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Abstract
Program analysis is the heart of modern compilers. Most control
flow analyses are reduced to the problem of finding a fixed point
in a certain transition system, and such fixed point is commonly
computed through aniterative procedure that repeats tracing until
convergence.
This paper proposes a new method to analyze programs throughre-
cursive graph traversals instead of iterative procedures, based on
the fact that most programs (withoutspaghetti GOTO) have well-
structured control flow graphs,graphs with bounded tree width.
Our main techniques are; an algebraic construction of a control
flow graph, calledSP Term, which enables control flow analysis
to be defined in a natural recursive form, and theOptimization The-
orem, which enables us to compute optimal solution by dynamic
programming.
We illustrate our method with two examples; dead code detection
and register allocation. Different from the traditional standard it-
erative solution, our dead code detection is described as a simple
combination of bottom-up and top-down traversals on SP Term.
Register allocation is more interesting, as it further requires opti-
mality of the result. We show how the Optimization Theorem on
SP Terms works to find an optimal register allocation as a certain
dynamic programming.

Categories and Subject Descriptors
D.1.1 [Applicative (Functional) Programming]: Functional Pro-
gramming; D.1.2 [Automatic Programming]: Program Genera-
tion; D.3.3 [Language Constructs and Features]: Programming
with Graphs

General Terms
Algorithms, Language
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Program Analysis, Control Flow Graph, Register Allocation, Tree
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1 Introduction
Program analysis is the heart of modern compilers. Most control
flow analyses are reduced to the problem of finding a fixed point in a
certain transition system. Ordinary method to compute a fixed point
is an iterative procedure that repeats tracing until convergence.
Our starting observation is that most programs (withoutspaghetti
GOTO) have quite well-structured control flow graphs. This fact
is formally characterized in terms oftree width of a graph [25].
Thorup showed that control flow graphs of GOTO-free C programs
have tree width at most 6 [33], and recent empirical study shows
that control flow graphs of most Java programs have tree width at
most 3 (though in general it can be arbitrary large) [16].
Once a graph has bounded tree width, we can construct a graph in
an algebraic way [3, 4]. This suggests that finding a fixed point
would be computed by recursive traversals on the algebraic struc-
ture, and the optimal solution would be obtained with a dynamic
programming.
Unfortunately, the existing results are not sufficient for our purpose.
For instance, the algebraic construction of graphs with bounded tree
width treats only undirected graphs [3]. This problem can be eas-
ily coped with, but a more serious problem is that it has too many
recursive constructors,k(k + 1)(k + 2)/6 for tree widthk, which
makes it hard to write recursive definitions over it.
This paper proposes a new algebraic constructionSP Term of graphs
with bounded tree width, and a new method to analyze programs
throughrecursive graph traversals instead of iterative procedures,
based on the fact that most programs (withoutspaghetti GOTO)
have well-structured control flow graphs.
Our main theoretical result (Theorem 2) is that a (directed) graphG
can be represented by an SP Term inSPk if and only if G has tree
width at mostk (and has at leastk nodes). Note that SP Term con-
struction reduces the number of recursive constructors to 2 (regard-
less of the size of tree widthk), at the cost of increase ofk2−k +1
constants. These constants express either diedges from thei-th spe-
cial node (called terminal) to thej-th, or a graph with no edges, and
they can be treated in a uniform way. This makes writing recursive
definitions on SP terms feasible.
We illustrate our methodology with two examples: dead code detec-
tion and register allocation. Different from the traditional standard
iterative solution, our dead code detection is described as a simple
combination of bottom-up and top-down traversals on an SP Term.
Register allocation is more interesting, as it further requires opti-
mality of the result. We solve it as an instance ofmaximum marking
problems [26, 27, 5]; mark the nodes of a control flow graph under
a certain condition such that the sum of weight of marked nodes is
maximum (or, minimum). We make use ofOptimization Theorem
from our previous work [26, 27], and show how it works to find an
optimal register allocation as a certain dynamic programming on



SP Terms.
The rest of the paper is organized as follows. We start by an
overview of our basic idea in Section 2, through an example of
dead code detection on a simple flowchart program without GOTO.
Its control flow graph has tree width at most 2, i.e., the class of
series-parallel graphs.
Section 3 presents an optimal register allocation with the fixed num-
ber of registers for a flowchart program. The core of our technique
is Optimization Theorem [26, 27], which automatically gives an ef-
ficient solution for maximum marking problems by certain generic
dynamic programming. The advantage and the problem of our
method are also briefly discussed.
Section 4 introduces the general definition of SP Term, and demon-
strates how to extend dead code detection to a program that has a
control flow graph with larger tree width. We show that once the
reachability description is given, the description of dead code de-
tection will be uniformly extended to larger tree width.
Section 5 discusses related work, and Section 6 concludes the pa-
per. Throughout the paper, we consider only intra-procedural con-
trol flow analyses (0-CFA), and describe algorithms in Haskell-like
notations.

2 Dead Code Detection without Iteration
In this section, we explain our idea through a simple case study,
dead code detection of flowchart programs. This class of graphs
corresponds to the control flow graphs of structured (in strict sense)
programs, i.e., programs that consist of single-entry and single-exit
blocks.
The syntax of flowchart programs is described below. At the end of
the whole program, the end statement is assumed to be added.

Prog := x := e assignment
| input x input statement
| output x output statement
| Prog; Prog sequence
| if e then Prog else Prog fi conditional statement
| while e do Prog od while loop

Our key to the dead code detection without an iterative procedure is
the algebraic construction of control flow graphs, calledSP Term.
After translation from a flowchart program to an SP Term, we show
how to compute the sets of used and newly defined variables in
each program fragment by a single bottom-up traversal over an SP
Term, and explain how to compute the set of live variables at each
terminal in each (sub) SP Term by a single top-down traversal over
an SP Term.

2.1 SP Terms for Control Flow Graphs of
Flowchart Programs

Algebraic Construction of Series-Parallel Graphs
Control flow graphs of flowchart programs are graphs with tree
width at most 2, which are known asseries-parallel directed graphs
(digraphs) [32]. Such graphs can be specified in terms ofSP Term.
Note that the following definition is somewhat simplified compared
to that in Section 4.1 for general cases.
DEFINITION 1. An SP Term is a pair of a ground term t and a
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Figure 1. Interpretation of e+, e−, 2, S, and P.

tuple (l1, l2) of labels, defined as the following.1

SP2 := (e+, (l1, l2))
| (e−, (l1, l2))
| (2, (l1, l2))
| (S SP2 SP2, (l1, l2))
| (P SP2 SP2, (l1, l2))

An SP Term is interpreted as a pair of a 2-terminal series-parallel di-
graph and a tuple of 2-labels; a 2-terminal digraph is a digraph with
a tuple of two nodes, calledterminals. We can regard the first ter-
minal as the single-entry, and the second terminal as the next node
of the single-exit. Labels(l1, l2) are the identifiers of terminals. Let
match(l, l′) be the function that returns


l if l = l′ or l′ = ∗
l′ if l = ∗
⊥ otherwise

(i.e., accept the special label∗ as a wild card during matching).
The constant(e+, (l1, l2)) is interpreted as a diedge from the first
terminal to the second terminal,(e−, (l1, l2)) as a diedge from
the second to the first terminal, and2 as two isolated terminals.
The series compositionS (t1,(l1, l2)) (t2,(l′1, l

′
2)) fuses the sec-

ond terminal int1 and the first terminal oft2 if match(l2, l′1) �=⊥,
and regard the first terminal int1 as the first and the sec-
ond terminal in t2 as the second. The parallel composition
P (t1,(l1, l2)) (t2,(l′1, l

′
2)) fuses each first and second terminals in

t1 andt2 if match(l1, l′1),match(l2, l′2) �=⊥, and labelmatch(l1, l′1)
on the first terminal andmatch(l2, l′2) on the second terminal.
The interpretation of each function symbol and constant is de-
scribed in Fig. 1; a terminal is presented as a double circle, and
labelsl1, l2 are associated to terminals.
We prepare the functionchT that exchanges the order of the two
terminals of a graph.

chT :: SP2 → SP2
chT (e+, (l1, l2)) = (e−, (l2, l1))
chT (e−, (l1, l2)) = (e+, (l2, l1))
chT (2, (l1, l2)) = (2, (l2, l1))
chT (S x y, (l1, l2)) = (S (chT y) (chT x), (l2, l1))
chT (P x y, (l1, l2)) = (P (chT x) (chT y), (l2, l1))

1In Section 4.1,e+, e−, P2 are denoted bye2(1,2), e2(2,1), and
P2 respectively. For readability, we setS t1 t2 = S2 (chT t2) t1,
whereSk is uniformly defined in Section 4.1 fork ≥ 2.
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Figure 2. Translation of while statement to an SP Term.

Translation from Programs to SP Terms
We add labels to each statements inProg to identify each node in
a control flow graph. We denote the set of such labeled programs
by LProg. The implementationtrans of the transformation from a
labeled program to an SP Term is given below.

trans :: LProg → SP2
trans (l : x := e) = (e+,(l,∗))
trans (l : input x) = (e+,(l,∗))
trans (l : out put x) = (e+,(l,∗))
trans (p1; p2) = (S (trans p1) (trans p2), (l,∗))

wherel is the starting line ofp1
trans (l : if e then p1 else p2 fi)

= (P (S (e+,(l,∗)) (trans p1, (l,∗)))
(S (e+,(l,∗)) (trans p2, (l,∗))), (l,∗))

trans (l : while e do p od)
= (P (e+,(l,∗))

(S (P (e+,(l,∗)) (chT (trans p) (∗, l +1)), (l, l +1))
(2,(∗,∗)), (l,∗)),

(l,∗))

1 : input n;
2 : i := 0;
3 : S := 0;
4 : c := True;
5 : while c

do
6 : i := i+1;
7 : c := False;
8 : S := S+ i;
9 : c := i <= n;

od;
10 : out put S
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Figure 3. An example of control flow graph and its transforma-
tion to SP Term

For instance, the translation ofwhile-statement proceeds as in
Fig. 2. Intuition behind the wild character label “∗” is; for each
fragment of a program, the first label denotes the entry of the frag-
ment, and the second label, which is always “∗” during transforma-
tion, denotes the next control point. Note that each program frag-
ment has the unique node labeled with “∗”. At the end,∗ is replaced
with the label for the end statement, i.e., the end of the program.

Leaf nodes in an SP Term are eithere+, e−, and2. Each edge in
a control flow graph uniquely corresponds to eithere+ or e−, and
each while loop uniquely corresponds to2. Thus, the number of
leaves in an SP Term is equal to the sum of the number of edges
and while loops, which is proportional to the size of a program.2

This concludes that transformation from a program to an SP Term
has (at most) linear growth in size.
Fig. 3 describes the control flow graph of the example program (in
Section 1), which computes the sum of 1,2, · · · ,n for an inputn,
and its transformation to an SP Term bytrans. In Fig. 3, a tuple
associated to each subtree is a tuple of terminals at the interpretation
of the subtree.
Note that the description of a control flow graph by an SP Term
is not unique. For instance, gives an alternative description of the
same program in Fig. 3 (Transformationtrans is already nondeter-
ministic for p1; p2. Fig. 3 is obtained by the left most decomposi-
tion, and Fig. 4 is by the righter most decomposition)
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Figure 4. Another equivalent SP Term description

2.2 Dead Code Detection of Flowchart Pro-
grams

Our target is dead code detection, i.e., whether defined variables are
used before redefined. We use the following functions to extract
information from a node labeledl.

de f v l = {x} if the node is an assignmentx := e or
a input statementinput x.

= if the node is just an expression.
usev l = FV (e) if the node is either an assignment

x := e or an expressione.
= {x} if the node is an output statementout put x.

Detecting Used and Defined Variables in a Fragment
We first prepare the functionsuse1 g, use2 g, de f1→2 g, and
de f2→1 g that detect which variables are used and/or defined in a
sub SP Term ofg. use1 g returns the set of variables that are used

2Assuming that tree width is at mostk, |E| ≤ k|V | whereV,E
are the set of nodes and edges, respectively [23].
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(vs1,vs2)

1 : input n; {n}
2 : i := 0; {n, i}
3 : S := 0; {n, i,S}
4 : c := True; {n, i,S,c}
5 : while c {n, i,S}

do
6 : i := i+1; {n, i,S}
7 : c := False; {n, i,S}
8 : S := S+i; {n, i,S}
9 : c := i <= n; {n, i,S,c}

od;
10 : output S φ

Detected live variables
Figure 5. Examples of use1, use2, de f1→2, de f1→2, and addLive

before being redefined in some path ing starting from terminal 1.3

de f1→2 g returns the set of variables that are newly defined in all
paths ing from terminal 1 to terminal 2 (if terminal 2 is reach-
able from terminal 1); and returnsVar (the set of all variables)4,
otherwise. We omit the complementary definitions foruse2 and
de f2→1 g.

use1 (e+, (l1, l2)) = usev l2
use1 (e−, ) = φ
use1 (2, ) = φ
use1 (S x y, ) = use1 x∪ (use1 y\de f1→2 x)
use1 (P x y, ) = use1 x∪ (use2 y\de f1→2 x) ∪

use1 y∪ (use2 x\de f1→2 y)

de f1→2 (e+, (l1, l2)) = de f v l2
de f1→2 (e−, ) = Var
de f1→2 (2, ) = Var
de f1→2 (S x y, ) = de f1→2 x ∪ de f1→2 y
de f1→2 (P x y, ) = de f1→2 x ∩ de f1→2 y

Note that by tuplinguse1, use2, de f1→2, andde f2→1, we can com-
pute the sets of live variables at terminal 1 and 2 in each sub SP
Term ofg by a single bottom-up traversal ong [18].

Live Variable Detection without Iteration
After the computation ofuse1, use2, de f1→2, andde f2→1, we as-
sume that each sub SP Term ing has additional information of the
results of these functions.
Next we give a functionaddLive that associates the information
of live variables to each terminal in each sub SP Term ing. The
function addLlive takes an SP Termg and two sets of variables
vs1 and vs2 (both with the initial value ofφ), wherevs1 denotes
live variables outgoing fromg at terminal 1 andvs2 denotes live
variables outgoing fromg at terminal 2. It returns a pair of an SP
Term and a tuple of the sets of variables that are alive at the terminal
1 and 2.

addLive (e+, (l1, l2)) vs1 vs2
= (e+, (l1, l2, vs1∪usev l2∪ (vs2 \de f v l2), vs2))

addLive (e−, (l1, l2)) vs1 vs2
= (e−, (l1, l2, vs1, vs2∪usev l1∪ (vs1 \de f v l1)))

addLive (2, (l1, l2)) vs1 vs2 = (2, (l1, l2, vs1,vs2))
3use1 g omits the used variables at terminal 1.
4Var satisfiesX ∩Var = X , X ∪Var = Var, andX \Var = φ for

each setX of variables.

1 : input n; ⇐ de f v(l1) = {n} ⊆ {n}
2 : i := 0; ⇐ de f v(l2) = {i} ⊆ {n, i}
3 : S := 0; ⇐ de f v(l3) = {S} ⊆ {n, i,S}
4 : c := True; ⇐ de f v(l4) = {c} ⊆ {n, i,S,c}
5 : while c

do
6 : i := i+1; ⇐ de f v(l6) = {i} ⊆ {n, i,S}
7 : c := False; ⇐ de f v(l7) = {c} �⊆ {n, i,S}
8 : S := S+ i; ⇐ de f v(l8) = {S} ⊆ {n, i,S}
9 : c := i <= n; ⇐ de f v(l9) = {c} ⊆ {n, i,S,c}

od;
10 :out put S

Figure 6. Dead code detection of a flow chart program

addLive (S x y, (l1, l2)) vs1 vs2
= (S (addLive x vs1 (use1 y∪ (vs2 \de f1→2y)))

(addLive y (use2 x∪ (vs1\de f2→1x)) vs2),
(l1, l2, vs1, vs2))

addLive (P x y, (l1, l2)) vs1 vs2
= (P (addLive x

(vs1∪use1 y∪ ((vs2∪use2 x)\de f1→2 y))
(vs2∪use2 y∪ ((vs1∪use1 x)\de f2→1 y)))

(addLive y
(vs1∪use1 x∪ ((vs2∪use2 y)\de f1→2 x))
(vs2∪use2 x∪ ((vs1∪use1 y)\de f2→1 x))),

(l1, l2, vs1, vs2))

With the assumption thatuse1, use2, de f1→2, andde f2→1 are com-
puted and their results are stored,addLive is done in a single top-
down traversal ong.
Fig. 5 shows computation of(use1,use2,de f1→2,de f1→2) and
addLive on a control flow graph in Fig. 3. At the terminals in a
leaf in an SP Term, the detected set of live variables at each node is
obtained.

Dead Code Detection of Flowchart Programs
Now that the set of live variables at each node in a control flow
graph has been computed, dead code detection is straightforward.
A variable isdead if it is not live. Dead code is an assignment that
assigns a value to a dead variable. Thus, in the example in Fig. 5,
the assignment Z:=X+2 at line 8 is a dead code, since Z is dead as
in shown in Fig. 6.



3 Register Allocation for Flowchart Program
In this section, we show how to find an optimal register allocation
as an instance of amaximum marking problem. Our strategy is, first
write down the finite mutumorphic specificationchecking whether
marking represents correct register allocation, and the weightw that
counts the number of required LOAD/STORE instructions. Second,
transformchecking to the form with f oldSP by tupling transfor-
mation [18]. Then, ifw is homomorphic, Optimization Theorem
(Theorem 1 [27, 26]) automatically gives how to detect an opti-
mal register allocation with certain generic dynamic programming
(i.e., a single traversal on an SP Term), assuming the live variables
are pre-computed. Note that we restrict ourselves to control flow
graphs with bounded tree width, and do not intendP = NP, where
the conventional optimal register allocation based on graph color-
ing [10] is NP-complete.
For simplicity, we consider a flowchart programs (without GOTO)
as in Section 2. We assume that functionsde f v l, usev l, and live
variables at terminal labeledl are pre-computed (as in Section 2).

3.1 Register Allocation
In a real computer, an instruction is executed with values on limited
number of registers. If needed inputs are not on registers, then they
must beloaded from memory; and if there are no room for them,
some values on registers must bestored. These LOAD/STORE in-
structions are usually expensive, and register allocation is an opti-
mization that under fixed number of registers, find an optimal regis-
ter usage, i.e., a program execution with the minimum use of LOAD
(from memory to register) and STORE (from register to memory).
Basic operations on registers are either LOAD, STORE,move, or
execution of an instruction. When the number of registers is 4, for
instance, we have

LOAD x r2 y z → y x z

STORE x r2 y x z → y z

r4 := r1 (move) y x z → x z y

r4 := r1 + r2 y x z → y x z u

whereu = y+x

For simplicity, we only concentrate on the number of
LOAD/STORE instructions, and do not care on the number
of move.
Fig. 7 shows the optimal register allocation for a simple program
(appeared in Section 1), which computes the sum of 1 ton with 3
registers.5 Here, each tuple of three variables represents a regis-
ter allocation just before each instruction is executed. The special
symbol means that the register is either empty or permitted to
overwritten. Note that between line 7 and 8, STORE c needs not
to be inserted; instead we just overwrite S on c. This is correct,
because c is dead at line 7.

3.2 Maximum Marking Problem
Maximum marking problem (MMP for short) can be specified as
follows: Given a data structurex, the task is to find a way to mark
elements inx such that the marked data satisfies a certain property
p and has the maximum (or, equivalently, minimum) value with re-
spect to certain weight functionw. This means that no other mark-
ing of x satisfyingp can produce a larger value with respect tow.

5Strictly speaking, LOAD/STORE instruction must be inserted
at the machine code level, but for simplicity we just insert
LOAD/STORE instructions into a flowchart program.

instruction register live variables
1 : input n; ( , , ) {n}
2 : i := 1; (n, , ) {n, i}
3 : S := 0; (n, i, ) {n, i,S}

STORE S (n, i,S)
4 : c := True; (n, i, ) {n, i,S,c}
5 : while c (n, i,c) {n, i,S}

do
6 : i := i+1; (n, i,c) {n, i,S}
7 : c := False; (n, i,c) {n, i,S}

LOAD S (n, i,c)
8 : S := S+ i; (n, i,S) {n, i,S}

STORE S (n, i,S)
9 : c := i <= n; (n, i, ) {n, i,S,c}

od;
LOAD S (n, i,c)

10 : out put S (n, i,S) {}

Figure 7. An example of optimal register allocation

MMP includes many interesting problems, such as knapsack prob-
lems, and optimized range problems in data mining [28]. Of course,
it is not expected that every MMP problem can be solved efficiently.
In fact, MMP includes NP-hard problems, such as the knapsack
problem. However, for instance, the knapsack problem restricted to
integer weight can be computed in linear time.
Let us consider more formally. The specification of MMP is de-
scribed as follows, where constraints are expressed by a boolean-
valued functionp and a weight functionw.

mmp w p = selectmax w◦ f ilter p◦gen

The functiongen generates all possible marking on elements:

gen : D →{D∗}

D∗ is the data structure derived fromD where each node is attached
with a mark. The functionf ilter p takes a set of marked data and
selects ones that satisfy the propertyp. The functionselectmax w
takes a set of marked data and select one that has the maximum
value with respect to the weight functionw. Then, we can derive
a linear time algorithm mechanically if the propertyp is defined
by finite mutumorphisms, and the weight functionw is homomor-
phic [26].
Mutumorphism is a set of mutually recursive functions, among
which no nested function calls occur and each argument of recur-
sive call is a sub-structure of the input [15]. Note that by tupling
transformation, mutumorphism is transformed to a single catamor-
phism [18]. Although mutumorphism is defined on more general
data structures, from now on, we will consider SP Terms only.

DEFINITION 2 (FINITE MUTUMORPHIC PROPERTY[27]).
A property p is finite mutumorphicif it is defined by

p : SP∗ → Bool
p (e+, a) = φe+ a
p (e−, a) = φe− a
p (2, a) = φ2 a
p (S x1 x2, a) = φS (h x1) (h x2) a
p (P x1 x2, a) = φP (h x1) (h x2) a

where h x = (p x, f1 x, f2 x, . . . , fm x), which may use auxiliary



functions f1, . . . , fm each of which has finite range of Ci.

fi : SP∗ →Ci
fi (e+, a) = φie+ a
fi (e−, a) = φie− a
fi (2, a) = φi2 a
fi (S x1 x2, a) = φiS (h x1) (h x2) a
fi (P x1 x2, a) = φiP (h x1) (h x2) a

If p is finite mutumorphic, tupling transformation [18] will yield a
catamorphism forh. Therefore a finite mutumorphic propertyp can
be described in the form of

p = f st ◦ f oldSP pe+ pe− p2 pS pP

where f st is the function that takes the first element in a tuple and
the fold (catamorphism) operationf oldSP on SP terms is defined
below.

f oldSP ϕe+ ϕe− ϕ2 ϕS ϕP = ϕ
where ϕ (e+, a) = ϕe+ a

ϕ (e−, a) = ϕe− a
ϕ (2, a) = ϕ2 a
ϕ (S x1 x2, a) = ϕS (ϕ x1) (ϕ x2) a
ϕ (P x1 x2, a) = ϕP (ϕ x1) (ϕ x2) a

To be concrete, recall the dead code detection in Section 2.2, where
we have reached the point that each node is added with a set of live
variables. Assume that some nodes in the graph are marked (which
can be checked byisM.) Now we may define the propertymd by
f oldSP that all marked nodes in the graph are dead.

md = f oldSP ϕ1 ϕ1 ϕ1 ϕ2 ϕ2
where
ϕ1 (l1, l2,vs1,vs2) = valid (l1,vs1)∧ valid (l2,vs2)
ϕ2 p1 p2 a = p1∧ p2∧ϕ1 a

Herevalid is to determine whether a marked terminal node is dead,
i.e.,valid (l,vs) = if isM l thendefv l ⊆ vs elseTrue.
DEFINITION 3 (HOMOMORPHICWEIGHT FUNCTION [26]).
A weight function w is homomorphicif w is defined as a fold

w : SP∗ →Weight
w = f oldSP ψe+ ψe− ψ2 ψS ψP

where ψS and ψP is described as a summation in a form like

ψS r1 r2 a = r1 + r2 +vS a
ψP r1 r2 a = r1 + r2 +vP a

for some functions vS and vP.
Continuing with the dead code detection problem, we may define a
weight functionnd to count the number of the marked dead nodes6

nd = f oldSP ψ1 ψ1 ψ1 ψ2 ψ2
where
ψ1 (l1, l2,vs1,vs2) = c l1 +c l2
ψ2 p1 p2 a = p1 + p2

Herec l returns 1 if the nodel is marked, and 0 otherwise.
THEOREM 1 (OPTIMIZATION THEOREM [26, 27]).
If the property p is finite mutumorphic and the weight function w is
homomorphic, MMP specified by

spec : SP → SP∗
spec = mmp w p

6This is not exactly true. In fact, all marked dead nodes except
for the two terminal nodes of the whole graph are counted twice.

has an O(|C′| ·n) algorithm described as

opt ψe+ ψe− ψ2 ψS ψP f st pe+ pe− p2 pS pP

where C′ = C1×·· ·×Cm and n is the size of an input.

The core of Optimization Theorem is a generic dynamic program-
ming. The idea is; during data traversal, compute intermediate max-
ima for all possible states that may contribute to the finial maxi-
mum. Finite mutumorphismsf1, . . . , fm describe state transition,
and finiteness of their ranges guarantee that such states are finite.
For the definition ofopt and detail, refer to [27, 26].
It follows from this theorem that we can detect all dead codes with
the propertymd and the weight functionnd by the following pro-
gram.

opt ψ1 ψ1 ψ1 ψ2 ψ2 id ϕ1 ϕ1 ϕ1 ϕ2 ϕ2

We will see a more interesting application of the theorem in the next
Section.

3.3 Optimal Register Allocation as MMP
As an application of Optimization Theorem, we demonstrate the
register allocation problem.

Check Whether Each Terminal Has a Correct Mark
Let Var be the set of variables that appears in a program, and let
be the special symbol that means a register is either empty or ready
to overwrite. The setReg of register allocations (we consider the
size of registers is three) is defined as:

Reg = {(v1, · · · ,vn) | vi ∈Var∪{ },
vi �= v j ∨ vi = v j = if i �= j}.

An element inReg is labeled to each terminal in an SP Term as a
mark, which represents the register allocation state just before the
instruction at the terminal being executed. Below, we will describe

• checking, which checks whether each terminal has a correct
mark, and

• w, which counts the number of required LOAD/STORE in-
structions under a certain marking of the program.

A mark in Reg is a tuple, and we use the following operations (as
analogy to set operations). Letr = (v1, · · · ,vn), r′ = (v′1, · · · ,v′n) ∈
Reg.

r \\ r′ = (v′′1, · · · ,v′′n) wherev′′i = if vi = v′i then elsevi
RV r = {v1, · · · ,vn}\{ }

The functionchecking g takes a marked SP-term associated with
the line numbers in a program (denoted byl1, l2), the sets of live
variables (denoted byvs1 andvs2), and the marking that represents
(pre-execution) register status (denoted bym1 andm2) at terminal
1 and 2, and returns a Boolean value.

checking (e+, ((l1, l2,vs1,vs2), (m1,m2)))
= ch ((l1, l2, vs1,vs2), (m1,m2))

checking (e−, ((l1, l2,vs1,vs2), (m1,m2)))
= ch ((l1, l2, vs1,vs2), (m1,m2))

checking (2, ((l1, l2, vs1,vs2), (m1,m2)))
= ch ((l1, l2, vs1,vs2), (m1,m2))



checking (S x y, ((l1, l2, vs1,vs2), (m1,m2)))
= let (m′

1,m
′
2) = getMarks x

(m′′
1,m′′

2) = getMarks y
in checking x ∧ checking y

∧ m1 = m′
1 ∧ m2 = m′′

2 ∧ m′
2 = m′′

1
checking (P x y, ((l1, l2,vs1,vs2), (m1,m2)))
= let (m′

1,m
′
2) = getMarks x

(m′′
1,m′′

2) = getMarks y
in checking x ∧ checking y

∧ m1 = m′
1 ∧ m1 = m′′

1 ∧ m2 = m′
2 ∧ m2 = m′′

2
ch ((l1, l2, vs1,vs2), (m1,m2))
= usev l1 ⊆ RV m1 ⊆ (vs1∪usev l1) ∧

usev l2 ⊆ RV m2 ⊆ (vs2∪usev l2) ∧
|de f v l1|+ |RV m1∩ vs1 \de f v l1| ≤ n ∧
|de f v l2|+ |RV m2∩ vs2 \de f v l2| ≤ n

getMarks (t,a) = snd a

The judgmentusev l1 ⊆ RV m1 corresponds to thepre-condition of
the instructionl1 at terminal 1 ing, i.e., each variable used in the
instruction must be in some register inm1, and|de f v l1|+ |(m1∩
vs1) \ de f v l1| ≤ n corresponds to thepost-condition, i.e., m1 has
a room to write defined variables (de f v l1); otherwise, some live
variables inm1 except for those defined atl1 will be overwritten
before stored. Notice the obvious optimizing conditions

RV m1 ⊆ vs1∪usev l1
RV m2 ⊆ vs2∪usev l2

in ch ((l1, l2,vs1,vs2),(m1,m2)), which mean that live variables in
registers are as many as possible.
Thechecking property is defined as finite mutumorphisms with the
functiongetMarks. By tupling transformation, we get the following
form:

checking = f st ◦ f oldSP pe+ pe− p2 pS pP

where

pe+ (x, a) = (ch a, snd a)
pe− (x, a) = (ch a, snd a)
p2 (x, a) = (ch a, snd a)
pS x y a
= let (m′

1,m
′
2) = snd x (m′′

1,m′′
2) = snd y (m1,m2) = snd a

in ( f st x∧ f st y ∧ m1 = m′
1 ∧ m2 = m′′

2 ∧ m′
2 = m′′

1,
(m1,m2))

pP x y a
= let (m′

1,m
′
2) = snd x (m′′

1,m′′
2) = snd y (m1,m2) = snd a

in ( f st x ∧ f st y ∧ (m1 = m′
1 ∧ m1 = m′′

1)
∧ (m2 = m′

2 ∧ m2 = m′′
2),

(m1,m2))

Here we include obvious optimizing conditions

RV m1 ⊆ vs1 ∪ usev l1
RV m2 ⊆ vs2 ∪ usev l2

to ch (l1, l2,vs1,vs2,m1,m2), which mean that live variables in reg-
isters are as many as possible.

Weight Counts the Number of Required LOAD/STORE
The weight functionw is defined as follows.

w (e+, ((l1, l2,vs1,vs2), (m1,m2))) = count l1 vs1 m1 m2
w (e−, ((l1, l2,vs1,vs2), (m1,m2))) = count l2 vs2 m2 m1
w (2, ((l1, l2,vs1,vs2), (m1,m2))) = 0
w (S x y, ((l1, l2,vs1,vs2), (m1,m2))) = w x+w y
w (P x y, ((l1, l2,vs1,vs2), (m1,m2))) = w x+w y

count l vs m m′
= let V = (RV m ∩ vs) ∪ de f v l

in i f V �⊆ RV m′
then max|(V \RV m′) ∩ vs|+ |RV m′ \V |
else i f |V | < n then |RV m′ \V |

else i f RV (m′ \\ m) = φ then 0
else 2

The functionw counts the number of required LOAD/STORE at
each edge (uniquely represented bye+ or e−), and just sums up for
recursive constructorsS andP.
The intuition forcount is: V is the set of variables that are placed on
the registers after an instruction is executed. IfV is not included in
the next register statusm′, then their difference must be stored and
loaded. BetweenSTORE andLOAD operations, we can reorder the
positions of variables bymove operations. AssumeV is included
in the next register statusm′. If |V | < n, this means there exists
a register with , and we can reorder variables inV . Otherwise,
V = RV m′, and if RV (m′ \\ m) �= φ we need to make room by a
pair of STORE andLOAD operations for reordering.
The above definition of the weight functionw is homomorphic, and
w is defined byf oldSP as follows.

ψe+ a
= let ((l1, l2,vs1,vs2), (m1,m2)) = a in count l1 vs1 m1 m2

ψe− a
= let ((l1, l2,vs1,vs2), (m1,m2)) = a in count l2 vs2 m2 m1

ψ2 a = 0
ψS x y a = x+y
ψP x y a = x+y

Applying Optimization Theorem, and Discussion
With all the above, Theorem 1 automatically derives the solution
for optimal register allocation.
At last, two points are worth remarking:

1. In real compilers, there are often practical requirements of
hardware, such as, some instruction must use some specific
registers, some register must be used together with some spe-
cific registers, or the result of some instruction must be writ-
ten in a different register. These requirements are hard for the
conventional graph coloring method [10], but our method is
easy to handle them by modifying the functionchecking.

2. We obtain an optimal register allocation without iteration. The
core of the technique is dynamic programming on SP Terms.
The cost to pay is huge marking space, which grows expo-
nentially to the number of registers. However, sincechecking
can be judged locally (like forall in Haskell), most of marking
is avoided by default. We expect demand-driven computa-
tion.helps the situation.

4 Analyzing Control Flow Graphs with
Larger Tree Width

In this section, we discuss how our method can be extended to wider
class of programs. The example is again dead code detection; but
for a program that has a control flow graph with tree width larger
than 2. For simplicity, we mostly consider control flow graphs with
tree width at most 3. Our construction is uniform and extension for
larger tree width is straight forward, if we assume the description
on reachability among terminals.
Due to lack of space, we do not explaintree decomposition, which
gives the original definition of tree width [25]. Instead, we treat a
(di)graph with tree width at mostk as a (di)graph denoted by an SP
Term inSPk.



4.1 SP Terms
In Section 2.1, we show how an SP Term of a control flow graph
of a flowchart program (i.e., a series-parallel graph) is computed in
linear time. In this section, we give definition of general SP Term
(for graphs with larger tree width) and show that translation will be
done in linear time.
DEFINITION 4. An SP Term is a pair of a ground term t and a
tuple (l(1), · · · , l(k)), defined as the following.

SPk := (ek(i, j), (l(1), · · · , l(k))) (i �= j)
| (k, (l(1), · · · , l(k)))
| (Sk SPk . . . SPk︸ ︷︷ ︸

k

, (l(1), · · · , l(k)))

| (Pk SPk SPk, (l(1), · · · , l(k)))
Here, l(1), · · · , l(k) are labels, Pk is the parallel composition, and
Sk is the series composition.
SP Terms (ek(i, j),(l(1), · · · , l(k))) and (k,(l(1), · · · , l(k)))
are interpreted ask-terminal digraphsG, G′ with terminals
(l(1), · · · , l(k))) and{

V (G) = {l(1), · · · , l(k)}, E(G) = {(l(i), l( j)},
V (G′) = {l(1), · · · , l(k)}, E(G′) = φ.

i.e.,k-nodesl(1), · · · , l(k) with one diedge froml(i) to l( j), and i.e.,
k isolated nodesl(1), · · · , l(k), respectively (See Fig. 8).

�

i

j

ek(i, j)

1
2

3

4
5

k

k

Figure 8. Interpretation of constants ek(i, j) and k

Series composition(Sk t1 · · · tk, (l(1), · · · , l(k))) is interpreted in
3 steps. See Fig. 9 (In Fig. 9 and 10, a double circle expresses a
terminal). Letti = (t ′i , li(1), · · · , li(k)).

1. Shift the numbering of terminals inti, i.e., thej-th terminal to
the j +1-th terminal for eachj with i ≤ j ≤ k.

2. Fuse each terminal of the same numbering and put a label

match (l1(i−1), · · · , li−1(i−1), li+1(i), · · · , lk(i))
to thei-th terminal if

match(l1(i−1), · · · , li−1(i−1), li+1(i), · · · , lk(i)) �=⊥ .

3. Remove the last terminal (labeled $ in Fig. 9).
wherematch (l(1), · · · , l(k)) is an abbreviation of

match (l(1),match (l(2), · · · ,match (l(k−1), l(k)) · · ·).
Parallel composition(Pk t1 t2, (l(1), · · · , l(k))) is interpreted similar
to P in Section 2; fuse each terminal of the same numbering int1 =
(t ′1, l1(1), · · · , l1(k)) andt2 = (t ′2, l2(1), · · · , l2(k)), and put a label
match (l1(i), l2(i)) to the i-th terminal if match (l1(i), l2(i)) �=⊥.
See Fig. 10.
Intuition behind is; like that the parallel compositionpk constructs
any subgraph in a complete graphKk, the series compositionSk
combines such components and produces a clique of the sizek +1
(i.e., an embedding ofKk+1).
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Figure 9. Interpretation of series composition S2, S3, S4
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EXAMPLE 1. In Fig. 9, the digraphs3(G1,G2,G3) has tree width
3, andG1,G2.G3 have tree width 2. The SP Terms ofG1,G2,G3
are described as

G1 = S3(P3(e3(2,3),e3(3,1)),P3(e3(1,2),e3(1,3)),3)
G2 = S3(P3(e3(1,2),e3(1,3)),e3(3,1),3)
G3 = S3(3,e3(1,2),

S3(P3(e3(1,2),e3(1,3)),P3(e3(1,2),e3(3,1)),3))

REMARK 1. SP2 (series parallel graphs) allows several choices
for definition of the series composition. For instance, definition of
S in Section 2 is different from S2 here; they can be related as

S x y = chT (S2 x (chT y)).

S2 is the part of uniform way to define the series composition for
each SPk; however, for readability, we used the simplified version S
in Section 2.

REMARK 2. The definition of series composition Sk and parallel
composition Pk are given by Arnborg, et.al. in a different aspect of
an algebraic construction of graphs with bounded tree width [3].
Note that if once an SP Term t is given, tree decomposition [25]
of a corresponding graph is straightforward: a backborn tree T as
V (T ) = {s | s ⊆ t} and a covering Xs for s ∈ V (T ) as the set of
terminals in s.

THEOREM 2. Let G be a digraph with twd(G) ≤ k and
|V (G)| ≥ k for k ≥ 2. Then, an SP Term is computed in linear
time (wrt |V (G)|) such that its interpretation is a pair of k-terminal
digraph G̃ and a tuple of k-terminals with G = G̃ by neglecting ter-
minals.

In general, deciding the tree width of a graph is NP-complete; how-
ever, for fixedk, whether a graph has tree width at mostk is decid-
able in linear time [7, 24]. Fortunately, we already know the upper
bound of the tree width of control flow graphs of some specific pro-
gramming languages.
This shows the general method to compute an SP Term from a con-
trol flow graph via tree decomposition. This is done in linear-time,
but not so efficient linear time. However, a direct translation (such
as trans in Section 2.1) from a program will be much more effi-
cient, because a control flow graph loses the parsing information of
an original program. For a simple imperative language with GOTO,
such a translation is shown in Appendix A.

4.2 Alternative Definition of Dead Code De-
tection on SP2

Before the extension, we give the alternative definitions of the func-
tionsuse1 g, use2 g, addLive g vs1 vs2 for SP2 in Section 2). Recall
that the original definition is as follows (taking account into the
modification ofS instead ofS2):

use1 (e2(1,2), (l1, l2)) = usev l2
use1 (e2(2,1), ) = φ
use1 (2, ) = φ
use1 (S2 x y, ) = use1 y∪ (use2 x\de f1→2 y)
use1 (P2 x y, ) = use1 x∪ (use2 y\de f1→2 x) ∪

use1 y∪ (use2 x\de f1→2 y)

de f1→2 (e2(1,2), (l1, l2)) = de f v l2
de f1→2 (e2(2,1), ) = Var
de f1→2 (2, ) = Var
de f1→2 (S2 x y, ) = de f1→2 y ∪ de f2→1 x
de f1→2 (P2 x y, ) = de f1→2 x ∩ de f1→2 y

addLive (e2(1,2), (l1, l2)) vs1 vs2
= (e2(1,2), (l1, l2, vs1∪usev l2∪ (vs2 \de f v l2), vs2))

addLive (e2(2,1), (l1, l2)) vs1 vs2
= (e2(2,1), (l1, l2, vs1, vs2∪usev l1∪ (vs1 \de f v l1)))

addLive (2, (l1, l2)) vs1 vs2 = (2, (l1, l2, vs1,vs2))
addLive (S2 x y, (l1, l2)) vs1 vs2
= (S2 (addLive y vs1 (use2 x∪ (vs2 \de f2→1x)))

(addLive x vs2 (use2 y∪ (vs1 \de f2→1y))),
(l1, l2, vs1, vs2))

addLive (P2 x y, (l1, l2)) vs1 vs2
= (P2 (addLive x

(vs1∪use1 y∪ ((vs2∪use2 x)\de f1→2 y))
(vs2∪use2 y∪ ((vs1∪use1 x)\de f2→1 y)))

(addLive y
(vs1∪use1 x∪ ((vs2∪use2 y)\de f1→2 x))
(vs2∪use2 x∪ ((vs1∪use1 y)\de f2→1 x))),

(l1, l2, vs1, vs2))

The alternative definition below contains some redundant computa-
tion. This is because generality of the definition, if one considers to
extend to generalk. Note that distributivity of∩ wrt ∪ and inclusion
like use2 g\de f1→2 g ⊆ use1 g can absorb the differences.

use1 (e2(1,2), (l1, l2)) = usev l2
use1 (e2(2,1), (l1, l2)) = φ
use1 (2, (l1, l2)) = φ
use1 g@(S2 x y, (l1, l2))
= use1 x∪ (use1 y\de f1→2 g) ∪ ((use2 x∪use2 y)\de f1→2 x)

use1 g@(P2 x y, (l1, l2))
= (use1 x∪use1 y) ∪ ((use2 x∪use2 y)\de f1→2 g)

addLive (e2(1,2), (l1, l2)) vs1 vs2
= (e2(1,2), (l1, l2, vs1 ∪ usev l2 ∪ (vs2 \de f v l2), vs2))

addLive (e2(2,1), (l1, l2)) vs1 vs2
= (e2(2,1), (l1, l2, vs1, vs2 ∪ usev l1 ∪ (vs1 \de f v l1)))

addLive (2, (l1, l2)) vs1 vs2 = (2, (l1, l2, vs1,vs2))
addLive g@(S2 x y, (l1, l2)) vs1 vs2
= (S2 (addLive y vs1 use2 x ∪ ((vs2 ∪ use1 x)\de f2→1x))

(addLive x vs2 use2 y ∪ ((vs1 ∪ use1 y)\de f2→1y)),
(l1, l2, vs1,vs2))

addLive g@(P2 x y, (l1, l2)) vs1 vs2
= let vs′1 = vs1 ∪ ((vs2 ∪ use2 x ∪ use2 y)\de f1→2 g)

vs′2 = vs2 ∪ ((vs1 ∪ use1 x ∪ use1 y)\de f2→1 g)
in (P2 (addLive x (use1 y ∪ vs′1) (use2 y ∪ vs′2))

(addLive y (use1 x ∪ vs′1) (use2 x ∪ vs′2)),
(l1, l2, vs1, vs2))

4.3 Dead Code Detection for Larger Tree
Width

Used/Defined Variables in a Fragment in SP3

use1 (e3(i, j), (l1, l2, l3)) =
{

usev l j if i = 1
φ otherwise

use1 (3, (l1, l2, l3)) = φ
use1 g@(S3 x y z, (l1, l2, l3))
= use1 y ∪ use1 z ∪

((use1 x∪use2 z)\de f1→2 g) ∪
((use2 x∪use2 y)\de f1→3 g) ∪
((use3 x∪use3 y∪use3 z)\de f1→$ g)

use1 g@(P3 x y, (l1, l2, l3))
= (use1 x ∪ use1 y) ∪

((use2 x∪use2 y)\de f1→2 g) ∪
((use3 x∪use3 y)\de f1→3 g)

The basic idea is the same as that inuse1 g for SP2 except



for the modification((use3 x ∪ use3 y ∪ use3 z) \ de f1→$ g) in
use1 g@(S x y z, (l1, l2, l3)). $ is the newly introduce symbol that
represents the removed terminal inS x y z, i.e., terminal 3 inx,y,z.
For SP2, de f1→$ (S x y) coincides withde f1→2 x, because paths
from terminal 1 to terminal 2 inx are only paths from terminal 1 to
$ in g without loops. Thus, forSP2, the need for $ is hidden.

de f1→2 (e3(i, j), (l1, l2, l3))

=
{

de f v l2 if i = 1, j = 2
Var otherwise

de f1→2 (3, (l1, l2, l3)) = Var
de f1→2 (S3 x y z, (l1, l2, l3))
= de f1→2 z ∩

(de f1→2 y ∪ de f2→1 x) ∩ (de f1→3 z ∪ de f3→1 x) ∩
(de f1→3 y ∪ de f3→2 z) ∩ (de f1→3 y ∪ de f3→1 x) ∩
(de f1→3 z ∪ de f3→2 y ∪ de f2→1 x) ∩
(de f1→2 y ∪ de f2→3 x ∪ de f3→2 z)

de f1→2 (P3 x y, (l1, l2, l3))
= de f1→2 x ∩ de f1→2 y ∩

(de f1→3 y ∪ de f3→2 x) ∩ (de f1→3 x ∪ de f3→2 y)
de f1→$ (S x y z, (l1, l2, l3))
= de f1→3 y ∩ de f1→3 z ∩

(de f1→2 y ∪ de f2→3 x) ∩ (de f1→3 z ∪ de f3→3 x) ∩
(de f1→2 y ∪ de f2→1 x ∪ de f2→3 z) ∩
(de f1→2 z ∪ de f1→2 x ∪ de f2→3 y)

The definition ofde f1→2 in SP3 is quite complex especially for
S x y z. The intuition can be obtained by replacing∪,∩ with ∧,∨,
respectively. Then, by setting values for base cases as

reach1→2 (e3(i, j), (l1, l2, l3)) =
{

True if (i, j) = (1,2)
False otherwise

reach1→2 (3, (l1, l2, l3)) = False

the same definition gives us the judgment of reachability from ter-
minal 1 to terminal 2 ing.

Live Variables Detection for SP3
Now, we give definition ofaddLive to detect live variables forSP3.

addLive g@(e3(1,2), (l1, l2, l3)) vs1 vs2 vs3
= (e3(1,2),

(l1, l2, l3, vs1∪usev l2∪ (vs2 \de f v l2), vs2, vs3))
addLive (3, (l1, l2, l3)) vs1 vs2 vs3
= (3, (l1, l2, l3, vs1, vs2, vs3))

addLive g@(S3 x y z, (l1, l2, l3)) vs1 vs2 vs3
= let vs′1 = (vs1∪use1 y∪use1 z) ∪

((vs2∪use1 x∪use2 z)\de f1→2 g) ∪
((vs3∪use2 x∪use2 y)\de f1→3 g) ∪
((use3 x∪use3 y∪use3 z)\de f1→$ g)

vs′2 = ((vs1∪use1 y∪use1 z)\de f2→1 g) ∪
(vs2∪use1 x∪use2 z) ∪
((vs3∪use2 x∪use2 y)\de f2→3 g) ∪
((use3 x∪use3 y∪use3 z)\de f2→$ g)

vs′3 = ((vs1∪use1 y∪use1 z)\de f3→1 g) ∪
((vs2∪use1 x∪use2 z)\de f3→2 g) ∪
(vs3∪use2 x∪use2 y) ∪
((use3 x∪use3 y∪use3 z)\de f3→$ g)

vs′ = ((vs1∪use1 y∪use1 z)\de f$→1 g) ∪
((vs2∪use1 x∪use2 z)\de f$→2 g) ∪
((vs3∪use2 x∪use2 y)\de f$→3 g) ∪
((use3 x∪use3 y∪use3 z)

in (S (addLive x vs′2 vs′3 vs′) (addLive y vs′1 vs′3 vs′)
(addLive z vs′1 vs′2 vs′),

(l1, l2, l3, vs1, vs2, vs3))

addLive g@(P3 x y, (l1, l2, l3)) vs1 vs2 vs3
= let vs′1 = (vs1∪use1 x∪use1 y) ∪

((vs2∪use2 x∪use2 y)\de f1→2 g) ∪
((vs3∪use3 x∪use3 y)\de f1→3 g)

vs′2 = ((vs1∪use1 x∪use1 y)\de f2→1 g) ∪
(vs2∪use2 x∪use2 y) ∪
((vs3∪use3 x∪use3 y)\de f2→3 g)

vs′3 = ((vs1∪use1 x∪use1 y)\de f3→1 g) ∪
((vs2∪use2 x∪use2 y)\de f3→2 g) ∪
(vs3∪use3 x∪use3 y)

in (P (addLive x vs′1 vs′2 vs′3) (addLive y vs′1 vs′2 vs′3),
(l1, l2, l3, vs1, vs2, vs3))

Discussion
Here, we present our study only forSP3, i.e., tree width at most 3.
It is worth mentioning the analogy betweende fi→ j andreachi→ j,
and the difficulty to extend to graphs with larger tree width is fo-
cused on the reachability description among terminals. Current our
description isnot parametric wrt tree width, i.e., we must describe,
say, dead code detection for eachSPk. However, we have a basic
feel that there would be some genericskeleton-like structure regard-
ing reachability. That is, with the description of reachability forSPk
and the description of an analysis forSP2, we can generate the de-
scription of an analysis for generalSPk.
Of course, with the increase of tree width, the number of functions
rapidly grows. But, recall that most JAVA programs (and possi-
bly other imperative programs) have a control flow graph with tree
width at most 3 [16]. Thus, even for relatively small tree width, our
method would cover quite large portion of real programs.

5 Related Work
Many researches have been devoted to thedeclarative approaches
to program analyses. Steffen and Schmidt [31, 30] showed that tem-
poral logic is well suited todescribe data dependencies and other
properties exploited in classical compiler optimization. Lacey,
et.al. [21] formalized program optimization as rewriting systems
with temporal logic side conditions (described in CTL-FV) and
shows that CTL-FV plays a crucial role in theproofs of correct-
ness of classical optimizations. Instead of temporal logic, de Moor,
et.al. [12] proposed another functional approach to control flow
analyses. Their specification language is the regular path condition,
but the efficiency of derived programs is not discusses.
There are several functional approaches for computation on graphs.
For instance, Fegaras and Sheard [14] treat graphs with embed-
ded functions, i.e., graphs are treated as functions that generates
all paths in a graph. Erwig introduces theactive pattern matching,
which is a conditional pattern matching mechanism [13]. Their ap-
proaches are interesting in description, but the existence of strong
side conditions limits the chance to optimize. Instead, we restrict
ourselves to graphs with bounded tree width, in which many NP-
hard graph problems are solved in linear-time [11, 9].
The concept of a graph with bounded tree width [25] independently
appeared from early 80’s; partialk-tree in terms of cliques, some
algebraic construction ofk-terminal graphs [4, 3], and in terms of
separators, and they are all equivalent. The class of graphs with
bounded tree width is quite restrictive; but the significant tread-
off is: The class of graphs with bounded tree width frequently
has a linear time algorithm for graph problems. For graphs with
bounded tree width, there have been lots of work on automatic gen-
eration of linear-time algorithms from specification in monadic sec-
ond order formulae, which are frequently NP-complete for general
graphs [11, 9].
Our starting observation is that most programs (without spaghetti
GOTO) have control flow graphs with bounded tree width, and



many control flow analyses can be specified in temporal logic (such
as CTL-FV). By combining them, it seems easy to obtain (almost)
linear-time algorithm for control flow analyses. This is true in the-
ory, but not in practice; each existence of quantifiers in a formula
causes the exponential explosion of the constant factor. Our ap-
proach is, directly write functional specification on the simple data
structure, SP Term. This approach drastically reduces the constant
factor [27]. Further, an SP Term is more approachable especially
from programming point of view, and it does not refuse to capture
better algorithmic ideas.
For an algebraic construction of graphs, one of the early work for
flowchart scheme is found in [29]. Bauderon and Courcelle [4] are
also pioneers, and our SP Term is greatly in debt to the work by
Arnborg, et.al. [3]. However, their constructions do not fit to our
purpose; for instance, the construction by Arnborg, et.al. [3] re-
quires the recursive constructorsli

j,r j,s j, p j with 1≤ i ≤ j ≤ k for
graphs with tree width at mostk. Thus, the number of their re-
cursive constructors becomesk(k +1)(k +2)/6, and this makes us
difficult to write recursive definitions. We proposed another con-
struction, SP Term, which has only 2 recursive constructorsSk,Pk
regardless of the size ofk. The number of constantsek(i, j) has
square growth, but they are interpreted as diedges from thei-th to
the j-th terminal. For these constants, writing functional specifica-
tion (base cases) is easy; even in uniform way.
Thorup [33] showed that a structured imperative program have a
control flow graph with relatively small tree width. He also inves-
tigated on findingnear optimal register allocation by the conven-
tional graph coloring on an intersection graph. It is well known
that register allocation is equivalently reduced to the graph coloring
problem [10], which is known to be NP-complete. For precise solu-
tion, it seems pessimistic; Kannan and Proesbsting showed that the
number of minimal coloring (thus deciding the minimum number
of registers that can be allocated without spilling) is NP-complete
even forSP2 (series parallel graphs) [19].
However, if we further assume that the number of registers is fixed,
we can obtain an efficient solution. Bodlaender, et.al. showed a
linear-time algorithm to decide whether a program can be executed
without spilling for a fixed number of registers [8]. This is elegant
in theory; however, their estimation includes the blow up of tree
width of an intersection graph of a family of subgraphs. Thus, their
constant factor explodes.
Our method based on Optimization Theorem could also have a huge
constant factor, which can grow to the power of the number of live
variables. However, there is possibility to tame it. For instance, we
could expect the number of live variables at each program point are
not so large, and most of markings would be avoided immediately.
These observation suggest that, in practice, there seems a room to
improve the constant factor drastically by demand-driven computa-
tion and other program transformation techniques, which are avail-
able for functional programs. For instance, Ohori proposed another
register allocation by proof transformation on typed assembly lan-
guage, which reduces the number of candidates of optimal register
allocations [22]. The combination with such methods would be
worth exploring.
We should mention another classical efficient solution under cer-
tain restriction of control flow graphs:reducible flow graph [2, 1].
If a program has a reducible control flow graph, one can con-
struct n (log n) algorithms for program analyses, such as com-
mon subexpression detection. Knuth also showed that most FOR-
TRAN programs have reducible control flow graphs by an empirical
study [20].
SP Term is independent to the concept of a reducible flow graph;
for instance, Hecht and Ullman showed a graph is reducible if and

only if the left-hand-side figure in Fig. 11 is contained [17]. How-
ever, that graph is easy to treat from tree width point of view; it is
described inSP2 as

S2 e2(1,2) (P2 (S2 (P2 e2(1,2) e2(2,1)) e2(1,2)) e2(2,1))

(with terminal 1 at the top and terminal 2 at the rightmost node).
In contrast, a complete directed acyclic graph (DAG) withm-nodes
(as in the right-hand-side figure in Fig. 11) is described inSPm,
proportional to the sizem. However, any DAG is reducible.

�

� ��
�

¬ reducible
∈ SP2

�

� �� ��
reducible
�∈ SP2

Figure 11. Difference between reducible flow graph and SP
Term

6 Conclusion and Future Work
In this paper, we proposed aniterative-free approach to program
analysis, based on the fact that control flow graphs of most prac-
tical programs are well structured. Our main contributions can be
summarized as follows.

• We defined a simple but powerful algebraic construction of
digraphs called SP Terms, on which program analyses can be
naturally described as catamorphisms (or mutumorphism). As
catamorphism enjoys many nice algebraic rules such as fusion
and tupling for algorithmic optimization [6], this catamorphic
formalization of program analyses makes it possible to sys-
tematically derive efficient analysis algorithms, which has not
been really recognized so far.

• We identified that many program analyses can be considered
as the maximum marking problems. By making use of the
optimization theorem for them, we are able to obtain efficient
analysis algorithms.

• As demonstrated by two examples, our method is quite power-
ful. In fact, many program analysis examples in the compiler
textbook can be cast into this framework.

This research is just at the beginning, and there are lots of subjects
to conquer.

• As pointed in Section 3, the table for dynamic programming
technique can easily explode. Although our method drasti-
cally improves constant factor compared to starting from for-
mulae [27], still this is quite true. However, we only need the
computation that can reach to the result satisfying given con-
straints, and, from our experience, computation in most part
of the table does not contribute to obtain such results. There-
fore, we hope demand-driven computation will improve the
situation, and would like to confirm it by experiments.

• Currently, our description of analyses isnot parametric wrt
tree widthk. However, as Section 4 suggests, the reachability
description would work as a generic skeleton-like structure.
We have a strong feel about it, but it must be more concrete.

• The set of SP Terms is an initial algebra; however, ak-terminal
graph may have multiple representations by SP Terms. This
means whether the user defined functional specification is
consistent with the interpretation of SP Terms tok-terminal
graphs is up to the user’s responsibility. For instance, in Fig. 5,
different occurrences in the SP Term of a node in the control
flow graph have the same set of live variables. This is guar-
anteed by user’s semantic consideration. From its own the-
oretical interest and possible better support, we hope to give



the complete axiomatization of SP Terms under this interpre-
tation.

Acknowledgments
The authors thank Oege de Moor and Jeremy Gibbons for stimu-
lating discussions during their visit at the University of Tokyo, and
thank Aki Takano for his helpful suggestions. We also thank anony-
mous referees and Fritz Henglein for their valuable comments and
suggestions. Last but not least, we thank Masato Takeichi for his
continuous support.

7 References
[1] A. Aho, R. Sethi, and J.D. Ullman.Compilers – Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[2] F.E. Allen. Control flow analysis.ACM SIGPLAN Notices,
5(7):1–19, 1970.

[3] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An
algebraic theory of graph reduction.Journal of the Associa-
tion for Computing Machinery, 40(5):1134–1164, 1993.

[4] M. Bauderon and B. Courcelle. Graph expressions and graph
rewritings.Mathematical System Theory, 20:83–127, 1987.

[5] R. Bird. Maximum marking problems.Journal of Functional
Programming, 11(4):411–424, 2001.

[6] R. Bird and O. de Moor.Algebra of Programming. Prentice
Hall, 1996.

[7] H.L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth.SIAM Journal Computing,
25(6):1305–1317, 1996.

[8] H.L. Bodlaender, J. Gustedt, and J.A. Telle. Linear-time reg-
ister allocation for a fixed number of registers. InProc. 9th
ACM-SIAM Symposium on Discrete Algorithms, SODA 1998,
pages 574–583. ACM Press, 1998.

[9] R.B. Borie, R.G. Parker, and C.A. Tovey. Automatic genera-
tion of linear-time algorithms from predicate calculus descrip-
tions of problems on recursively constructed graph families.
Algorithmica, 7:555–581, 1992.

[10] G.J. Chaitin. Register allocation & spilling via graph coloring.
In Proc. ACM Symposium on Compiler Construction, pages
98–105. ACM Press, 1982.

[11] B. Courcelle. Graph rewriting: An algebraic and logic ap-
proach. In J. van Leeuwen, editor,Handbook of Theoretical
Computer Science, volume B, chapter 5, pages 194–242. El-
sevier Science Publishers, 1990.

[12] O. de Moor, D. Lacey, and E. van Wyk. Universal regular
path queries. to appear in High Order Symbolic Computation,
2002.

[13] M. Erwig. Functional programming with graphs. InProc.
1997 ACM SIGPLAN International Conference on Functional
Programming, pages 52–65. ACM Press, 1997. SIGPLAN
Notices 32(8).

[14] L. Fegaras and T. Sheard. Revisiting catamorphisms over
datatypes with embedded functions(or, programs from outer
space). In Proc. 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 284–294. ACM
Press, 1996.

[15] M. Fokkinga. Tupling and mutumorphisms.Squiggolist, 1(4),
1989.

[16] J. Gustedt, O.A. Mæhle, and A. Telle. The treewidth of Java
programs. InProc. 4th Workshop on Algorithm Engineering
and Experiments, ALENEX 2002, pages 86–97, 2002. Lecture
Notes in Computer Science, Vol. 2409, Springer-Verlag.

[17] M.S. Hecht and J.D. Ullman. Characterizations of reducible
flow graphs.Journal of the ACM, 21(3):367–375, 1974.

[18] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling cal-
culation eliminates multiple data transversals. InProc. 2nd
ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 9–11. ACM Press, 1997.

[19] S. Kannan and T. Proebsting. Register allocation in structured
programs.Journal of Algorithms, 29:223–237, 1998.

[20] D.E. Knuth. An empirical study of FORTRAN programs.
Software Practice and Experience, 1(2):105–134, 1971.

[21] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian
Frederiksen. Proving correctness of compiler optimizations
by temporal logic. InProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
283–294. ACM Press, 2002.

[22] A. Ohori. Register allocation by program transformation. In
Programming Languages and Systems, 12th European Sym-
posium on Programming, ESOP03, pages 399–413, 2003.
Lecture Notes in Computer Science, Vol. 2618, Springer-
Verlag.
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A Computing SP Terms directly from Imper-
ative Programs

To show the direct translation from an imperative program with
GOTO to an SP Term, we define a simple imperative language. The
definition, given in Figure 12, is similar to that in [21], except for
the additional “while” construct. For simplicity, this language has
no exceptions or procedures.

P ::= I; P program
I ::= l : C instruction
C ::= x := e assignment

| input x input statement
| out put x output statement
| if e then P else P fi conditional statement
| while e do P od while loop
| goto l goto statement
| break break statement

l : label

Figure 12. A Simple Imperative Language

Let us consider a program in this language with at mostn-GOTO.
The translationtransG to an SP Term is given below. The basic
idea is; construct an SP Term by ignoring GOTO and memorize
their source nodes as additional terminals. Then, scan the SP Term
again, and add an edge by the parallel composition at some subterm
in which the destination node eventually becomes a terminal. (Note
that each node in a control flow graph becomes a terminal of some
subterm of an SP Term.)
Let prog be a program written in the language in Fig. 12. As in
Section 2.1, we first preprocessprog to l prog by labeling each line
of prog. Let ((so1,des1), · · · ,(son,desn)) be the tuple ofn-pairs of
the source and destination nodes of each goto inl prog (We assume
soi �= desi for eachi).
Let l prog′ be a program obtained froml prog by replacing goto
with a null command skip. Then,l prog′ is regarded as a flowchart
program in Section 2.1, and

addG (nlift (trans l prog′))

where functionsaddG, nli f t, andtrans are defined below.

nlift :: SP2 → SPn+2
nlift (e+, (l1, l2)) = (en+2(1,n+2), (l1,so1, · · · ,son, l2))
nlift (e−, (l1, l2)) = (en+2(n+2,1), (l1,so1, · · · ,son, l2))
nlift (2, (l1, l2)) = (2, (l1,so1, · · · ,son, l2))
nlift (S2 x y, (l1, l2))
= (Sn+2 (permT (nli f t x))

(n+2, (l1,so2,so3, · · · ,son, l2,$))
(n+2, (l1,so1,so3, · · · ,son, l2,$))
· · ·
(n+2, (l1,so1,so2, · · · ,son−1, l2,$))
(nli f t y),

(l1,so1, · · · ,son, l2))
nlift (P2 x y, (l1, l2)
= (Pn+2 (nlift x) (nlift y), (l1,so1, · · · ,son, l2))

permT :: SPn+2 → SPn+2
permT (Sn+2 x1 · · · xn+2, (l1, · · · , ln+2))
= (Sn+2 (permT xn+1) (permT x1)

· · · (permT xn) (permT xn+2), (ln+1, l1, · · · , ln, ln+2))
permT (Pn+2 x y, (l1, · · · , ln+2))
= (Pn+2 (permT x) (permT y), (ln+1, l1, · · · , ln, ln+2))

permT (en+2(i, j), (l1, · · · , ln+2))
= (en+2((perm i), (perm j)), (ln+1, l1, · · · , ln, ln+2))

permT (n+2, (l1, · · · , ln+2))
= (n+2, (ln+1, l1, · · · , ln, ln+2))

perm :: Nat → Nat
perm m = i f m == (n+2) then m

else i f m == (n+1) then 1 else m+1

addG :: SPn+2 → SPn+2
addG (Sn+2 x1 · · · xn+2, (l1, · · · , ln+2))
= addE (Sn+2 (addG x1) · · · (addG xn+2), (l1, · · · , ln+2))

addG (Pn+2 x y, (l1, · · · , ln+2), (l1, · · · , ln+2))
= addE (Pn+2 (addG x) (addG y), (l1, · · · , ln+2))

addG (en+2(i, j), (l1, · · · , ln+2))
= addE (en+2(i, j), (l1, · · · , ln+2))

addG (n+2, (l1, · · · , ln+2)) = addE (n+2, (l1, · · · , ln+2))

addE :: SPn+2 → SPn+2
addE x@(t, (l,so1, · · · ,son, l′))
= i f (l == des j) || (l′ == des j)

then (Pn+2 x (en+2(so j,des j), (l,so1, · · · ,son, l′)),
(l,so1, · · · ,son, l′))

else x

The function nlift insert labels of goto statements as newn-
terminals between the first and the second (original) terminal in an
SP Term;permT permutes except for the last terminal to adapt to the
series composition. Next,addG adds an edge between the source
and destination nodes of each goto-statement.
Note that if eachblock has at mostm-goto then instead ofn (the
sum of the numbers of goto) we can similarly transform a control
flow graph to an SP Term inSPm+2.


