompositions.

DEeFINITION 3 (function decomposition on treeA  decomposi-
tion of functionh :: Tree — A is triple (¢, ®, ¢) that consist-
s of associate operatop :: B — B — B and two functions
¢ :: Tree’ — Bandy :: B — A such that

poh = hoz2t
K] = 0

h'[b] - $b
Wxz+y = hzohy.

hold, wherei is the unit of®.

generate :: [V] — [[(V, Bool)]]
generate [] = [[]]
generate ([v] + vs)

= [l(v, )] #1s]
e < [True, False],

ls < generate vs]

test :: G — [(V, Bool)] — Bool

test gQ(vs,es) xs A /[=((v, True) € s
Au, True) € xs)|
(v,u) < es]

weight :: [(V, Bool)] — Int
weight xs = +/[w(v)|(v,b) < xs,b == True]

mwisa : G — Int
muwisg gQ(vs, es)

maz|weight(zs)|
TS < generate vs,
test g xs|

Here,®/ is defined as:

@/lar, az,...;an] = a1 Daz ® ... B an

For each vertex in V, we useTrue (or False) to annotate
the selecting state af. A selection set of a set of verticés, is



a list of all thev in V" and its corresponding selecting state, i.e.

[(V, Bool)]. Functiongenerate lists all the possible selection sets.
Function test accepts two parameters, a graghand one of its
selection set:s, and decides whethets satisfies the property that
it is an independent set of the graph. Functiomight computes
the total weight of all the selected vertices in a selectietn The
aggregate function in MWIS is to find the one with the maximum
weight of all the selection sets.

If we naively compute a graph problem in the form of GTA, it
takes exponential time of the input size, as GTA is actuabipde-
force approach. In this example, it tal@@‘v‘) time to solve the
MWIS problem on grapliz = (V, E)) using the GTA algorithm.

4.2 Bottom-up algorithm on tree decomposition

Using bottom-up dynamic programming algorithms on treedec
position to solve MWIS has been discussedlity P1]. We first fol-
low the idea and derive a bottom-up functignwis on tree decom-
position using the GTA functions as part of the implementatiVe
definegs, as the induced subgraph @bn vertices irb,.

ol

Figure 7:An example to help illustrate the bottom-up algorithm tovsol
MWIS. The number in a circle in the left graph represents lo¢hid and
weight of the node.

muwis (Node by []) = [(ws, weight zs)|
s < generate by,
test gy, xs]

muwis (Node by children) = [(zs, weight xs+
(+/[inherit xs t'|
t' < children]))]
s < generate by,
test gy, xs]

where inherit s t’ maz|(value' —

weight(zs N zs'))|

(zs', value') < mwis(t'),
consistent (xs, zs’)]

A /1(b==1b)]

(v,b) <,

(v, 0) o',

v=="1']

consistent (xs,zs’) =

MWISyaie tree = maz (map snd(muwis tree))

For example, in Figurez, if we run functionmuwis on leafbo,
it first generates all the possible selection sets of vestinebag
bo, then tests if they are independent sets in the induced grgph
Functionmwis returns a list of tuples of selection set and its
corresponding weight sum. For example, on legaf

muwis (Node bo []) = [([], 0), ([1], 1), ([2], 2)]
Similarly, on leafb, :
muwis (Node b []) = [([], 0), ([4], 4), ([5], 5)]

Carrying out functionmwis on nodebs, similar to the procedure
on a leaf node, first generates and tests all the possiblpendent

==

£

>|%.LE"

VA

Figure 8: computation on zipper

sets in the induce graph,,, then functioninherit is used to pass
up the weight contributions of the vertices in its childremas. For
each independent set, we choose theonsistent selection set
which maximizes the contributed weight each of its childigere,
consistent means for the same vertices appearing in two different
nodes, the selecting states should be the same.

mwis (Node by [bo, b1]) =
[(0,0+1+45),(12,2+5), (18], 3+ 1+5), ([4], 1 +4)]

If the treewidth isw, there are at mo=+") many generating
marking ways on each node, and there @@V’|) many nodes
in a tree decomposition. The MWIS problem can be solved in
O(|V| - 2(»*V) using the bottom-up algorithm.

4.3 The parallel algorithm on zippers

In the bottom-up algorithm, we need to remember the selgctin
statexs in the root of current subtree, which is used for the further
computation of ancestors (testingnsistent condition). While on
zipper, as shown in figur& we should remember the marking way
of the leftmost and the rightmost subtree roots, for theMaftls
and rightwards merging of partial results in zipper.

We first duplicate the selecting state at the root of eachreebt

muwis’ tree = [(xs,xs, value)|(zs, value) < muwis tree]

We modify the bottom-up functiomwis on tree decomposition
t to get a leftwards sequential functiemwis.,, ont's correspond-
ing zipper.

MWISup = muwis’ o 22t

mwis.y|(Node' by children)] = mwis'(Node by children)

mwisup([a] H#1s) = [(x8a, T5],, valueq + valuegs
—weight(zsq N ws],))|
(28a, T8y, valuey) < Mwisyy a,
(515, 815, valuey) < Mwisyp ls,
consistent xsl, T5s)

If the root of the rightmost subtree of zipper is considerethe
root of its original tree decomposition, similar towis.,,, we can
compute the Maximal-Weighted-Independent-Set in rightisza
manner (similarly tonwis., ([a]H1s), we can getnwis qown (lsH
[a]) from mwisgownls and mwisqowna). When a function can be
evaluated in both leftwards and rightwards manners, thrd tio-
momorphism theorem guarantees the existence of a parlgtel a
rithm.

We, therefore, construct a parallel algorithm in the foilogv
way, with the definition of associative operator

. -
MWiSpar = MwWis o 22t

Mwispar|(Node' by children)] = mwis’ (Node by children
p



© = [[(V, Bool)]]  [[(V; Bool)]]  [[(V; Bool)]
Mmwispar(a 4 b) MWiSpar @ O MWISpar b

[(z8a, T8}, valueq + valuey,
—weight(zsg N asp))|

(TS5a, 785, viauey) < Mwispar a,
(zsp, 8y, valuey) < Mwispar b,
consistent s, Tsp)

MWiSyaiue tree = maz (map thd mwispar (walk tree))

For each subtree, we can use functiemis’ to compute the
partial results in parallel. Independent sets of two sugigedists
can be merged, if the selecting states of the rightmost rbtiteo
left list and the leftmost root of the right list arensistent.

If there arep processors, and the size of zippemisit takes
O(|V]-2**Y /p) time to compute the result of sub-list in parallel.
A merging of two sub-list result take8(22(*+1)) many computa-
tions. It takesO((nlog n)/p - 22+ in the merging procedure.
From the practical view, the merging procedure is much faate
the size of the pairs of selecting state can be largely retudta
the concistent condition.

5. Tree Parallelization

In this section, we present how to parallelize the compaortation
tree decompositions. We discuss in detail how to partitidrea
decomposition to a zipper-based structure and how to apbiipl
algorithms on this zipper-based structure to the MapRethazel.

As a tree decomposition is an instance of the tree struoiee,
will not distinguish betweertree decompositiorand tree in this
section.

5.1 Overview

There are three basic approaches to parallelizing the ciatiqpos

on trees: the leaf-level bottom-up approach, the tree aotitm/re-

duction approach and the divide-and-conquer approachlegie

level bottom-up approach, in which parallelization is ooly the

leaf nodes, performs bad on ill-balanced trees (such as ¢nedic

tree). Tree contraction, which requires a set of operatiorsatis-

fy a certain condition, is hard to usé1]. And tree contraction is
mainly designed for the shared memory environment. Theléivi
and-conquer approach, which partitions a tree into subtesel

computes independent subtrees in parallel, is suitablenfatern

parallel environments such as distributed memory envientrand

cloud.

A zipper is a path (zipper is not a path, element left long a
path)from the root node to a leaf node. The original tree can b
partitioned into subtrees along the path. changeAttree can be
partitioned into a set of subtrees after a root-down welibwever,
the nodes of subtrees in a zipper may be imbalanced, makéng th
parallel program inefficient. To this end, we propose a cphoé
recursive partition on zipper to achieve good partitionrees.

5.2 Tree partition

Tree partition is an important part of the divide-and-caegap-
proach. There are two goals in partitioning a tree: one istttpn
atree evenly, so that the tree can be computed in parallelgeibd
load balance; the other is to minimize the dependenciesesstw
partitioned trees so that communication between processor be
decreased.

From Figure2 we can see that, all the subtrees in a zipper have
a uniform structure: each subtree has a hole and the holéhir ei
the left child or the right child of the root node. This feaurot
only provides a uniform way to design algorithms on subtiags
also limits dependencies only to two adjacent subtrees ippEee

To achieve the two goals in partitioning a general tree, we ex
tend the zipper for binary trees tchéerarchical zipperfor general
trees. Our idea is: to keep a uniform structure, we only chdbe
leftmost child or the rightmost child when selecting a patimf the
root to a leaf node; if the size of a subtree in a zipper is latigen
athreshold we partition the subtree again to a new zipper. Such re-
cursive partition forms &ierarchical zipper(see Figure9) which
is a tree. Each node in the tree is a zipper.

Path selection strategy Here, we describe two strategies in walk-
ing downward from the root node to a leaf node.

Random strategyWe randomly pick the leftmost child or the
rightmost child as the next node in the path. In this strategy
don’t need preprocessing on the tree.

Maximum descendants strate@ach time, we choose the child
node with the maximum number of descendants. This strategy c
decrease the height of the resultant hierarchical zipperitr most
cases. However, this strategy needs preprocessing onetinefdr
each node, we need to record the size of the tree rooted abdee n
i.e. the number of descendants.

Deciding threshold In our partition, we limit the size of each
subtree to a threshold. The threshold is decided using ttosviag
equation:

T = N/(P x2)
where N is the number of tree nodes, addl is the number of
processors and is the threshold value.

Underlying implementation We describe our underlying imple-
mentations of the hierarchical zipper. Figu@gives an example of
a hierarchical zipper.

(T T2 LB

L. L 4]

I >
1 T2 (C T3l T3-2

(7121 T122 )

8 8]

Figure 9:An example of a hierarchical zipper: the subtrees in rededott
rectangles are partitioned to new zippers pointed by tteweirthe id of a
subtree is shown on its top.

Subtree idEach subtree in the hierarchical zipper has an id in
the form of X-Y. X is the id of the zipper the subtree belongs to
andY is its index in the zipper. The id of a zipper is the same with
the subtree the zipper is partitioned from.

We add a T to the head of an id for easy description. For
example, in Figure9, the id T1-2-1 means the subtree is the first
element in the zipper for subtree T1-2.

Subtree flagEach subtree has a flag which records whether
a subtree is the last element in a zipper. This flag is useden th
combination of the results of subtrees in a zipper. The coathin
is finished if the result of the last subtree in the zipper hesnb
combined, For example, in Figur®, the flag for subtree T3-1 is
false because T3-1 is the first element in the zipper.

Storage.All the subtrees are stored in a list in a post-order
traversal of the hierarchical zipper. For example, the redst in
Figure.9 are stored as [T1-2, T1-2-1,T1-2-2 ,T2, T3-1, T3-2].

5.3 Parallel algorithm on hierarchical zipper

To provide a parallel algorithm on the hierarchical zippee, pre-
pare the following four functions. In the following ree’ is the



type of a subtreeB is the type of the intermediate result of a sub-
tree andA is the type of final result for the problem.

e compute :: Tree’ — B

Compute and return the intermediate result of a subtrees Thi
function corresponds to thgoperation in DEFINITIONS.

e combine :: B— B — B

Merge the results of two subtrees. This function correspdad
the ® operation in DEFINITIONS.

recover :: B— B — B

Recover from the combined result of a zipper to the resulisof i
original subtree.

extract :: B — A

Compute the final result of the complete tree from the result
of a hierarchical zipper. This function corresponds to ¢he
operation in DEFINITIONS.

The recover function When we design algorithms on zipper, we
usually compute auxiliary information to help to combinétsaes.
For example, the height example i41] computes the height of

a subtree as its first result and the depth of the hole as its sec
ond result. For a subtreewith height i, the result of the sub-
tree compute t is (h,1). However, if we partition the subtree to
another zipper: and combine the results of all the subtrees, i.e.
reduce combine z, the result tuple will beh, x). Here,z is the
final depth of the hole, which equals the size of subtreesdrzith-
per. Thus, we need #ecover function to guarantee that the result
on zipper can be recovered to the result on the subtree.

On the other hand, when a subtree is partitioned to a zipper, t
root node of the subtree becomes the root node of the firstegibt
in the zipper (see nodel in Figure.9). As the hole is always in
the root node and the first subtree contains the root node awe c
recover the result from the result on zipper and the resuhefirst
subtree in the zipper.

Algorithmdescription The parallel algorithm on hierarchical zip-
per consists of a map process and a reduce process.

Map processlin the map process, we perform thempute
function on each subtree and passes the intermediatesréstite
reduce process.

Reduce procesdn the reduce process, we group the received
intermediate results by zipper id and sort the elements ah ea
group by index. In each group, we apply thembine function
on intermediate results with consecutive indices. If adl thsults
in a group have been combined, we use th@ver function to
recover the result and sent the result to the reduce pro¢éss.
reduce process is repeated until the result of the top-igpper has
been computed. Then thetract function is performed to compute
the final result.

Apply to the MapReduce model We show how to apply the par-
allel algorithm to the MapReduce model in an iterative manhe
divide the MapReduce passes (rounds) into a working pasg-and
erative passes. The iterative pass repeats until the v@b#eper
has been computed. In the following, we summarize the twdkin
of MapReduce passes.

Here,K is the type of the subtree id. Tlsplit function splits an
id into a zipper id and an index, and return them in a pair With t
zipper id as the first result. Treompfunction will return 1 if the
firstargument is greater than the second, 0 if the two argtsrees
equal and -1 otherwise.

The working pass of MapRedudéhe first pass of MapReduce
is the working pass, which computes the results of all théreab

and combines parts of the results. The input to the MAP pleae i
list of key-value pairs of ids and subtrees, while fheyp1 function
takes one pair and performempute on the subtree. In the SUF-
FLE&SORT phase, théuasu function is used to group results by
zipper id and thefcomp function is used to sort the elements in
each group by index. Finally, the REDUCE phase combines the
results in each group. The working pass of MapReduce carpbe re
resented as follows:

MapReduce fumapi fuasu fcomp fREDUCE

where
fMAp1 o (K, Tree') — [(K,B)]
fuar1 (k,t) = [(k, compute t)]
faasu = K = K
fuasu k = fst (split k)
fcomp = K — K — {-1,0,1}
fcomp k1 k2 = comp (snd (split k1)) (snd (split k2))

frepUCE (K, [B]) — (K, B)
frepuce (k, as) = (k, recover (reduce combine as))

The iterative passes of MapReduCeher passes of MapReduce
except the first one are iterative passes. The iterativeepasam-
bine remaining parts of the results. In an iterative pass MAP
phase does no computation and the other two phases are the sam
as in the working pass. The iterative pass of MapReduce can be
represented as:

MapReduce ([']) fuasu fcomp fREDUCE

Result extractionWhen all the MapReduce passes end, we get
a result kay-value paifk, b). Then theextract function is applied
to compute the final result, which is represented as:

extract o snd

6. More Examples
6.1 More optimization problems

Using the GTA abstraction, we can parallelize algorithmigisg
more optimization problems such as vertex cover and indigren
set with constraints.

Similar to the MWIS problem, we first use tlgenerate func-
tion to list all the possible selecting set of vertices, these the
test function, which indicates the properties of the selecteédtee
filter the legal marking way. As for the minimal vertex covet s
problem, thelest function can be expressed as:

test :: G — [(V, Bool)] — Bool

test gQ(vs,es) xs N /|(v, True) € xs
V(u, True) € xs|
(v,u) « es]

Its aggregate function ismin.

The test function could be a combination of several properties.
For example, if we want to compute the maximal weighted inde-
pendent set of even weighted vertices, the function could be
defined as:

test :: G — [(V, Bool)] — Bool



N /[=((v, True) € xs
A(u, True) € xs)|
(v,u) + es]

A Jfw()%2 == 0|
(v,b) « s,

b == True|

(test1 g@Q(vs, es) xs)
N(testz gQ(vs, es) xs)

test1 gQ(vs, es) Ts

testa g@Q(vs,es) zs

test gQ(vs,es) xs

Then the correspondingggregate function ismazx.

Further, we can rewrite functiomwis and mwispa., With the
new definedtest function to derive parallel algorithms for the
corresponding problems.

6.2 The vertex coloring problem

Vertex coloring is an important NP-hard satisfiable problem
graph. For graph of bounded treewidth, H. Bodlaen&ppifoposed
how to compute vertex coloring in polynomial time using tree
decomposition. We briefly present here how to expresertex
coloring in form of GTA, and how to use our parallel framewtok
solve it.

G=(V,E)
data Color = C1|C%]|...|Ck

generate :: [V — [[(V, Color)]]
generatel]
generate ([v] + vs)

(0]

[[(v, e)] 4 Is]

€ < [Cl, CQ, ceny Ck],
ls « generate vs]

test :: G — [(V, Bool)] — Bool

test gQ(vs,es) zs = N\ /[co # cul
v, u) < es,
(v, ¢v) < xs,

(u, cy)  ws]

weight :: [(V, Bool)] — Int
weight rs =0

if t # @ then 0
else — oo

eristt =

mwisa : G — Int

mwisg gQ(vs,es) = exist [weight(xs)|
T8 < generate vs,
test gQ(vs,es) xs]

For a graplG, the generate function lists all the possible color-
ing ways of the vertices, and thest function filters legal coloring
ways. If there is a legal coloring way, we use the aggregatetion
exist to set its value as 0, otherwise asc. A parallel algorithm
can be derived by rewriting the one of MWIS with a new defini-
tion of generate, test andaggregate functions. More specifically,
we useexist to replacemaz as theaggregate function, which can
guarantee the if an induced subgraph cannot be k-coloredafth
gregated weight value is-c0), then the whole graph can not be
k-colored (summation of-oo with anything is—oc). However,
the parallel algorithm for vertex coloring generated by general
framework is not optimal. For more optimization for vertedar-
ing algorithm, one can refer t@].

Many practical problems such as job scheduli@g] and reg-
ister allocation in program analysi&4] can be reduced to vertex
coloring. A parallel algorithm of vertex coloring is prorirg to
efficiently solve these problems.

6.3 Further discussion on the domination-type problems

For the minimal dominating set problem, it can be expressédd
form of GTA, but the generated parallel algorithm would beoin
rect if we naively use the approach we do for MWIS. We have ob-
served the following fact: for a selection set failing certification

of test, which contains vertices that are neither of selectingestat
nor dominated by vertices of selecting state, might becaegal |

in the further computation as the un-dominated verticeshtriig
dominated by vertices appearing in the ancestor nodes néweats,

we will miss some selection set candidates for the minimatido
nating set problem if we do parallelization like that for M®VI

The minimum dominating set problem can be efficiently solved
via tree decompositior2[ 47]. Telle [47] showed how to describe
domination-type problems with the state of each vertex asd i
neighbors. In order to parallelize a class of dominatiquetprob-
lems, we will introduce functionest _alive, which is to remember
some selection sets that fail certificationtest for the current state
but might satisfytest later.

Due to the limitation of scope, here we mainly present our o-
riginal idea of parallelizing graph program via tree decosifion
and introduce a high-level parallelization framewddkir frame-
work can solve graph combinatorial optimization problentose
selected vertices set with global properties are satisfiédduced
sub-graphs.One important part of our future work is to extend the
domain of graph problems of our parallelization approachictv
includes solving dominating-like problems with parallg@ithms
and derivingtest_alive function fromtest automatically.

7. Evaluation

As a proof of concept and feasibility, we experimentallyidale
our approach through a very preliminary experiment.

7.1 Experiment environment

All experiments in this section are performed on a Linux (btu
tu 12.04 64-bit) compute node equipped with 8GB of RAM and
two processors each with 4 cores (Intel(R) Xeon(R) CPU E5®20
2.40GHz). All our experiments are conducted on an implement
tion of the MapReduce model using Java multi-thread. Resu#
averaged over 5 iterations.

7.2 Experiment on graph problems

We conducted experiments on the Maximum Weighted Indepen-
dent Set problem.

Graph Data Our graph data is a partiattree generated by keep-
ing 100% of the edges from a random 10-tree on 100,000 n-
odes P1]. The graph has 100,000 nodes and 999,945 edges, and
the treewidth is 10.

We use an open-source tool, INDDG@L]], to construct tree
decomposition of the graph. After construction, the treeodgpo-
sition of the graph has 72,523 nodes. The height of the treene
position is 22 and the maximum degree is 149.

Results The running time result of this experiment is shown in
Figure.10.

The speedup result of this experiment is shown in Figlie.
From the figure we can see that, the parallel algorithm for the
MWIS problem achieves a nearly linear speedup over the seque
tial version.

8. Related Work

In this section, we discuss some related work in the areasaphg
and tree parallelization, and tree decomposition and fribw
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8.1 Graph parallelization

Graph parallelization, especially on large scale graphs, feen
studied intensively in recent years. There are two direstia this
research that are most related to our work.

Graph-parallel abstractions Several works proposed graph-
parallel abstractions. Prege8d is a bulk synchronous message
passing abstraction in which all vertex-programs run siamédous-
ly in a sequence of super-steps. GraphL2® [s an asynchronous
distributed shared-memory abstraction in which verteogpams
have shared access to a distributed graph with data storedeon
vertex and edge. Gonzalez et &0] showed that the natural graphs
commonly found in the real-world have power-law degreeritigt
tions, which challenge the assumptions made by these atistra,
So they proposed the PowerGrag@][abstraction which exploits
the Gather-Apply-Scatter model of computation to factatese
programs over edges, splitting high-degree vertices apdsing
greater parallelism in natural graphs. Our works diffetwitieirs
in that our Generate-Test-Aggregate abstraction is dedigm de-
scribe graph problems, such as graph optimization prohlesmite
their abstractions are designed to specify general cortipnsaon
graphs.

Solving graph problemsin parallel ~ Silvio Lattanzi et al. 29] p-
resented a design technique called filtering, which usepaina!-
lelization of MapReduce to reduce the size of the input sottie

resulting problem instance can be solved on a single machivey
gave algorithms for several graph problems such as mininpam-s
ning trees, maximal matchings, approximate weighted nivagsh
approximate vertex and edge covers and minimum cuts. Howev-
er, their algorithms for graph problems are still on graplislev
ours are transformed to algorithms on tree decompositi®obi-

van et al. 6] proposed a task-oriented parallel bottom-up dynamic
programming algorithm on tree decomposition to solve th&ima
mum weighted independent set problem. Their approach redha
memory environment centered and would be inefficient if treps

of the tree decomposition is imbalanced. Our approach, heme
can derive a parallel divide-and-conquer algorithm witbdtoad
balance.

8.2 Tree decomposition

Recently, tree decomposition and treewidth get growingnsitin
from researchers. Hicks et al23] gave a general overview of
tree decomposition technique for discrete optimizatiohodgh
tree decomposition is the basis of our work, how to constimegt
decompositions from graphs is not our focus in this paper.

Tree decomposition and treewidth  Arnborg et al. B] proved that
determining whether a graph has a treewidth of at mostis NP-
complete. But for an input graph with bounded treewidththe
value ofw can be recognized, and a corresponding widttree
decomposition constructed in linear tirh@[. Existing algorithms
for determining or approximating treewidth can be categgatiinto
exact algorithms, upper bound algorithms and lower bougd-al
rithms. Overviews of these algorithms are givenlit, [23]. Fu [18]
gave a detailed description of these algorithms, impleeteabme
of the algorithms and made a comparison of the implementgd al
rithms by category through experiments. Groer et2dl] lso made
a comparison of the performance of elimination orderingistias
on a set of test graphs. Sullivan et al6] presented their imple-
mentation for parallelizing the construction of tree deposition.

Applications of tree decomposition or treewidth The probably
first tree decomposition based algorithm that has been shdwn
practical interest is given by Lauritzen and SpiegelhdB6é}. They
solve the inference problem for probabilistic (or Bayedietief)
networks by using tree decompositions. Ogawa e#a).fjroposed

an approach for program analysis, such as dead code detectio
and register allocation, through recursive graph travémstead of
iterative procedures based on the fact that most progranes/nel|-
structured control flow graphs, ie. graphs with bounded virigih.

Wei [49] proposed a method to answer shortest-path queries based
on tree decompositions. Akiba et al] [designed algorithms and
data structures for efficient shortest-path query prongssir two
specific classes of graphs: graphs with small treewidth antptex
networks. However, they didn't consider about paralleiora of
their algorithms.

8.3 Tree parallelization

Using tree decomposition, we are able to reduce algorittons f
some graph problems to algorithms on tree decompositioess)t
Thus, existing tree parallelization techniques can be ts@aral-
lelize computations on the tree decomposition, so as tdlpkza
the graph problems. Here, we give a brief overview of thesk-te
niques.

Parallel tree contraction Tree contraction, which was first pro-
posed by Miller and Reif40], is a useful framework for developing
parallel programs on trees, and many computations haveibreen
plemented on it. However, parallel tree contraction is hHardse,
because it requires a set of operations that satisfy a certaidi-
tion [41]. To this end, Matsuzaki et al3f] proposed a systematic



method of deriving efficient tree contraction algorithmanfrrecur-
sive functions on trees.

Parallel tree reduction Tree reductions are often implemented
with a tree contraction algorithm. Matsuzaki et &9] developed

a code generation system based on tupled-ring propertytts au
matically transform user’s recursive reduction progranith \&n-
notations into parallel programs. Kakehi et @&5]26] developed

a framework for parallel reductions on trees over distedunem-
ory environment by exploiting serialized trees as the defae-
sentation and a property called extended distributivityob and
Imachi [16] proposed a MapReduce algorithm for tree reductions
and implemented it on Hadoop.

Parallel tree skeleton Parallel skeletons provide parallelizable
computational patterns in a concise way and conceal the lgzatyp
ed parallel implementations from users. Skillico4g][first formal-
ized a set of binary-tree skeletons. Matsuzaki et38] proposed
an implementation of these parallel tree skeletons on pitraes
on distributed systems. Matsuzaki et &6]also proposed two par-
allelization transformations to help programmers to systiécally
derive efficient parallel programs using tree skeletonsei.dghey
presented rose trees in the form of binary trees and proposetbf
rose-tree skeleton88] which are implemented on their binary-tree
skeleton library.

Homomorphism-based parallelization Skillicorn [45] modeled
operations on structured text such as XML using paramettize
homomorphism functions on binary trees. Morihata et4l] §en-
eralized the third homomorphism theoref®[to trees and devel-
oped a method for systematically constructing scalablieleland-
conquer parallel programs on trees from two sequentialrprog.
Our approach is based on their idea.

Treepartition Tree partition plays an important role in the divide-
and-conquer approach. A zipper is a list of trees, which ides
first described by Huet?d] in 1997. Morihata et al.41] consid-
ered a zipper as a one-hole context and proposed recursis®di
on one-hole contexts to divide a tree. Our tree partitiorr@ggh is
also based on zipper, but in a different division strategybridge
is another approach to partition a tree. Miller et dB3][gave def-
initions of M-bridge and proved some properties of M-bridlye
bridge finds a set of vertices that subdivide a tree into irddpnt
subtrees of approximately equal size. It will be interestmsee if
we can make use of this approach in our tree partition process

9. Conclusions and Future Work

In this paper, we present an approach to transforming betiom
dynamic programming algorithms on tree decomposition talpa
lel algorithms on zipper. As far as we know, our approachaditist
one to parallelize computations on tree decompositiondivide-
and-conquer manner with good load balance, which is seitiil
the MapReduce model. We also introduce the GTA abstraction f
easy programming of graph problems. Our proposed pawleli
tion framework can transform the user-specified GTA progrém
efficient parallel programs automatically. Our prelimipnaesults
show that the algorithms we proposed are not only interg$tom

a theoretical viewpoint, but also are viable and useful acpice.

We aim to solve practical problems via tree decompositiah an
tree parallelism. Well structured programs are proved i@ fzas-
mall treewidth P2, 48], and the notions of tree decomposition and
treewidth provide a new and efficient approach for programi-an
ysis [42). Tree decomposition is also potential to promote com-
puting in social networks. The target set selection prob]Bjin
social networks can be reduced to independent-like or datiim-
like problem on graph. We believe our parallelization framek is
towards solving such practical problems.

For future work, as discussed in Sectiér3, we are actively
extending the domain of graph problems of our parallelorati
approach. We also plan to implement the parallelizatioméaork
as a library, for example on Hadoop(], so that large scale graph
problems can be tackled in distributed memory environmekgs
the graphs we considered in this paper are undirected graphs
another future work is to extend our framework to directeapis.

References

[1] T. Akiba, C. Sommer, and K.-i. Kawarabayashi. Shorfesh queries
for complex networks: exploiting low tree-width outsideeticore.
In Proceedings of the 15th International Conference on Extend
Database Technolog¥DBT '12, pages 144155, 2012.

[2] J. Alber and R. Niedermeier. Improved tree decompasitiased
algorithms for domination-like problems. LLATIN 2002: Theoretical
Informatics pages 613—-627. Springer, 2002.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski. Comptgxbf
finding embeddings in a k-treeSIAM Journal on Algebraic Discrete
Methods 8(2):277—-284, 1987.

[4] S. Arnborg, J. Lagergren, and D. Seese. Easy problemsrder
decomposable graphg. Algorithms 12(2):308-340, Apr. 1991.

[5] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and |. Newman e&width
governs the complexity of target set selecti@iscrete Optimization
8(1):87-96, 2011.

[6] R. Bird. Introduction to Functional Programming using Haskell
Prentice Hall PTR, 2 edition, May 1998. ISBN 0134843460.

[7] R. S. Bird. An introduction to the theory of lists. Proceedings of the
NATO Advanced Study Institute on Logic of programming acliia
of discrete desigrpages 5-42, 1987. ISBN 0-387-18003-6.

[8] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - ThensSo
Far. International Journal on Semantic Web and Information &yst
(1IISWIS) 5(3):1-22, Mar 2009. ISSN 1552-6283.

[9] H. L. Boblaender. Polynomial algorithms for graph isapitism and
chromatic index on partial k-tree3. Algorithms 11(4):631-643, Dec.
1990.

[10] H. L. Bodlaender. A linear-time algorithm for finding eg-
decompositions of small treewidttSIAM Journal on computind?5
(6):1305-1317, 1996.

[11] H. L. Bodlaender and A. M. Koster. Combinatorial optration on
graphs of bounded treewidtithe Computer Journab1(3):255-269,
2008.

[12] G. J. Chaitin. Register allocation & spilling via grapbloring. In
ACM Sigplan Noticesvolume 17, pages 98-105. ACM, 1982.

[13] J. Cohen. Graph twiddling in a MapReduce.
[14] B. Courcelle. The monadic second-order logic of graph®cogniz-

able sets of finite graphdnformation and computatiqr85(1):12—75,
1990.

[15] J. Dean and S. Ghemawat. MapReduce: simplified datepsiomy on
large clustersCommun. ACM51(1):107-113, Jan. 2008.

[16] K. Emoto and H. Imachi. Parallel tree reduction on MagiRee.
Procedia Computer Scienc®:1827-1836, 2012.

[17] K. Emoto, S. Fischer, and Z. Hu. Generate, test, and cagge:
a calculation-based framework for systematic parallelgmmming
with mapreduce. IrProceedings of the 21st European conference
on Programming Languages and SysteEBSOP’12, pages 254-273,
2012.

[18] Y. Fu. Computing the treewidth of graphs, 2011.

[19] J. Gibbons. The third homomorphism theoreiFunct. Program.6
(4):657-665, 1996.

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestfower-
Graph: distributed graph-parallel computation on natgraphs. OS-
DI'12, pages 17-30, 2012.

[21] C. S. Groer, B. D. Sullivan, and D. P. Weerapurage. INORG-
tegrated network decomposition & dynamic programming fiap



optimization. Technical Report ORNL/TM-2012/176, Oak gd\a-
tional Laboratory (ORNL); Center for Computational Sciesc2012.

[22] J. Gustedt, O. A. Meehle, and J. A. Telle. The treewidthJa¥a
programs. InAlgorithm Engineering and Experimenisages 86-97.
Springer, 2002.

[23] I. V. Hicks, A. M. C. A. Koster, and et al. Branch and treecdmposi-
tion techniques for discrete optimization, 2005.

[24] G. Huet. The zipperJ. Funct. Program.7(5):549-554, Sept. 1997.
ISSN 0956-7968.

[25] K. Kakehi, K. Matsuzaki, K. Emoto, and Z. Hu. A practidatirame-
work for tree reductions under distributed memory envirents.
Technical report, 2006.

[26] K. Kakehi, K. Matsuzaki, and K. Emoto. Efficient pardlieee re-
ductions on distributed memory environments.Plirmceedings of the
7th International Conference on Computational Sciencet IPAICCS
'07, pages 601-608, 2007. ISBN 978-3-540-72585-5.

[27] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASU®efa-
scale graph mining system implementation and observationBro-
ceedings of the 2009 Ninth IEEE International ConferenceDaite
Mining, ICDM '09, pages 229-238, 2009.

[28] A. Koster. Frequency assignment - models and algosthtA99.

[29] S. Lattanzi, B. Moseley, S. Suri, and S. VassilvitskiFiltering: a
method for solving graph problems in MapReduce. SPAA '1fesa
85-94, 2011.

[30] S. Lauritzen and D. J. Spiegelhalter. Local computetiavith proba-
bilities on graphical structures and their applicationtpest systems
(with discussion)Journal of the Royal Statistical Society serie$B:
157-224, 1988.

[31] Y. Liu, Z. Hu, and K. Matsuzaki. Towards systematic platapro-
gramming over mapreduce. Proceedings of the 17th Internation-
al Conference on Parallel Processing - Volume PartBuro-Par'11,
pages 39-50, 2011.

[32] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrokmd J. M.
Hellerstein. Distributed graphlab: a framework for maehiearning
and data mining in the cloudProc. VLDB Endow.5(8):716—-727, Apr.
2012. ISSN 2150-8097.

[33] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. HoN. Leis-
er, and G. Czajkowski. Pregel: a system for large-scalehgpap-
cessing. InProceedings of the 2010 ACM SIGMOD International
Conference on Management of DaBIGMOD '10, pages 135-146,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi:
10.1145/1807167.1807184.

[34] D. Marx. Graph coloring problems and their applicatian schedul-
ing. In Proceedings of John von Neumann PhD Students Conference
Citeseer, 2004.

[35] K. Matsuzaki, Z. Hu, and M. Takeichi. Implementationpzfrallel tree
skeletons on distributed systems. droceeedings of the third Asina
workshop on Programming Languages and Systerages 258-271,
2002.

[36] K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelizationithw tree
skeletons. IrProceedings of Annual European Conference on Parallel
Processing (Euro-Par 2003pages 789-798, 2003.

[37] K. Matsuzaki, Z. Hu, K. Kakehi, and M. Takeichi. Systeinaleriva-
tion of tree contraction algorithm&arallel Processing Letters5(3):
321-336, 2005.

[38] K. Matsuzaki, Z. Hu, and M. Takeichi. Parallel skelesdior manip-
ulating general treesParallel Comput, 32(7):590-603, Sept. 2006.
ISSN 0167-8191.

[39] K. Matsuzaki, Z. Hu, and M. Takeichi. Towards automataralleliza-
tion of tree reductions in dynamic programming. Rroceedings of
the eighteenth annual ACM Symposium on Parallelism in Atgos
and ArchitecturesSPAA '06, pages 39-48, 2006.

[40] G.L. Miller and J. H. Reif. Parallel tree contractioncdts application.
In 26th Symposium on Foundations of Computer Scigpages 478—
489, Portland, Oregon, October 1985. IEEE.

[41] A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Therthho-
momorphism theorem on trees: downward & upward lead to eivid
and-conquer. IrProceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languagés L
‘09, pages 177-185, 2009.

[42] M. Ogawa, Z. Hu, and |. Sasano. lterative-free programalysis. In
Proceedings of the eighth ACM SIGPLAN International Cceriee
on Functional ProgrammingCFP '03, pages 111-123, 2003.

[43] M. Reid-Miller, G. L. Miller, and F. Modugno. List rankg and
parallel tree contraction. In J. Reif, editdBynthesis of Parallel
Algorithms chapter 3, pages 115-194. Morgan Kaufmann, 1993.

[44] N. Robertson and P. D. Seymour. Graph minors. II. atboric aspects
of tree-width. Journal of algorithms7(3):309-322, 1986.

[45] D. B. Skillicorn. Structured parallel computation itriectured docu-
ments.Journal of Universal Computer Scienc®42-68, 1995.

[46] B. D. Sullivan, D. P. Weerapurage, and C. S. Groer. Raralgorithm-
s for graph optimization using tree decompositions. TezdiriReport
ORNL/TM-2012/194, Oak Ridge National Laboratory (ORNLEIG
ter for Computational Sciences, 2012.

[47] 3. A. Telle. Complexity of domination-type problems graphs.
Nordic Journal of Computingl(1):157-171, 1994.

[48] M. Thorup. All structured programs have small tree Wwidhd good
register allocation. Information and Computatignl42(2):159-181,
1998.

[49] F. Wei. TEDI: efficient shortest path query answeringgraphs. In
Proceedings of the 2010 ACM SIGMOD International Confegeor
Management of DateSIGMOD '10, pages 99-110, 2010.

[50] T. White. Hadoop: The Definitive GuideO’Reilly Media, Inc., 1st
edition, 2009. ISBN 0596521979, 9780596521974.



	Introduction
	Preliminaries
	Notations
	List homomorphism and the third homomorphism theorem
	List homomorphisms on MapReduce
	Graph definitions
	Graph optimization problems
	Tree decomposition and treewidth
	Zippers on binary trees
	Functional description of MapReduce

	Overview
	Transformation of data structures
	Transformation of algorithms

	Algorithm Parallelization Example
	GTA algorithms on graphs
	Bottom-up algorithm on tree decomposition
	The parallel algorithm on zippers

	Tree Parallelization
	Overview
	Tree partition
	Parallel algorithm on hierarchical zipper

	More Examples
	More optimization problems
	The vertex coloring problem
	Further discussion on the domination-type problems

	Evaluation
	Experiment environment
	Experiment on graph problems

	Related Work
	Graph parallelization
	Tree decomposition
	Tree parallelization

	Conclusions and Future Work

