RIGHTS LI

Putback-Based Bidirectional Model Transformations®

Xiao He
School of Computer and Communication Engineering,
University of Science and Technology Beijing
Beijing, China
hexiao@ustb.edu.cn

ABSTRACT

Bidirectional model transformation (BX) plays a vital role in Model-
Driven Engineering. A major challenge in conventional relational
and bidirectionalization-based BX approaches is the ambiguity is-
sue, i.e., the backward transformation may not be uniquely deter-
mined by the consistency relation or the forward transformation.
A promising solution to the ambiguity issue is to adopt putback-
based bidirectional programming, which realizes a BX by specifying
the backward transformation. However, existing putback-based ap-
proaches do not support multiple conversions of the same node
(namely a shared node). Since a model is a graph, shared nodes are
very common and inevitable. Consequently, existing putback-based
approaches cannot be directly applied to bidirectional model trans-
formation. This paper proposes a novel approach to BX. We define a
new model-merging-based BX combinator, which can combine two
BXs owning shared nodes into a well behaved composite BX. After-
wards, we propose a putback-based BX language XMU to address
the ambiguity issue, which is built on the model-merging-based BX
combinator. We present the formal semantics of XMU which can
be proven well behaved. Finally, a tool support is also introduced
to illustrate the usefulness of our approach.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Specification languages;

KEYWORDS
bidirectional transformation, model, ambiguity, shared node

ACM Reference Format:

Xiao He and Zhenjiang Hu. 2018. Putback-Based Bidirectional Model Trans-
formations. In Proceedings of the 26th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18), November 4-9, 2018, Lake Buena Vista, FL, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236070

“This work was partially supported by the National Key Research and Development
Program of China (Nos. 2017YFB0202303, 2017YFB0202300), by the Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (S) No. 17H06099, and
by the National Natural Science Foundation of China (Nos. 2015CB352200, 61620106007,
61472180, 61300009).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236070

Ay

434

Zhenjiang Hu
National Informatics Institute/
The University of Tokyo
Tokyo, Japan
hu@nii.ac.jp

1 INTRODUCTION

In Model-Driven Engineering (MDE), developers employ various
models to capture different views of the system under development.
Those models are probably interrelated, and may evolve indepen-
dently. When one is updated, the changes should be propagated
to the related models. How to keep these models synchronized is
known to be a crucial issue in a round-trip development.

It has been argued for a long time that bidirectional transforma-
tion (BX) [4, 31] could provide a software foundation for model syn-
chronization. A BX program is a single program but can be viewed
as a pair of forward and backward transformations, namely get and
put, respectively, where get creates a view model from a source
model, and put converts a source model into an updated source
model according to a view model. We have seen good progress in
BX and its application to model synchronization, particularly in the
theoretical foundation [5, 7], the languages and/or the algorithms
[3, 8, 12, 15, 21-23, 33], and the applications [13, 30, 34]. There
are basically two approaches to writing BX. One is to ask users
to write a declarative consistency relation (e.g., QVT relations [1])
between models, from which a suitable BX (forward and backward
transformations) is derived; And the other is to ask users to write
a forward transformation in a traditional unidirectional language
(e.g., ATL [17]) or a domain specific language (e.g., lens [11]), from
which a backward transformation is derived.

Despite the promising features of BX for model synchronization,
there is a big issue that prevents it from being used in practice. As
argued in [31], the existing bidirectional model transformation lan-
guages have inherited ambiguity in their semantics, and they never
provide any effective way to remove the ambiguity to gain full
control of the synchronization behavior. To be concrete, consider
the classic bidirectional model transformation between UML class
diagrams to Relational Database, namely UML2RDBMS'. We may ask
the user to write a forward transformation in ATL from which a
backward transformation is derived, or a more general flexible con-
sistency relation in QVT from which both forward and backward
transformations are derived. The ATL rule and the QVT relation
are presented in Figure 1. In forward transformation, a table is
created for each non-abstract class. But what about the backward
transformation? There are many possibilities that cause ambiguity.
For instance, if we delete a table and attempt to propagate the table
deletion back to the class model, we may either delete the class that
corresponds to the deleted table, or keep it by changing the class
into an abstract one. The existing approaches automatically return
one as the result. However, if it is not the one we wish to have for
the backward transformation behavior, we have no way to specify
our intention (in ATL or in QVT).

!The UML2RDBMS transformation has been implemented using QVT [1] and ATL (http:
/lwww.eclipse.org/atl/atl Transformations/#Class2Relational).

https://doi.org/10.1145/3236024.3236070
https://doi.org/10.1145/3236024.3236070
http://www.eclipse.org/atl/atlTransformations/#Class2Relational
http://www.eclipse.org/atl/atlTransformations/#Class2Relational

RIGHTS LI

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

/I ATL rule /I QVT-R rule
rule ClassToTable { relation ClassToTable {
from c:uml!Class(cn:String;

c.isAbstract=false) when { PackageToSchema(p,s) }

to t:rdbms!Table{ domain uml p:Package{

t.name <- c.name classes=c:Class{name=cn,isAbstract=false}}
} domain rdbms s:Schemaf{tables=t:Table{name=cn}}
do {/* inner updates */} where {/* inner updates */}

}

Figure 1: ATL and QVT realization of ClassToTable

Fortunately, we have an important fact about BX that is little
known: while there are generally many possible backward transfor-
mations for a forward transformation, there is at most one forward
transformation for a backward transformation without ambigu-
ity. In other words, the essence of bidirectional transformation is
nothing but (putback) backward transformation [10, 19, 20]. This
putback-based BX approach has been applied to build useful bidi-
rectional transformations between tree-like data [25, 36].

Inspired by the success of the putback-based BX on tree-like
data, we want to go further to see whether we can extend it to
bidirectional model transformation, where models are basically
graphs that may contain shared nodes (and cycles). As a matter
of fact, the shared nodes introduce a new challenge. Consider the
following two putback-based backward transformation rules:

When the original source model is =@~ and the view model

consists of X and Y, we expect to convert the original source and

source model is converted twice by RI and R2. It could not work if
we would apply the two rules in a trivial sequential manner, say
one after another. If R1 is applied first, then the intermediate output

R1. To resolve this problem, we carefully investigated the behavior
of multiple rule applications on graphs, and found that if we could

expected result. Based on this observation, we propose to treat
multiple conversions of a shared node as independent BXs (in each
BX, this node is converted with an index/label), and then merge
their outputs.

In this paper, we propose a novel bidirectional model transforma-
tion language XMU that can effectively handle both the ambiguity
issue and the shared node issue. XMU is a putback-based BX lan-
guage, enabling developers to define a BX over models in the form of
a backward transformation, and automatically deriving the unique
forward transformation from the backward transformation (and
thus avoiding the ambiguity issue). In addition, XMU is established
on a new model-merging-based BX combinator (rather than the
existing parallel and sequential combinators [25]), supporting mul-
tiple conversions of the same node. The main contributions of this
paper are twofolds: 1) a model-merging-based BX combinator to
address the shared node issue; and 2) XMU, a putback-based BX lan-
guage for ambiguity-free model synchronization. The preliminary
results showed the practical feasibility of our approach.

Ay

435

Xiao He and Zhenjiang Hu

The reminder of this paper is organized as follows: Section 2
introduces the background and the related work of this paper; Sec-
tion 3 proposes the model-merging-based BX combinator; Section
4 proposes XMU, a bidirectional model transformation language;
Section 5 presents the formal semantics of XMU; Section 6 intro-
duces the tool support; The last section concludes the paper and
briefly discusses the future work.

2 BACKGROUND AND RELATED WORK
2.1 Background

A bidirectional transformation (BX) can be viewed as a pair of a
forward transformation get and a backward transformation put
between two models.

The forward and backward transformations (get and put) can
be defined symmetrically [7, 31] or asymmetrically [25]. This paper
mainly focuses on asymmetric BXs because in theory, a symmet-
ric BX can be composed of two asymmetric BXs. Without loss of
generality, get and put can be defined as follows:

S—>V
S—>V->S§

get (1)
put)
where get reads a source model of type (metamodel) S, and creates
a view model of type (metamodel) V; and put yields an updated-
source model by taking the original source and an updated view
model as inputs.
A BX is well behaved if it satisfies the following round-trip
properties:

gets+ L = puts(gets)=s (GETPUT)
putsv# 1L = get(putsv)=v (PuTGET)
putsv# 1L = put(putsv)v=putsv (PuTTwICE)

where L denotes a runtime error or an undefined value in this paper.
The GETPUT property says that if get succeeds, then no update on
the view leads to no update on the source, the PUTGET property
says that if put succeeds, then update on the view should be fully
put back to the source such that the updated view can be recovered
from the updated source, and the last PUTTWICE property, which
is derivable from the GETPUT and PUTGET properties, says that
putting back twice has the same effect of putting back once.

One important fact that is used in this paper, as formally proven
in [10], is that if put is well defined, then there is exactly one get
that can be paired with the put to form a well-behaved BX. We say
put is well defined, iff. (1) Vs, v(put (put s v) v) = put s v, (2) put s
is injective on view type, and (3) uncurry put is surjective on source
type. This is the foundation of the putback-based bidirectional
programming and the key to ambiguity issues.

2.2 Related Work

Diskin et al. [5, 7] proposed an algebraic framework of model syn-
chronization. Their work focused on the theoretical aspect of model
synchronization (e.g., the correctness properties).

Giese et al. [12] proposed an incremental model synchronization
approach based on Triple Graph Grammar (TGG). Lauder et al.
[22] also proposed TGG-based incremental BX approach based on
the node precedence analysis. Ehrig and Hermann et al. [8, 15]
discussed the correctness of TGG-based BX approaches. Lamo et al.

RIGHTS

Putback-Based Bidirectional Model Transformations

[21] proposed a graph-grammar-based BX approach, which shares
many ideas with TGG-based approaches. These approaches are
typical relational BX approaches that cannot deal with ambiguity
issues properly.

Xiong el al. [33] proposed an ATL-based model synchronization
framework. They derive a backward transformation automatically
from a forward ATL transformation. Their approach imposed some
restrictions on the transformation specification and view updating,
e.g., element deletion is not allowed in the view model, to avoid the
ambiguity issue.

Solvers are intensively used to realize BXs. Macedo et al. [23]
proposed an Alloy-based approach that turns QVT relations and
ATL rules into BXs over models. The basic idea is to encode QVT
relations and ATL rules into Alloy [16] constraints that can be
solved by the Alloy solver. Their approach uses a customizable
graph edit distance (GED) or an operation-based distance (OBD) to
guide the solver to find possible solutions. Semerath et al. [29] also
proposed an Alloy-based backward change propagation approach.
They derive a backward change propagation operation from a model
query. Cicchetti et al. [3] proposed a relational BX language named
JTL, and mapped JTL onto Answer Set Programming. In solver-
based approaches, developers may have to iterate the result sets
returned by the solver to obtain the required result. Besides, solver-
based approaches usually do not scale.

Some technologies, such as those in [6, 9, 14], support uncertainty
and variability in BXs. Those approaches can be adapted for dealing
with the ambiguity issue by asking the user to pick a required result
from a number of candidates.

There are also some research efforts in bidirectional transfor-
mation on tree-like data formats, such as XML. BiXid is a relation-
based bidirectional XML transformation language [18]. However,
BiXid cannot handle ambiguity and shared node issues. BIFLUX is a
putback-based bidirectional XML transformation language [24, 25].
BiGUL [20] is a general purpose putback-based BX language, which
is a revision of the core of BrFLuX. BiFLuX and BiGUL enable us
to specify put, i.e., how to update a source according to a view.
Afterwards, a unique get can be computed automatically from put.
BrFLuX and BiGUL are free from the ambiguity issue, but they do
not support multiple conversion of the same node in a graph. So
they cannot handle shared nodes well.

In summary, the state-of-the-art approaches to BX over models
cannot avoid the ambiguity issue. Existing ambiguity-free BX ap-
proaches are mainly designed for tree structures and do not handle
shared graph nodes properly.

3 MODEL-MERGING-BASED BX
COMBINATION

This section address the shared node issue in bidirectional model
(graph) transformation as discussed in the introduction. The basic
idea of our solution is to treat the multiple conversions (transfor-
mations) of the same node as independent component BXs, each of
which converts this node only once. These component BXs are then
combined by merging their outputs. In this way, a BX over models
suffering from the shared node issue can be viewed as a combination
of component BXs, which do not suffer from the shared node issue.
This section proposes a model-merging-based BX combinator.

Ay

436

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

3.1 Metamodel, Model and Merging

We start by explaining metamodels, models and model merging
used in this paper. Generally, a metamodel (written as A, B, etc.)
describes a type of graphs, and a model (written as A, B, etc.) is
viewed as a typed graph that confirms to a metamodel. Concretely,
a model consists of objects (e.g., 01, 02) and links (e.g., I1, I2). We
assume that typeOf is a function that can return the type of an
object or alink (i.e., a class or a relationship defined in a metamodel).

In this paper, a model M is regarded as a typed graph with indices,
in which each object is associated with a set of indices. indexy(0)
returns the indices of o. objecty(i) returns the object in M that
owns the index i. We assume that each index appears once, i.e.,
Yo1,02(01 # 02 = indexy(o1) N indexy(o2) = 0). We do not as-
sume that indices are persistent attributes. They can be transient
information that is maintained at runtime by BXs.

Given two models A and B, we say A C B if B contains all objects
(including attribute values) and links in A, and we say A = B iff
ACBABLA.

We identify two types of model merging, denoted by ¥ and >.
One is the three-way model merging [32], M1 Wy, M2, denoting
merging M; and Mz based on a common model My. The basic idea
is to compute the delta (i.e., changes) §; and 8, from Mg to M; and
Mgy, respectively. Then, we compute the result by applying both §;
and J, to My. Intuitively, three-way model merging will preserve
all the changes from Mg to M1 and Mz (i.e., M1 C My Wy, M2 A Mg C
M1 Wy, M2) when there is no conflict. It is not difficult to verify that
MWy M =Mand MWy M = M. To determine which objects in m;
and My should be merged and to calculate the delta, we use object
indices to align models and objects. If index, (0) N indexg(0”) # 0,
then o and o are aligned. We may define other alignment strategies
(e.g., using key properties as indices) to extend W. It is our future
work to investigate other possibilities.

The three-way merging may fail when there is a conflict. For
example, assuming that a link [(I = (o, 0’)) and an object o satisfy
lem Al & Mpando € Mg A o & My, My Wy, M fails (namely
M1 Wy, M2 = L) because o is required to be preserved by mM; but is
deleted in M.

The other type of model merging is the additive merging, M >My,
denoting merging M; into M. For every object o € my, if there exists
09 € Mo and indexy, (0) N indexy,(09) # 0, then replace oy with o
(and preserve all compatible attributes and links); otherwise, add
o to the result. For each link [€ mj, merge/copy [to the result.
Obviously, M; C My > M.

3.2 A Model-Merging-based Combinator

Now we show how to lift the model-merging operation from models
to BXs, which is the key step towards our put-based bidirectional
model transformation.

As required in [10] for a well-defined put, put s v must be injec-
tive for all v, i.e., all information in the view should appear in the
new updated source. In this paper, we relax this condition because
we intend to allow a put to use part of the view to convert the
source model and leave the unused information to other BXs. For
any put : S — V — S, we assume that there exists a function
core : S — V — V to capture the partial view from the current

RIGHTS LI

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

source and view:

coresvLv 3)

which should satisfy the following properties:
put sv = put s (cores V) (4)
core s v =core (put sv) v (5)

Intuitively, core extracts the necessary view information needed
by put. Note that such function core always exists because we can
know from put what view information is needed.

We refine the original PUTGET into PUTGET" as follows:

putsv# L = get (put sv)=coresv (PuTGET")

where ~ denotes graph isomorphism. If a BX satisfies PUTGET" law,
it is not difficult to verify that the following condition also holds:
Vvi,va(core s vi # core s v = put s vy # put s vz). This
condition is the refined condition for injective put. We can also
prove that under the new definitions and conditions, the uniqueness
of get” for a well-behaved put still holds. In brief, due to the uncurry
put is surjective on source and PUTTWICE, for any s, there must
exist a certain v that makes put s v = s. Afterwards, we can define
get s = core s v, where Vv satisfies put s v = s (i.e., the existence).
Furthermore, for any s, we choose v such that put s v = s. If there
is another get’ that can be paired with this put, due to PuTGET*,
get’ s = get’ (put s V) =~ core s v = get s (i.e., the uniqueness).

We are now ready to define our model-merging-based BX com-
binator ¥ to combine two BXs bx; = (get1,put;) and bxy
(geta, put) into a composite BX bx = bx; W bxy = (get, put) as
follows:

(6)
7)
The core function of bx is defined as core; s v Wg corey s v, where
core; and corey are core functions of bx; and bx;. Note that bx;
and bxy can be successfully combined, only when the following
equations hold for any s and v (i = 1, 2):

gets gety sWq gety S

ut sv ut] S v g puty SV
p p p

put; s (get; s) = put; s (get; S Wy gety s) ©)]
core; (put; s v) v = core; (put; s vV Ws puty s V) v 9)
put; (puty s VW puty S V)V = put] SV Ws puta SV (10)
core; SV = core; S (core; S VWg corey sV) (11)
gety (puty s V) Wy gety (putz SV) = core; sV g coregsv (12)

Now, we can prove that a composite BX that is constructed by
using W is also well behaved, i.e., Theorem 3.1.

THEOREM 3.1 (CORRECTNESS OF W). Given two well behaved BXs,
namely bxi and bxz, and their core functions, namely core; and
corey, when equations (8)-(12) hold, bx = bx1 W bx; is a well behaved
BX, and the core function of bx, i.e., core; s VWg corey s v, satisfies
equations (3)-(5).

In brief, equations (9) and (11) ensure that the composite core
function works properly, and equations (8)-(10), and (12) ensure
that the composite BX is well behaved. Due to space limitation, the
details of the proof are omitted in this paper and are presented at
our project website’.

2get is unique in terms of graph isomorphism.
3https://bitbucket.org/ustbmde/morel/wiki/Home

Ay

437

Xiao He and Zhenjiang Hu

source s

view v

updated sources
sy and s2
(intermediate)

ofolo 0lo%e
oFoNe

Figure 2: Example of merging-based combinator

updated source
(final)

Consider the shared node example in the Introduction, as shown
in Figure 2. The original source must be converted by the two
rules R1 and R2 (i.e., put; and puty) simultaneously, as explained
previously. After applying put; and put,, we get two intermediate
results, namely s; and s;. s; and sz contain two D-elements (namely
D; and Dy, respectively), which were created during put; and puts.
If we assign the same index to Dy and Dy, then by using our model-
merging-based BX combinator &, we finally obtain the expected
output, and the PUTGET law holds.

4 XMU: A BIDIRECTIONAL MODEL
TRANSFORMATION LANGUAGE

This section proposes a novel bidirectional model transformation
language, namely XMU, which extends the putback BX approach
with the unique model-merging-based BX combination.

XMU is a rule-based language. The main concrete syntax of
XMU is listed in Figure 3. An XMU rule is defined as a sequence
of formal parameters and a body statement. Each formal parame-
ter is declared as a source/view/normal variable associated with a
type (for a normal variable, its type can only be a primitive type).
XMU statements, which are bidirectional, include update-with-by,
switch-case and rule call statements. An update-with-by state-
ment, which aligns the matches of source and view patterns first,
has at most three clauses to indicate how to construct the updated
source model according to the result of alignment. A switch-case
statement consists of some branches. A branch condition can be a
pattern or a boolean expression. Unidirectional statements (uStmt)
of XMU include enforce, delete node/link and unidirectional
switch-case statements. An enforce statement is responsible to
construct the updated source model, while a delete statement is
used to delete an object or a link from the updated source model. A
unidirectional switch-case statement is similar to its bidirectional
version, however its branch actions must be unidirectional state-
ments. The definition of a model pattern (its syntax and meaning)
in XMU is similar to that in QVT [1]. A pattern consists of a set of
nodes and expressions. In the implementation, we extend the syntax
presented in Figure 3 with some syntax sugar and variants to ease
the BX specification. Figure 3 also omits some common language
constructs that are shared by existing programming languages, such
as basic arithmetic, relational and boolean expressions.

RIGHTS LI

Putback-Based Bidirectional Model Transformations

Take the classic conversion between classes and tables as an
example. Figure 4 shows the XMU rule for this conversion, which
corresponds to the ATL rule and QVT relation presented in Figure
1. This XMU rule can be read as follows: update each non-abstract
class ¢ within package p with a table t whose table name is identical
to the class name within schema s; if ¢ is paired with ¢, then perform
the inner updates (i.e., the match clause); if ¢ cannot be paired with
any table, then turn c into an abstract class (i.e., the unmatchs
clause); if t cannot be paired with any class, then create a new class
c that is intended to be paired with ¢ to continue the conversion
(i.e., the unmatchv clause).

By comparing Figure 1 with Figure 4, we can easily discover the
syntactic correspondence between XMU, ATL and QVT. Neverthe-
less, XMU is semantically different from ATL and QVT because
an XMU rule specifies the backward transformation, rather than a
forward transformation or a consistency relation between source
and view. From the backward transformation, our approach is able
to derive the unique forward transformation from source to view.
For instance, in the forward direction, the behavior of the XMU
rule ClassToTable is identical to that of the ATL and QVT rules in
Figure 1: this XMU rule creates a table for each non-abstract class.
In the forward semantics, the update-with-by statement can be
roughly viewed as the from-to structure in ATL.

Elimination of ambiguity. A benefit of XMU is that it allows
developers to explicitly specify the behavior of put to avoid the
ambiguity issue. Compared with other BX technologies, XMU pro-
vides developers with better control over their BXs. For example,
the XMU rule in Figure 4 can be substituted with either of the two
rules in Figure 5. The first alternative rule will delete the unpaired
class, rather than turning it into an abstract one. The second al-
ternative rule will try to find and change an abstract class into a
non-abstract one before creating a new class for an unpaired table.
Note that forward transformations, which are derived from the
initial XMU rule in Figure 4 and the two alternative rules in Figure
5, are identical to each other.

If we specify this rule as a mapping or a relation, we are unable
to tell the transformation engine which backward semantics is
required, and the ambiguity issue arises.

Addressing shared nodes. Consider a more complicated conver-
sion between associations and foreign keys. We define an XMU

ruleDef rule ruleName (fpars){varDec stmt}
fpars fpars , fpars | source v:type | view v:type | [normal] v:type
varDec varDec varDec | v:type;

stmt update pats with paty by clause | switch(v){case}

stmt where {index} | ruleName(apars) | stmty;stmty | {stmt}

clause clause clause | match -> stmt | unmatchs -> wStmt
unmatchv -> uStmt
case case case | case pat > stmt | case boolexp —> stmt
index index ,index | index (vs, vy)
apars apars,apars | expr
uStmt enforce pats | delete v | delete v. feature=expr
switch(v){uCase} | uStmty;uStmty | {uStmt}
uCase uCase uCase | case pat => uStmt | case boolexp -> uStmt
pat patNode

patNode
patExp
expr

v:type{patExp}
feature=patNode | feature=expr | pat Exp,pat Exp
constant | v

Figure 3: Concrete Syntax of XMU

Ay

438

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

/I XMU rule
rule ClassToTable(source p:uml!Package, view s:rdbms!Schema) {
cn:String;
update p:uml!Package{classes=c:uml!Class{name=cn,isAbstract=false}}
with s:rdbms!Schemaftables=t:rdbms!Table{name=cn}} by
match -> {/* inner updates */}
unmatchs -> enforce c:uml!Class{isAbstract=true}
unmatchv -> enforce c:uml!Class{}

}

Figure 4: XMU Rule ClassToTable

rule AssocToFKey (as shown in Figure 6) to update each associa-
tion between two classes with a foreign key between two tables.
If an association cannot be paired with any foreign key, we must
delete this association. If a foreign key cannot be paired with any
association, we must create an association. Before creating a new
association, we must check whether the related classes exist in the
source model and create the absent class(es) if necessary to ensure
the successful creation of this association.

The execution of an XMU program is based upon the model-
merging-based BX combination. Informally, each XMU state-
ment/rules (e.g., an update-with statement) is viewed as a primi-
tive BX. A sequence of XMU statements/rules are combined by &
defined in Section 3. However, when an object is converted multiple
times, the shared issue may arise and the BX combination may fail.

Assume that we merge the XMU rules ClassToTable in Figure 4
and AssocToFKey in Figure 6 (i.e., ClassToTable ¥ AssocToFKey).
Given the source model m0 and the view model as shown in Figure
7, we obtain two updated source models m1 and m2 by applying
ClassToTable and AssocToFKey, respectively. Although a human can
easily know that class s3 in m1 and class s4 in m2 are conceptually
identical (they are both derived from table ¢3), the model merging
operator W will treat them as two distinct objects because they
have different indices. Consequently, m1 &,,o m2 will contain three
classes, and the combination of ClassToTable and AssocToFKey is
invalid (PuTGET" law will be violated).

/I the first alternative rule
rule ClassToTable(source p:uml!Package, view s:rdbms!Schema) {
cn:String;
update p:uml!Package{classes=c:uml!Class{name=cn,isAbstract=false}}
with s:rdbms!Schema{tables=t:rdbms!Table{name=cn}} by
match -> {/* inner updates */}
/* delete the unpaired class */
unmatchs -> delete ¢
unmatchv -> enforce c:uml!Class{}

/I the second alternative rule
rule ClassToTable(source p:uml!Package, view s:rdbms!Schema) {
cn:String;
update p:uml!Package{classes=c:uml!Class{name=cn,isAbstract=false}}
with s:rdbms!Schema(tables=t:rdbms!Table{name=cn}} by
match -> {/* inner updates */}
unmatchs -> enforce c:uml!Class{isAbstract=true}
/* check whether there is an abstract class that can be turned
into a non-abstract one before creating a new class */
unmatchv -> switch(p) {
case p:uml!Package{classes=c:uml!Class{name=cn, isAbstract=true}} ->
enforce c:uml!Class{isAbstract=false}
otherwise -> enforce c:uml!Class{}}

Figure 5: Alternative XMU rules to ClassToTable

RIGHTS LI N

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

rule AssocToFKey(source p:uml!Package, view s:rdbms!Schema) {
sn, tn, an:String;
update p:uml!Package{associations=assoc:uml!Association{name=an,
source=sc:uml!Class{name=sn}, target=tc:uml!Class{name=tn}}}
with s:rdbms!Schemaf{tables=st:rdbms!Table{name=sn,

foreignKeys=f:ForeignKey{name=an,referTo=tt:rdbms!Table{name=tn}}}} by
match -> {}
unmatchs -> delete assoc
unmatchv -> switch(p) {
case p:uml!Package{classes=sc:uml!Class{name=sn} -> {}
otherwise -> enforce sc:uml!Class{name=sn}
h
switch(p) {
case p:uml!Package{classes=tc:uml!Class{name=tn} -> {}
otherwise -> enforce tc:uml!Class{name=tn}
h
enforce assoc:uml!Association{name=an,
source=sc:uml!Class{}, target=tc:uml!Class{}}

Figure 6: Rule AssocToFKey

To ensure that W works properly, XMU provides an index func-
tion to compute object indices. For instance, during the backward
transformation, index(c, t) computes an extra index i according
to the indices of ¢ and t and maps i onto ¢ in the result. If the in-
dex of ¢ is unused in the source model, its index is treated as nil
during the computation. In forward transformation, index(c,t)
computes and maps an index onto t according to the index of c.

Figure 8 shows the use of the index function. We add some index
functions within where clauses appended to the match branches.
When constructing the updated source models (from the same
source and view in Figure 7), we compute an extra index for each
class (the extra index computed by the index function is denoted
as the concatenation of the function parameters). Class s3 in m1
and class s4 in m2 are mapped onto the same index, namely nil-t3
(since neither s3 nor s4 exists in m0). In this way, m1 &,,o m2 will
contain only two classes, and ClassToTable ¥ AssocToFKey is valid.

It is worthwhile to notice that rule ClassToTable and rule As-
socToFKey cannot be applied sequentially. Otherwise, we will not
get the expected result. As shown in Figure 9, assume that the orig-
inal source model m0 contains two classes (namely A and B) that
are connected by an association R; The view model contains table

source m0 - updated source M1 occceinncicininnnnienns
s1:Package | s1:Package |—9 s3:Class
: classes
Classes : l’ classes : | name=B'
s2:Class s2:Class isAbstract=false
name="'A’ name="A’
isAbstract=false | isAbstract=false
: : duplicate
: view .
: : updated source m2
: t1:Schema : classés
\ tables Thies s1:Package > s4:Class
-| t2:Table t3:Table AssocToFKey classe name='B
: : s2:Class EP STy T
‘[name="A [|name=B' associations Tl ;
name='A' arge
foi'eign t4:ForeignKey : isAbstract-false source | S5:Association
Keys referTo
. name="R : name="R

Figure 7: A shared node issue in UML2RDBMS

439

Xiao He and Zhenjiang Hu

rule ClassToTable(source p:uml!Package,
view s:rdbms!Schema) {
cn:String;
update p:uml!Package{
classes=c:uml!Class{
name=cn,isAbstract=false}}
with s:rdbms!Schema{
tables=t:rdbms!Table{name=cn}} by
match -> {/* inner updates */}
where {index(c,t)}

rule AssocToFKey(source p:uml!Package,
view s:rdbms!Schema){
sn, tn, an:String;
update p:uml!Package{
associations=assoc:uml!Association{
name=an,source=sc:uml!Class{name=sn},
target=tc:uml!Class{name=tn}}}
with s:rdbms!Schema{
tables=st:rdbms!Table{name=sn,
foreignKeys=f:ForeignKey{name=an,
referTo=tt:rdbms!Table{name=tn}}}} by
match -> {}

) .
@ where {index(sc,st);index(tc,tt)}

-

updated source m2 N

updated source m1 .

|'s1:Package |—>
Qés.e@il associations

s5:Asgociation

name='R’
s2,s2-t2:Class sz,é-tz:(}lass .
source, *
name="A name="'A’ L
isAbstract=false isAbstract=false

s3,nil-t3:Class

\ylasses , . ° i
s4,nil-t3:Class &4

name="'B’

name='8B’
isAbstract=false

source m0 updated source m1i
| s1:Package I—) s3:Class
: classes :
;FM name="8' iClassToTable
: s2:Class A :
assoc{ons
name='A target s2:.Class
isAbstract=false Souros | s4:Association hame='A
name="R’ isAbstract=false
N
view source
tables
t1:Schema I—) t2:Table s4:Association
name="A name='R’

Figure 9: AssocToFKey will fail after ClassToTable

A only, and table B and the foreign key from table A to table B were
removed (please refer to the view model as shown in Figure 7). If
we apply ClassToTable against m0 in the backward direction first,
then we get an (intermediate) updated source m1 in which class B
was removed. However, in this case, we cannot continue to perform
AssocToFKey backward against m1 because the source pattern of the
update statement in AssocToFKey (as shown in Figure 6) cannot be
matched. This source pattern matches an association that connects
two classes, while in m1 in Figure 9, the association R connects
class A only. The final result, which is equal to m1 and contains
class A and an unwanted association R, is incorrect. The only way
of obtaining the expected result is to combine ClassToTable and
AssocToFKey by using our model-merging-based BX combinator,
i.e., applying ClassToTable and AssocToFKey against m0 in parallel
and then merging the two results.

RIGHTS

Putback-Based Bidirectional Model Transformations

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

b =
\
\

index vg vy b | P(e1,...,en) | b1;be2

updateWithBy pats paty b u. u, | ifThenElse f by by
replace pats paty | matchS pats b | matchV paty b

enforce patg
delete v | delete v featur
condition e uj ug | uy;us

u L=
\
\

Figure 10: Core Language of XMU

5 SEMANTICS OF XMU

The concrete syntax of XMU in Figure 3 is designed for users, but it
would be too complex to define the semantics directly on it. Rather,
we propose a core language for XMU (namely XMU core), whose
semantics is easier to define. XMU core is defined in Figure 10, where
b denotes a bidirectional statement and u denotes a unidirectional
statement.

The conversion between the concrete syntax of XMU and XMU
core is straightforward, as follows: update-with-by is converted
into updateWithBy; switch-case is converted into ifThenElse (a
pattern used as a branch condition can also be viewed as a boolean
condition [1]); where-index is converted into index; replace,
matchS and matchV are used to realize bidirectional conversions
implied by update-with-by and switch-case.

Take rule AssocToFKey as a concrete example. The concrete syn-
tax of AssocToFKey has been presented in Figure 6 and Figure 8. This
rule can be equivalently translated into an updateWithBy statement
in XMU core, as shown in Figure 11. The bidirectional statement b
of the updateWithBy statement is a replace statement wrapped
by two index statements. The two unidirectional statements u,
and u, of the updateWithBy statement are a delete statement and
a chain of two conditions and an enforce statement.

// patS and patV are defined as follows

// patS = p:uml!Package{

// classes=c:uml!Class{name=cn, isAbstract=false}}

// patV = s:rdbms!Schema{tables=t:rdbms!Table{name=cn}}

updateWithBy patS patV
index sc st (index tc tt (replace patS patV)) b
delete assoc
condition p.classes->exists(sc|sc.name=sn)
(do nothing) enforce sc:uml!Class{name=sn} ;
condition p.classes->exists(tc|tc.name=tn)
(do nothing) enforce tc:uml!Class{name=tn} ;
enforce assoc:uml!Association{name=an,
source=sc:uml!Class{},target=tc:uml!Class{}}

ua

Figure 11: Translation of rule AssocToFKey

An XMU transformation can be compiled into an XMU core
program, which can further be executed according to the semantics
defined in Figure 12. It is worthwhile emphasizing that we do not
claim that the core language we proposed is complete. In fact, XMU
core should be further refined and extended to cover more appli-
cation scenarios (such as delta-based BXs). The reminder of this
section will discuss the semantics of the core language in detail.

5.1 Variable, Environment and Pattern

A variable v in XMU core is viewed as an identifier associated with
a type. A variable type can be a primitive type (e.g., integer) or
an index type (if this variable will be pointed to an object). An
environment y is a set of mappings from variables to values. T’
denotes the set of all environments. We assume that y(v) returns

Ay

440

the value assigned to v, and y[v := c¢]| adds a mapping from v to c.
Besides, y(v) = L means that v is unassigned in y.

In XMU core, model patterns are used to find matches and to
create model fragments. XMU core adopts the conventional seman-
tics of pattern matching and instantiation that is widely used in
existing model transformation languages (such as QVT). We mainly
explain some properties in this subsection.

We term an environment y a match of a pattern pat if all the
variables occurring in pat (namely pattern variables, denoted by
vars(pat)) are assigned in y, and if the values assigned to pattern
variables satisfy all the constraints implied by pat (as explained in
[1], a pattern can be viewed as some constraints). Given an initial
environment y, pat(y, M) returns all matches of a pattern pat in
a model M based on y. Each returned environment y’ satisfies
the condition Yo(v ¢ vars(pat) V y(v) # L = y’(v) = y(v)).
Instantiating a pattern pat based on an environment y (denoted as
M = pat.new(y)) is to create a model fragment M that matches pat
using the information provided by y. Obviously, pattern matching
and instantiation satisfy the following properties:

v’ € pat(y,M) = M = (pat.new(y’) > M)
M’ = pat.new(y)>M = y € pat(y,M’)

For simplicity, given variable v, if the type of v is the index type
and y(v) = L, then we assume that y is automatically replaced
by y[v := idx] during pattern instantiation, where idx a fresh and
unused object index.

5.2 Unidirectional Statements

A unidirectional statement can convert a source model into an
updated source model without considering the view model. Unidi-
rectional statements will never be executed in the forward trans-
formation. Given a unidirectional statement u, UEM]] :S > ST
denotes the semantics of u under the environment y. For an ex-
pression e, the notation Ay e - val, y’ means given environment y, e
evaluates to value val and a new environment y’. If we do not care
about the new environment, we may say Ay e - val. The semantics
of unidirectional statements is discussed as follows.

enforce patg ensures that a match of pats exists in the result.
If the given environment is not a match of patg, this statement
creates a new instance of pats and merge it into the source model
(e, Ulenforce pats]])~

delete v removes the object referenced by variable v from
the model (i.e., Upgelete o])- After the object removal, the indices
mapped onto the removed object cannot be mapped onto other
objects again. delete v feature e removes an attribute value or
a link from the model (i.e., Ufgelete v feature e])- We also view
attribute values as links for simplicity. For the node/link deletion,
if the node/link does not exist in the input, the output is identical
to the input.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

[[ln o) (8) =1et Vi = E[Yb]](S) Va :]FE[YM]](S) V'=Viy Vs in
if S=]qu]](S V)= IIb]](S V') then V' else L endif

[[bl ba]

Vi= [[bl]](Sl) Fﬁ’b]](Sg)7 V' =V, Wy Va,

Vei =core; SV, Voo =corea SV, Vo =Ve Wy Vg in
=core; 8" V Acorey So V =cores 'V
(S, V)AS = IBE,)]](S/, VYA Ve =corey SV,
~ V, then S’ else | endif

if core; 1V
' ol
NS =By,
A Voo = corea S Ve ANV Wy Vo o~
]Fi[yreplace pats paLv]](S) =
if {y'} = pats(7,S) then paty.new(y') else L endif
lace pats patv]](S7 V) =if pa’tS(’Y? S) = {’yl}
Alpaty (v, V)| = |paty (v, V)| = 1 then S
else if {v'} = patv (v, V) Apats(v,S) =0
then patg.new(y') > S else L endif endif
S) = let i, = indexy (y(vs)), V = F[[b]](S) inV

B’Y

[rep

y
IF[[index vg vy b]](

where i is mapped onto objects: (y(vg)) in S’

(S) = if {v'} = pats(v,S) then FM(S) else | endif

IFB[Ymatchs pats b]
IBE{matchs pats bﬂ(S7 V) =if {'Y/} = patS('YyS) then let S’ =
if {7’} = pats(v,S’) then S’ else L endif
else | endif
S)=let V=]F[[b]l(S)

IFEmatchV pats b]](
if {v'} =paty (v, V)AV = IF[[bH(S) then V else | endif

Bﬁmatchv pats 05 V) =1et {y1,7%2,...} = paty (v, V) in

if H'Z(BEiH(S V)=2S8"%# 1) then

if 34(By, (S' V) # 1) then S’ else | endif
L else | endif ,
-XEP(el...A,en)]] = let 7 = {v; := val;|\y e; - val;} in XE!:]]
L where b is the body statement of P

'[U’Y

[enforce pats]

(S) = (pat.new(y) > S,7)
Uﬂdelete] (8) = (S — objects(v(v)),)
Ui[ydelete feature e] (S) = (S - lv’)’/)
where Ay e-val,7y Al = (objects(v(v)),val) A typeO f(l) =

(S V) = let Sl ﬂb]](S, V), 52 [[b]](S V) S = Sl Wg SQ,

where i, is mapped onto objecty (y(vy)) in V
Eindex vs vy 5](9) = 1et iy = indexs(y(vs), v(vv)), S = EM(S,V) in '

[[b]](S V) in

feature

Xiao He and Zhenjiang Hu

[get Branch(y, f,b,5) =1let V = F”bH(S) in
if Ay f(S,V) -true then V else L endif
]FEifThenElse £ b b2]](S) = let Vi = getBranch(vy, ~f, b2, S) in
let Vy = if Ay f(S,Va) - true then | else V5 endif in
if V4 = L then getBranch(, f,b1,S) else V; endif
]Bﬁiﬂhenmse P bQ]](S7 V) =1if Ay f(S,V) - true then
let 5] = IB%E[YI“]](S, V) in
if Ay f(S1,V) - true then S| else L endif
else let Sy =B, (S, V) in if My f(S3,V) - false then
if getBranch(y, f,b1,S5) = L then S} else | endif
else L endif

endif

-

[ifThenAdaption f b u]](s) = getBranch(y, f,b,5)
BEifThenAdaption b u]|(5 V)=
if Ay f(S,V) - true then let S’ = Bﬁb]] (S,V) in
if My f(S',V)-true then S’ else | endif
else let (S4,7.) = UEUII(S) in
if Ay f(S,, V) - true then let S, = IBE[Y[)]](SG,V) in
if Ay f(S,,V)-true then S, else L endif
else | endif
endif
X[[updateWithBy pats paty b ue u,] = X[[ifThenAdaption fb* ua]
Frp-17(S) = et {1, ..., 1} = pats(v,S), Vi = FE;H(S),
V' =Vidy...wy Vy, in

if § =By (S, V') then V' else | endif

B (S, V) = 1et {11, ..., 7} = pats(v, 5), S =B (S, V),
S,:Sl W ... Ws Sp, Vi = Fﬁ[fb]](s) V/:VlUw...U@ V, in
if Vi =Fpp(S) AS" =B (S, V) A S =B (S, V)
A7, s Yo} = pats(7y,S’) then S’ else L endif
isAligned(y,) = (Vo(n(v) # LA7(v) # L = 1(v) =% (v)))
where the value of v is considered as 1 when v is an unused index

U (8) = 168 ('7) = U],y (5) m 071 (5)
UEcond1t1on cu uz]](S) =if Ay e-true,v then Uﬁulll(s)

else if My e- false,y' then U[A[Y;z]](S) else | endif

endif

Figure 12: Formal Semantics of XMU Core

condition e u; up is a conditional statement, which exe-
cutes u; or up according to the result of expression e (i.e.,

U[[condition e up uz]])‘
uq ; ug executes uj and uy sequentially (i.e., U[[m ;u:z]])'

5.3 Bidirectional Statements

A bidirectional statement b is interpreted as a BX XY, . which rep-

(e
resents the bidirectional semantics of b under environment y. XEb]]
151 and a backward semantics

IB[[bl (under the same environment).

consists of a forward semantics F¥

RIGHTSE LI MN iy

b1 ; by merges by and by using W. We embed explicit checks of

equations (8)-(12) in the definitions of B[[b b and F[[bl bz]]

ensure their well-behavedness. The core function of X[[br:bo] is the

merging of the core functions of X[[bl and XEb I

replace patg patV ensures that a match of patg is paired with a

match of paty . For BY [replace pats paty]’ this statement instantiates

a match of pats based on a match of paty if the source match is

absent. In the forward semantics FY this state-
[replace pats paty]’

ment instantiates a match of paty based on a match of pats. The

RIGHTS LI

Putback-Based Bidirectional Model Transformations

core function of Xﬁ/replace pats paty]
paty out from the view model based on y.

index vs vy b may append new indices to the result of b. The
core function OfXEindex vs oy b] is the core function of Xyb . As
mentioned in Section 4, we employ an index function index(s, v) to
compute object indices. In Bﬁ/in dex vs vy b’ the index function is
written as indexs(s, v), which computes an updated-source index
based on s and v. In the same backward transformation, any two
invocations of indexs(s1,v1) and indexg(sz, v2) must satisfy the
following runtime constraints: 1) v; = vy = s $2; 2) §1 #
sy = indexg(s1,v1) # indexs(s2,v2); 3) indexs should not
generate an index that is already used in the original source model.
In FEindex vs oy B]’ the index function is denoted as indexy(s),
which computes a view index based on s. In the same forward
transformation any two invocations of indexy (s1) and indexy (sz)
must satisfy the following constraint s; # s = indexy(s1) #
indexy (s2). These constraints ensure that 1) the same view objects
are always created based on the same source objects and that 2)
index functions do not cause index collision. Index functions may
be implemented in many ways. They can (but not necessarily)
be bidirectional transformations. As shown in Section 4, we can
concatenate the actual parameters of an index function to compute
the result index. In our future work, we plan to investigate other
possible implementation of index functions.

ifThenElse f by by is a bidirectional statement that selects by or
bs according to condition f, where f is a boolean function about the
source and view model. We adapt the semantics of the case state-
ment in BiGUL [20] (i.e., a two-branch case statement) for the se-

. . . y
mantics of this statement. The core function of X[i FThenElse f by by]

’s core function or the result of

extracts the unique match of

returns either the result of XEM]
XEbz]] ’s core function, depending on condition f.

matchS patg b finds a match of pats and then evaluates b based
on this match (ie., Fﬁlmatchs pats b] and Bﬁ/matchs pats b]])' Espe-

cially, in the backward semantics, the match of pats must also
exist in the updated source model. Similarly, matchV paty b finds
a match of paty and then evaluates b based on this match (i.e.,
Fﬁ/matchv pats b] and BEmatchV pats b]). In the backward semantics,
there may be multiple matches of paty found, but only one match
is expected to be successfully used in the evaluation of b. If no or
many matches of paty can be used, then the statement returns L.

. Y Y
The core functions OfX[[matchS pats b] and X[[matchv paty b] are the

core function of XEI;]], where y’ is the match of patg or paty that
is found based on y.

P(eq, ..., en) denotes the rule call statement. It prepares a new
environment for the callee rule and executes the body statement
(supposing that b is the body of rule P). The core function of this
statement is the core function of b.

Finally, consider the semantics of updateWithBy. Before go-
ing on, we define a conditional statement with adaption (i.e.,
ifThenAdaption f b u), which will be used to construct the seman-
tics updateWithBy. ifThenAdaption is also adapted from BiGUL
[20], so it is a well behaved BX. Informally, in the backward di-
rection, 1fThenAdaption executes bidirectional statement b if con-
dition f holds; otherwise, this statement executes unidirectional

Ay

442

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

statement u to change the given source model into a new source
that can make f hold, and then executes b with the new source. In
the forward direction, ifThenAdaption ignores u and behaves like
ifThenElse statement whose else-branch is L.

As for updateWithBy pats paty b u. uy, informally, in the back-
ward direction, it aligns the matches of pats with the matches of
paty, and executes the bidirectional statement b (to synchronize the
aligned source and view matches) and unidirectional statements u,
(to destroy misaligned source matches) and u, (to create matches
of pats for misaligned view matches) according to the alignment
result. In the forward direction, this statement finds all matches of
pats and executes b to construct the view model for each match.

We start from a simple case in which source and view models
(i.e., S and V) satisfy the following alignment condition: each match
of patg can be uniquely aligned with a match of paty, and each
match of paty can be uniquely aligned with a match of patg (we
use isAligned(yy, yr), defined in Figure 12, to determine whether a
source match and a view match can be aligned). In fact, in this case,
a view match is uniquely determined by a source match (and vice
versa). Furthermore, only bidirectional statement b will be executed
for each pair of source and view matches that are aligned. We
view each execution of b as a derived component BX. Because the
view match is fully determined by the corresponding source match,
every component BX is actually derived from a single source match.
Hence, in the simple case, the semantics of updateWithBy can be
viewed as a composition of a set {XY;) } of derived component

BXs, where y; is a match of pats. We formulate this semantics as
(F[p+)» Bpp+)) in Figure 12. In Fpp+) and Bypeq, we explicitly check
equations (8)-(12) and the alignment condition.

Now we consider the complex case where some source/view
matches may be misaligned. Based on the informal semantics
above, u. and u, will be executed to destroy the unaligned
source matches and to construct new source matches that can
be paired with unaligned view matches, respectively. In short,
we execute u, and u, to convert the original source model
into a new one that will satisfy the alignment condition. Hence,
given a certain source model S, we can specify the semantics

: e =
of updateWithBy as follows: X[[updateWithBy pats paty b ue uy] =

y . . ey
X[ifThenAdaptionf b ug]’ where f is the alignment condition, u,
is derived from u. and u,. In backward transformation, u, can be
derived as follows: 1) for each misaligned match s, of pats, execute

u, to obtain Sy, = UE:]](S); 2) for each misaligned match y,,, of

paty, execute u, to obtain Sy, = UE;i] (S); 3) merge all Sg; and Sy, .

In forward direction, we simply ignore u, since it is useless.

5.4 Round-trip Properties of XMU Core

The key to defining a BX language is to assure the well-behavedness
of this language. All bidirectional statements defined in XMU core
can be proven to be well behaved. In this section, we presents the
proof sketch of the well-behavedness of XMU core as the evidence
of the correctness of our approach.

° XY . Y
[replace pats paty]” [replace pats paty]’

can ensure that there exists a unique match of patg in the updated
source model which can be found in the forward execution to

After executing B we

RIGHTS LI

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Y
[replace pats paty]
states that if there is already a match of pats in the original source
model, this statement does nothing (i.e., PUTTWICE). After running
Y . . .
F[[replace pats paty]’ for the unique match ofpats, a view instance
is created which can be paired with the match of pats during the
backward execution (i.e., GETPUT).
Y . Y

X[[index vs vy b]’ IfX[[b]]

also well behaved because it does not change the output of X

construct the view model (i.e., PUTGET*). B also

is well behaved, then this statement is

Y
(o]
(though it appends new object indices).

Y - Thi ; ;
) X[[ifThenElse Fbib] This statement is well behaved because it

is adapted from the case statement in BiGUL (i.e., a case state-
ment with two branches and without adaption). In BiGUL, the case
statement has been verified [20].

Y . 14
. X[[matchs pats b]’ In B[[matchs pats b]’ 2 match of pats, namely

’ s Y’ Y
y’, is found first and then B[[b ok
also checks that the match y’ of patg still exists

is executed. After executing B

Y
IB3[[matchS pats b]
in the updated source. Hence, PUTGET* and PutTwick hold when

Y. Y
X[[b]} is well behaved. In IF[[matchS pats b’

y’, is found first and then]1-'4'%[;]]1

a match of patg, namely
is executed. Hence, GETPUT holds

when XEI;H is well behaved.

Y . : :
° X[[matchv paty b’ The backward semantics (i.e.,

ensures PUTTWICE. As discussed previously, B

Y
B [matchV paty b]})
Y
[matchV paty b] finds
a match (namely y’) of paty to evaluate b. In this process, it does
not change the information related to source in the original environ-
ment y. Hence, executing FY__ results in a view that is isomorphic

(el
. Hence, PuTGET* must hold when b is well

Y
[matchV paty b]’
ecutes b to create a view V that contains exactly one match of paty

(namely y’). If we execute the backward transformation immedi-
ately, we will find a unique match in V that must be y’. Hence,
GeTPUT holds.

yl
to the result of]F[[bﬂ

behaved. Regarding GETPUT, in F the statement ex-

Y . :
. X[[P(el,...,e,,)]] : If the body statement of P, namely b, is well

behaved, then the rule call statement is well behaved. It is because
that a rule call statement simply constructs a new environment
based on y and then executes b with the new environment.
. XE}) bl This statement is well behaved because this statement is
1,2

actually realized by using the model-merging-based BX combinator
& (see Theorem 3.1).

y . Thi s
. X[[updateWithBy pats paty b ue w]’ This statement is interpreted

as X[[ifThenAdaptionf b* ua]’ where ifThenAdaption statement is

also adapted from the case statement in BIGUL. Hence, we only
have to prove X/, is well behaved. According to the definition

[o*]
Y Y : ps Y1 Y2
of X[[b*]]’ we learn that X[[b*]] is a composition of X[[b]}’ X[[b]],
XEZ]] (they are combined by W), where {y1, ..., yn} = pats(y, S). The
definition itself is well behaved. However, this definition of XEb*]]
is actually related to the source matches y1, ..., yn. To ensure XEb*]]

Ay

443

Xiao He and Zhenjiang Hu

is well behaved, we must ensure that yi, ..., y, are not destroyed
during the backward transformation (since in the forward transfor-
mation, the source model is not changed). In Byb*ﬂ’ we append an
explicit check at the end of the execution. Overall, the round-trip

properties of X!

[updateWithBy pats paty b uc u,] are satisfied.

6 TOOL SUPPORT AND EXAMPLES

We implemented a prototype tool of XMU on Eclipse platform. The
tool employed Eclipse Modeling Framework [27] as the internal
data representation. The language facilities, such as code editor,
interpreter and launcher, were realized based on EMFText [26] and
Xtext [28]. In our tool implementation, we also extend the syntax
of XMU by providing some syntax sugars, such as the otherwise
branch for switch-case. At present, we applied the dynamic check
of equations (8)-(12) to ensure the well-behavedness of a BX.

To evaluate and demonstrate XMU, we implemented several
benchmark BX programs? using our tool support. Those BX pro-
grams include (but not limited