
A Compositional Framework for Developing Parallel

Programs on Two-Dimensional Arrays

Kento EMOTO (emoto@ipl.t.u-tokyo.ac.jp)
, Zhenjiang HU (hu@mist.i.u-tokyo.ac.jp)
, Kazuhiko KAKEHI (kaz@ipl.t.u-tokyo.ac.jp)
and Masato TAKEICHI (takeichi@mist.i.u-tokyo.ac.jp)
Department of Mathematical Informatics, Graduate School of Information Science
and Technology, The University of Tokyo

Abstract. Computations on two-dimensional arrays such as matrices and images
are one of the most fundamental and ubiquitous things in computational science
and its vast application areas, but development of efficient parallel programs on two-
dimensional arrays is known to be hard. In this paper, we propose a compositional
framework that supports users, even with little knowledge about parallel machines,
to develop both correct and efficient parallel programs on dense two-dimensional
arrays systematically. The key feature of our framework is a novel use of the abide-
tree representation of two-dimensional arrays. The presentation not only inherits the
advantages of tree representations of matrices where recursive blocked algorithms
can be defined to achieve better performance, but also supports transformational de-
velopment of parallel programs and architecture-independent implementation owing
to its solid theoretical foundation - the theory of constructive algorithmics.

Keywords: Constructive Algorithmics; Skeletal Parallel Programming; Matrix.

1. Introduction

Computations on two-dimensional arrays, such as matrix computa-

tions, image processing, and relational database managements, are both

fundamental and ubiquitous in computational science and its vast ap-

plication areas (15,23,34). Developing efficient parallel algorithms for

these computations is one of the most important topics in many text-

books on parallel programming (22,36). Then, algorithms have been de-

signed and implemented as standard libraries. For example, for matrix

computations (20,40), we have the useful libraries like ScaLAPACK(14),

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 27/03/2007; 13:51; p.1

2

PLAPACK (1) and RECSY (30). Though these are useful, there are some

limitations when using these libraries to develop parallel programs for

manipulating two-dimensional arrays.

− First, the libraries are of low abstraction, and thus difficult to

be modified or adapted to solve slightly different problems. For

example, we cannot easily change the operators used in matrix

multiplications. In fact, the increasing popularity of parallel ma-

chines like PC clusters enables more and more users to utilize such

parallel computer environments to perform parallel computations

of various kinds, which can naturally be slightly different from

those the libraries provide. The libraries are of no direct help for

the users here, and they have to rewrite or develop the libraries

for themselves. However, since (re-)building parallel libraries is

much more involved than sequential algorithms due to necessity

of considering the synchronization and communication between

processors, not everyone can do it easily.

− Second, the libraries are not well structured, and thus hard to

be efficiently composed together in the sense that we may need

to convert intermediate data structures between two different li-

braries. Often each library is carefully designed with suitable data

structures and algorithms so that it can be efficiently executed on

specific parallel architectures. This may, however, prevents us from

making efficient use of two libraries developed for two different

parallel architectures.

This situation demands a new programming model allowing users

to describe parallel computation over two-dimensional arrays in an

paper.tex; 27/03/2007; 13:51; p.2

3

easy, efficient, but compositional way. As one promising solution to

the demand, skeletal parallel programming using the parallel skeleton

is known (11,13,35). In this model, users can build parallel programs by

composing ready-made components (called skeletons) implemented effi-

ciently in parallel for various parallel architectures. This compositional

approach has two major advantages: (1) since low-level parallelism is

concealed in skeletons, users can obtain a comparatively efficient paral-

lel program without needing detailed techniques of parallel computers

and being conscious of parallelism explicitly, (2) since the skeletons are

designed for structured programming, they can be efficiently composed

to solve various problems.

Much research has been devoted to parallel skeletons on lists, a one-

dimensional data structure, and it has been shown (25,27) that parallel

programming with list skeletons is very powerful since we can describe

many problems with these list skeletons. Moreover much research has

been done on methods of deriving and optimizing parallel programs

with parallel skeletons on lists (10,21,24), and especially about optimiza-

tion, and there is a library that can automatically optimize a program

described by skeletons (32). Similarly, for parallel skeletons on the tree

data structure there is research on binary trees (19,39), general trees

and derivation of programs on these tree skeletons.

Despite the success of parallel programming with list or tree skele-

tons, it remains as a big challenge (33) to design a skeletal framework

for developing parallel programs for manipulating two-dimensional ar-

rays. Generally, a skeleton (compositional) framework for manipulating

two-dimensional arrays should consist of the following three parts:

paper.tex; 27/03/2007; 13:51; p.3

4

− a fixed set of parallel skeletons for manipulating two-dimensional

arrays, which cannot only capture fundamental computations on

two-dimensional arrays but also be efficiently implemented in par-

allel for various parallel architectures;

− a systematic programming methodology, which can support devel-

oping both efficient and correct parallel programs composed by

these skeletons; and

− an automatic optimization mechanism, which can eliminate ineffi-

ciency due to compositional or nested uses of parallel skeletons in

parallel programs.

Our idea is to use the theory of constructive algorithmics (also

known as Bird-Meertens Formalism) (7, 9, 38), a successful theory for

compositional sequential program development. In this theory, aggre-

gate data types are formalized constructively as an algebra, and compu-

tations on the aggregate data are structured as recursive mappings be-

tween algebras while enjoying nice algebraic properties for composition

with each other.

The key is to formalize two-dimensional arrays constructively so

that we can describe computations on them as recursions with maxi-

mum (potential) parallelism, allowing implementation to have the max-

imum freedom to reorder operations for efficiency on parallel archi-

tectures. The traditional representations of two-dimensional arrays by

nested one-dimensional arrays (row-majored or column-majored rep-

resentations) (29,38) impose much restriction on the access order of

elements. Wise et al. represent a two-dimensional array by a quadtree

(42) and show that recursive algorithms on quadtree provide better

paper.tex; 27/03/2007; 13:51; p.4

5

performance than existing algorithms for some matrix computations

(QR factorization (18), LU factorization (43)). More examples can be

found in the survey paper (15). However, the unique representation

of two-dimensional arrays by quadtrees does not capture the whole

information a two-dimensional data may have. In contrast, Bird (7) rep-

resents two-dimensional arrays by dynamic trees allowing restructuring

trees when necessary.

In this paper, we propose a compositional framework that allows

users, even with little knowledge about parallel machines, to describe

safe and efficient parallel computation over two-dimensional arrays eas-

ily, and enables derivation and optimization of programs. The main

contributions of this paper are summarized as follows.

− We propose a novel use of the abide-tree representation of two-

dimensional arrays (7) in developing parallel programs for manip-

ulating two-dimensional arrays, whose importance has not been

fully recognized in parallel programming community. Our abide-

tree representation of two-dimensional arrays not only inherits

the advantages of tree representations of matrices where recursive

blocked algorithms can be defined to achieve better performance

(15,18,43), but also supports systematic development of parallel pro-

grams and architecture independent implementation owing to its

solid theoretical foundation - the theory of constructive algorith-

mics (7, 9, 38).

− We provide a strong programming support for developing both ef-

ficient and correct parallel programs on two-dimensional arrays in

a highly abstract way (without the need to be concerned with low

paper.tex; 27/03/2007; 13:51; p.5

6

level implementation). In our framework (Section 4), programmers

can easily build up a complicated parallel system by defining basic

components recursively, combining components compositionally,

and improving efficiency systematically. The power of our approach

can be seen from the nontrivial programming examples of matrix

multiplication and QR decomposition (18), and a successful deriva-

tion of an involved efficient parallel program for the maximum

rectangle sum problem (2,3, 24,41).

− We demonstrate an efficient implementation of basic computa-

tion skeletons (in C++ and MPI) on distributed PC clusters,

guaranteeing that programs composed by these parallel skeletons

can be efficiently executed in parallel. So far most research fo-

cuses on showing that the recursive tree representation of matrices

is suitable for parallel computation on shared memory systems

(15,18), this work shows that the recursive tree representation is

also suitable for distributed memory systems. In fact, our parallel

skeletons, being of high abstraction with all potential parallelism,

are architecture-independent.

Our framework can be considered as an extension of the quadtree

framework of Wise et al. in the sense that it imposes no restriction

on the size and the element order of two-dimensional arrays and pro-

vides an support of derivation and optimization of programs on two-

dimensional arrays.

The rest of this paper is organized as follows. In Section 2, we con-

struct a theory of the abide-trees. Then we design a fixed set of parallel

skeletons and give some examples of parallel algorithms on the abide-

paper.tex; 27/03/2007; 13:51; p.6

7

trees in Section 3. Section 4 demonstrates systematic development of

parallel programs on two-dimensional arrays. Section 5 gives efficient

implementations and shows the experimental results. We discuss the

related work In Section 6, and make conclusion in Section 7.

An extended version of this paper is available in the technical report

(16).

2. Theory of Two-Dimensional Arrays

Before explaining our compositional programming framework, we will

construct a theory of two-dimensional arrays, the basis of our frame-

work, based on the theory of constructive algorithmics (7,9, 38).

Notation in this paper follows that of Haskell (8), a pure functional

language that can describe both algorithms and algorithmic transfor-

mation concisely. Function application is denoted by a space and the

argument may be written without brackets. Thus, f a means f(a) in or-

dinary notation. Functions are curried, i.e. functions take one argument

and return a function or a value, and the function application associates

to the left. Thus, f a b means (f a) b. The function application binds

more strongly than any other operator, so f a⊗ b means (f a)⊗ b, but

not f (a⊗b). Function composition is denoted by ◦, so (f ◦g) x = f (g x)

from its definition. Binary operators can be used as functions by sec-

tioning as follows: a ⊕ b = (a⊕) b = (⊕b) a = (⊕) a b. For arbitrary

binary operator ⊗, an operator in which the arguments are swapped

is denoted by ⊗̃. Thus, a ⊗̃ b = b ⊗ a. Two binary operators ¿ and À

are defined by a ¿ b = a, a À b = b. Pairs are Cartesian products of

paper.tex; 27/03/2007; 13:51; p.7

8

plural data, written like (x, y). A function that applies functions f and

g respectively to the elements of a pair (x, y) is denoted by (f × g).

Thus, (f × g) (x, y) = (f x, g y). A function that applies functions f

and g separately to an element and returns a pair of the results is

denoted by (f M g). Thus, (f M g) a = (f a, g a). A projection function

π1 extracts the first element of a pair. Thus, π1 (x, y) = x. These can

be extended to the case of arbitrary number of elements.

Note that we use functional style notations only for parallel algo-

rithm development; in fact we use the ordinary programming language

C++ for practical coding.

2.1. Two-Dimensional Arrays in Abide-trees

To represent two-dimensional arrays, we define the following abide-

trees, which are built up by three constructors |·| (singleton),−◦ (above)

and − ◦ (beside) (7).

data AbideTree α = |·| α

| (AbideTree α)−◦ (AbideTree α)

| (AbideTree α) − ◦ (AbideTree α)

Here, | · | a, or abbreviated as |a|, means a singleton array of a, i.e. a

two-dimensional array with a single element a. We define the function

the to extract the element from a singleton array, i.e. the |a| = a. For

two-dimensional arrays x and y of the same width, x−◦ y means that x

is located above y. Similarly, for two-dimensional arrays x and y of the

same height, x − ◦ y means that x is located on the left of y. Moreover,−◦

paper.tex; 27/03/2007; 13:51; p.8

9

and − ◦ are associative binary operators and satisfy the following abide

(a coined term from above and beside) property.

DEFINITION 2.1 (Abide Property). Two binary operators ⊕ and ⊗

are said to satisfy the abide property or to be abiding, if the following

equation is satisfied:

(x ⊗ u) ⊕ (y ⊗ v) = (x ⊕ y) ⊗ (u ⊕ v) .

In the rest of the paper, we will assume no inconsistency in height or

width when − ◦ and−◦ are used.

Note that one two-dimensional array may be represented by more

than one abide-trees, but these abide-trees are equivalent because of

the abide property of −◦ and − ◦. For example, we can express the 2 × 2

two-dimensional array

1 2

3 4


by the following two equivalent abide-trees.

(|1| −◦ |2|)−◦ (|3| −◦ |4|)

(|1|−◦ |3|) − ◦ (|2|−◦ |4|)

This is in sharp contrast to the quadtree representation of matrices

(18), which does not allow such freedom. This freedom is important

in our framework. In our framework, a program construction consists

of two phases. First, we make a general program that is architecture

independent. Then, we derive a good program that may be architecture

dependent or may have restricted order of access. In this case, restric-

paper.tex; 27/03/2007; 13:51; p.9

10

tive representation prevents us form describing and deriving efficient

programs. For example, a list of lists representation, which restricts

the access order to outer dimension to inner dimension, does not allow

us to describe and to derive efficient blocked algorithms. Thus, we

start with a program using the abide-tree representation that does not

impose restrictions on the access order, then we transform it to a good

program that may have the restricted order of accesses. Moreover, this

freedom allows easy re-balancing of the tree in computations such as

divide-and-conquer computations on abide-trees.

2.2. Abide-tree Homomorphism

From the theory of constructive algorithmics (9), it follows that each

constructively built-up data structure (i.e., algebraic data structure) is

equipped with a powerful computation pattern called homomorphism.

DEFINITION 2.2 ((Abide-tree) Homomorphism).

A function h is said to be abide-tree homomorphism, if it is defined as

follows for a function f and some binary operators ⊕,⊗.

h |a| = f a

h (x−◦ y) = h x ⊕ h y

h (x − ◦ y) = h x ⊗ h y

For notational convenience, we write (|f,⊕,⊗|) to denote h. When it is

clear from the context, we just call (|f,⊕,⊗|) homomorphism.

Intuitively, a homomorphism (|f,⊕,⊗|) is a function to replace the

constructors | · |, −◦ and − ◦ in an input abide-tree by f , ⊕ and ⊗ re-

paper.tex; 27/03/2007; 13:51; p.10

11

spectively. We will see in Section 3 that many algorithms on two-

dimensional arrays can be concisely specified by homomorphisms.

Note that ⊕ and ⊗ in (|f,⊕,⊗|) should be associative and satisfy

the abide property, inheriting the properties of−◦ and − ◦.

Homomorphism enjoys many nice transformation rules, among which

the following fusion rule is of particular importance. The fusion rule

gives us a way to create a new homomorphism from composition of a

function and a homomorphism. As will be seen in Section 4, it plays a

key role in derivation of efficient parallel programs on abide-trees.

THEOREM 2.3 (Fusion). Let h and (|f,⊕,⊗|) be given. If there exist

¯ and ª such that for any x and y,

 h (x ⊕ y) = h x ¯ h y

h (x ⊗ y) = h x ª h y

hold, then

h ◦ (|f,⊕,⊗|) = (|h ◦ f,¯,ª|) .

Proof. The theorem is proved by induction on the structure of abide-

trees. See the technical report (16) for details.

Because of the flexibility of the abide-tree representation, a homo-

morphism (|f,⊕,⊗|) can be implemented efficiently in parallel, which

will be shown in Section 5. Therefore, we will design our parallel skele-

tons based on the homomorphisms.

paper.tex; 27/03/2007; 13:51; p.11

12

3. Parallel Skeletons and

Algorithms on Two-Dimensional Arrays

In this section, we design a set of basic parallel skeletons for manipu-

lating two-dimensional arrays, and show composition of the skeletons

is powerful enough to describe useful parallel algorithms. Since ho-

momorphisms are suitable for manipulating and developing parallel

programs, which has been argued in the previous section, we will use

the homomorphisms for the basis of the design of our parallel skeletons.

The power of composition of the skeletons will be shown by describing

nontrivial problems such as matrix multiplication and QR decomposi-

tion. One important fact here is that any homomorphism can be written

as a composition of two basic skeletons. This fact is motivating the

systematic derivation of parallel programs in Section 4.

3.1. Data Parallel Skeletons

We define four primitive functions map, reduce, zipwith and scan on

the data type AbideTree. In the theory of Constructive Algorithmics

(7,9, 38), these functions are known to be the most fundamental com-

putation components for manipulating algebraic data structures and

for being glued together to express complicated computations. We call

them parallel skeletons because they have potential parallelism and

can be implemented efficiently in parallel (see Section 5.) Intuitive

definitions of the skeletons are shown in Figure 1.

paper.tex; 27/03/2007; 13:51; p.12

13

Map and Reduce

The skeletons map and reduce are two special cases of homomorphism.

The skeleton map applies a function f to each element of a two-dimensional

array while keeping the structure, and is defined by

map f |a| = |f a|

map f (x−◦ y) = (map f x)−◦ (map f y)

map f (x − ◦ y) = (map f x) − ◦ (map f y) ,

that is, map f = (||·| ◦f,−◦, − ◦ |). For example, a scalar product of an array

is performed with map as follows.

map (2×)

 6 2 1

4 3 5

 =

 12 4 2

8 6 10


The skeleton reduce collapses a two-dimensional array to a value

using two abiding binary operators ⊕, ⊗, and is defined by

reduce(⊕,⊗) |a| = a

reduce(⊕,⊗) (x−◦y) = (reduce(⊕,⊗) x)⊕(reduce(⊕,⊗) y)

reduce(⊕,⊗) (x − ◦y) = (reduce(⊕,⊗) x)⊗(reduce(⊕,⊗) y) ,

that is, reduce(⊕,⊗) = (|id,⊕,⊗|). For example, a summation of an

array is calculated with reduce as follows.

reduce(+, +)

 6 2 1

4 3 5

 = 21

Interestingly, any homomorphism can be written as a composition

of map and reduce.

paper.tex; 27/03/2007; 13:51; p.13

14

LEMMA 3.1 (Homomorphism). A homomorphism (|f,⊕,⊗|) can be

written as a composition of map and reduce:

(|f,⊕,⊗|) = reduce(⊕,⊗) ◦ map f .

Proof. The lemma is proved by induction on the structure of abide-

trees.

This lemma implies that if we have efficient parallel implementations for

reduce and map, we get an efficient implementation for homomorphism.

Since it is shown in the Section 5 that parallel skeletons have efficient

parallel implementations, a homomorphism has an efficient parallel

implementations. This fact is motivating the systematic derivation of

parallel programs in Section 4.

Zipwith

The two skeletons defined above are primitive skeletons. We define

other skeletons that are extensions of these primitive skeletons. The

skeleton zipwith, an extension of map, takes two two-dimensional arrays

of the same shape, applies a function f to corresponding elements of

the arrays and returns a new array of the same shape.

zipwith f |a| |b| = |f a b|

zipwith f (x−◦ y) (u−◦ v) = (zipwith f x u)−◦ (zipwith f y v)

zipwith f (x − ◦ y) (u − ◦ v) = (zipwith f x u) − ◦ (zipwith f y v)

Note that in the above definition two-dimensional arrays that are the

arguments of the function should be divided in the way that the sizes

of x and u are the same. For example, an addition of two arrays is

paper.tex; 27/03/2007; 13:51; p.14

15

calculated with reduce as follows.

zipwith (+)

 6 2 1

4 3 5


 0 8 2

9 1 7

 =

 6 10 3

13 4 12


Function zip is a specialization of zipwith, making a two-dimensional

array of pairs of corresponding elements.

zip (u, v) = zipwith (λxy. (x, y)) u v

We may define similar zip and zipwith for the case when the number of

input arrays is three or more, and those that take k arrays are denoted

by zipk and zipwithk. Also, we define unzip to be the inverse of zip.

paper.tex; 27/03/2007; 13:51; p.15

16

Composing these skeletons defined above, we can describe many

useful functions.

id = reduce(−◦, − ◦) ◦ map |·|

tr = reduce(− ◦,−◦) ◦ map |·|

rev = reduce(−̃◦, ˜− ◦) ◦ map |·|

flatten = reduce(−◦, − ◦)

height = reduce(+,¿) ◦ map (λx. 1)

width = reduce(¿, +) ◦ map (λx. 1)

cols = reduce(zipwith(−◦), − ◦) ◦ map ||·||

rows = reduce(−◦, zipwith(− ◦)) ◦ map ||·||

reducec(⊕) = map(reduce(⊕,¿)) ◦ cols

reducer(⊗) = map(reduce(¿,⊗)) ◦ rows

mapc f = reduce(¿, − ◦) ◦ map f ◦ cols

mapr f = reduce(−◦,¿) ◦ map f ◦ rows

add = zipwith(+)

sub = zipwith(−)

Here, ||·|| is abbreviation of |·|◦|·|. The function id is the identity function

of AbideTree, and tr is the matrix-transposing function. The function

rev takes a two-dimensional array and returns the array reversed in

the vertical and the horizontal direction, and flatten flattens a nested

AbideTree. The functions height and width return the number of rows

and columns respectively, and cols and rows return an array of which

elements are columns and rows of the array of the argument respec-

tively. The functions reducec and reducer that are specializations of

reduce reduce a two-dimensional array in each column and row direction

respectively and return a row-vector (an array of which height is one)

paper.tex; 27/03/2007; 13:51; p.16

17

and a column-vector (an array of which width is one). The functions

mapc and mapr that are specializations of map apply a function to each

column and row respectively (i.e. the function of the argument takes

column-vector or row-vector). The functions add and sub denote matrix

addition and subtraction respectively.

Scan

The skeleton scan, an extension of reduce, holds all values generated in

reducing a two-dimensional array by reduce.

scan(⊕,⊗) |a| =|a|

scan(⊕,⊗)(x−◦y)=(scan(⊕,⊗) x)⊕′(scan(⊕,⊗) y)

scan(⊕,⊗)(x − ◦y)=(scan(⊕,⊗) x)⊗′(scan(⊕,⊗) y)

Here operators ⊕′ and ⊗′ are defined as follows.

sx ⊕′ sy = sx−◦ sy′

where sy′ = mapr (zipwith(⊕)(bottomsx)) sy

sx ⊗′ sy = sx − ◦ sy′

where sy′ = mapc (zipwith(⊗)(last sx)) sy

bottom = reduce(À, − ◦) ◦ map |·|

last = reduce(−◦,À) ◦ map |·|

For example, a prefix-um (an upper-left prefix-sum) of an array is

calculated with scan as follows.

scan(+, +)

 6 2 1

4 3 5

 =

 6 8 9

10 15 21



paper.tex; 27/03/2007; 13:51; p.17

18

It should be noted that reduce can be expressed by reducec and

reducer when two binary operators ⊕ and ⊗ are abiding.

reduce(⊕,⊗) = the ◦ reducec(⊕) ◦ reducer(⊗)

reduce(⊕,⊗) = the ◦ reducer(⊗) ◦ reducec(⊕)
(1)

Like reduce, we may define scan↓ and scan→ that are specialization

of scan and scan a two-dimensional array in column and row direction

respectively:

scan↓(⊕) = scan(⊕,À)

scan→(⊗) = scan(À,⊗) ;

scan can be expressed by scan↓ and scan→ when two binary operators

⊕ and ⊗ are abiding.

scan(⊕,⊗) = scan↓(⊕) ◦ scan→(⊗)

scan(⊕,⊗) = scan→(⊗) ◦ scan↓(⊕)
(2)

Using the skeleton scan, we can define scanr that executes scan reversely

(i.e. from bottom to top, from right to left), allredr and allredc that

broadcast the results in each row and column after reducer and reducec

respectively. These functions are used in later section.

scanr(⊕,⊗) = rev ◦ scan(⊕̃, ⊗̃) ◦ rev

allredc(⊕) = scanr(À,¿) ◦ scan(⊕,À)

allredr (⊗) = scanr(¿,À) ◦ scan(À,⊗)

paper.tex; 27/03/2007; 13:51; p.18

19

3.2. Data Communication Skeletons

We show how to define data communication skeletons dist, gather, rotr

and rotc that abstract distribution, collection and rearrangement of a

two-dimensional array among processors. The idea is to use nested two-

dimensional arrays to represent distributed two-dimensional arrays.

The skeleton dist abstracts distribution of a two-dimensional array

to processors, and is defined as

dist p q x = (flatten ◦ map(grpcn) ◦ grprm) x

where m = dheight x/pe, n = dwidth x/qe

where grpr is defined as follows and grpc is defined similarly.

grpr k (x−◦ y) = |x|−◦ (grpr k y) if height x = k

grpr k x = |x| if height x < k

The distribution dist p q x means that the two-dimensional array x will

be divided into p × q subarrays (i.e. x is divided into p subarrays in

vertical direction, then each subarray is divided into q subarrays in

horizontal direction), and each subarray is distributed to a processor.

The skeleton gather, the inverse operator of dist, abstracts gath-

ering of two-dimensional arrays distributed to the processors into a

two-dimensional array on the root processor.

gather = reduce(−◦, − ◦)

paper.tex; 27/03/2007; 13:51; p.19

20

Although definitions of these skeletons may seem complicated, actual

operations are simple as illustrated in Figure 2. What is significant here

is that these skeletons satisfy the relation of id = gather ◦ dist p q.

The rotation skeleton rotr that takes a function f and rotates the

i-th row (the index begins from 0) by f i, is defined as follows:

rotr f = flatten ◦ map shiftr ◦ addidx r ◦ rows

where

addidx r u = zip(map f (idx r u), u)

idx r = map(−1) ◦ scan↓(+) ◦ map(λx. 1) ;

here shiftr is defined under the condition i > 0.

shiftr (0, x) = x

shiftr (i, x − ◦ y) = y − ◦ x if width y = i

shiftr (−i, x − ◦ y) = y − ◦ x if width x = i

Similarly, we can define the skeleton rotc that takes a function f and

rotates the i-th column by f i. An image of the above communication

skeletons is depicted in Figure 2. In the figure, since the rotation skele-

ton rotr takes a negation function, the 0-th row does not rotate (rotates

by 0), the first row rotates to the left by 1 (to the right by −1) and the

second row rotates to the left by 2 (to the right by −2).

3.3. Matrix Multiplication

As an involved example, we describe two known parallel algorithms for

matrix multiplication, which is a primitive operation of matrices, with

the above defined parallel skeletons on two-dimensional arrays.

paper.tex; 27/03/2007; 13:51; p.20

21

The first description is Cannon’s Algorithm (22):

mmC = gather ◦(map thd) ◦ (iter p step) ◦ arrange ◦ distribute ◦ init

where

init (A,B) = (A,B,map(λx. 0)A)

distribute = (dist p p × dist p p × dist p p)

arrange = zip3 ◦(rotr neg × rotc neg × id)

step = rearrange ◦ unzip3 ◦map lmm

rearrange = zip3 ◦(rotr(λx.1) × rotc(λx.1) × id)

neg x = −x

thd (x, y, z) = z

where p is a natural number indicating the number of divisions of

matrices in column and row direction, and lmm is a function that

executes locally matrix multiplication on matrices on each processor,

i.e. lmm (A,B,C) = (A,B,C + A×B). The function iter is defined as

follows.

iter k f x = x if k = 0

iter k f x = iter (k − 1) f (f x) if k > 0

Explicit distribution of matrices by the data communication skele-

tons makes this description looking complicated. However, it should

be noted that even non-intuitive complicated Cannon’s Algorithm can

be described by composition of the skeletons.

The second description is an intuitively understandable description

using only data parallel skeletons (an element of the resulting matrix

is an inner product of a row vector and a column vector of the input

matrices.) This description describes just a definition of matrix multi-

paper.tex; 27/03/2007; 13:51; p.21

22

plication. Although users do not need to consider parallelism at all, this

program can be executed in parallel due to parallelism of each skeleton.

mm = zipwithP iprod ◦ (allrows × allcols)

where

allrows = allredr (− ◦) ◦ map |·|

allcols = allredc(−◦) ◦ map |·|

iprod = (reduce(+,+)◦) ◦ zipwith(×) ◦ tr

zipwithP (⊗) (x, y) = zipwith (⊗) x y

Although this definition seems to use O(n3) memory space for n × n

matrices due to duplications of rows and columns with allredr and

allredc , we can execute this multiplication using O(n2) memory space.

This is because we can use references instead of duplications in the

implementation of allredr and allredc due to the properties of the op-

erators in their definitions. This kind of optimization is currently done

by hand. However, we think it will be automatically done by compilers

when it takes the properties of the operators into account.

3.4. QR Factorization

As the final nontrivial example, we show descriptions of two parallel

algorithms for QR factorization (15). We will not explain the details,

but we hope to show that these algorithms can be dealt with in our

framework.

We give the recursive description of a QR factorization algorithm

based on Householder transform. This function returns Q and R which

satisfy A = QR where A is a matrix of m×n, Q an orthogonal matrix

paper.tex; 27/03/2007; 13:51; p.22

23

of m × m and R an upper-triangular matrix of m × n.

qr ((A11−◦ A21) − ◦ (A12−◦ A22))

= let (Q1, R11−◦ 0) = qr (A11−◦ A21)

(R12−◦ Â22) = mm (trQ1) (A12−◦ A22)

(Q̂2, R22) = qr Â22

Q = mm Q1 ((I − ◦ 0)−◦ (0 − ◦ Q̂2))

in (Q, (R11 − ◦ R12)−◦ (0 − ◦ R22))

qr (|a|−◦ x) = hh (|a|−◦ x)

hh v = let v′ = add v e

a =
√

reduce(+, +) (zipwith(×) v′ v′)

u = map (/a) v′

Q = sub I (map (×2) (mm u (tr u)))

in (Q, e)

Here e is a vector (a matrix of which width is 1) whose first element

is 1 and the other elements are 0, and I and 0 represent an identity

matrix and a zero matrix of suitable size respectively.

Furthermore, we give the recursive description of QR factorization

algorithm on quadtree (18); transforming algorithms on quadtrees to

those on abide-trees is always possible because abide-trees is more

flexible than quadtrees. This function qrq is mutual recursively defined

with an extra function e, and returns Q and R that satisfy A = QR

where A is a matrix of n × n (n = 2k for a natural number k), Q is

an orthogonal matrix of n × n and R is an upper-triangular matrix of

paper.tex; 27/03/2007; 13:51; p.23

24

n × n.

qrq |a| = (|1|, |a|)

qrq ((A11−◦ A21) − ◦ (A12−◦ A22))

= let (Q1, R1) = qrq A11

(Q2, R2) = qrq A21

Q12 = (Q1 − ◦ 0)−◦ (0 − ◦ Q2)

(Q3, R3) = e (R1, R2)

Q4 = mm Q12 Q3

(Un−◦ Us) = mm (tr Q4) (A12−◦ A22)

(Q6, R6) = qrq Us

Q = mm Q4 ((I − ◦ 0)−◦ (0 − ◦ Q6))

R = (R3 − ◦ Un)−◦ (0 − ◦ R6)

in (Q,R)

paper.tex; 27/03/2007; 13:51; p.24

25

Note that Aij (i, j ∈ {1, 2}) have the same shape. A definition of the

involved extra function e is as follows.

e (N,O) = (I,N)

e (|n|, |s|) = let Q = g(n, s)

(N,O) = mm(tr Q) (|n|−◦ |s|)

in (Q,N)

e ((N11−◦ N21) − ◦ (N12−◦ N22), (S11−◦ S21) − ◦ (S12−◦ S22))

= let

((Q11
1 −◦ Q21

1) − ◦ (Q12
1 −◦ Q22

1), N1) = e (N11, S11)

((Q11
2 −◦ Q21

2) − ◦ (Q12
2 −◦ Q22

2), N2) = e (N22, S22)

Q12 = (Q11
1 − ◦ O − ◦ Q12

1 − ◦ O)−◦ (O−◦ Q11
2 − ◦ O − ◦ Q12

2)

−◦ (Q21
1 − ◦ O − ◦ Q22

1 − ◦ O)−◦ (O−◦ Q21
2 − ◦ O − ◦ Q22

2)

Q1 = (Q11
1 −◦ Q21

1) − ◦ (Q12
1 −◦ Q22

1)

(Un−◦ Us) = mm (tr Q1) (N12−◦ S12)

(Q4, R4) = qrq Us

Q′
4 = (I − ◦O − ◦O − ◦O)−◦ (O − ◦I − ◦O − ◦O)

−◦ (O − ◦O − ◦Q4 − ◦O)−◦ (O − ◦O − ◦O − ◦I)

Q5 = mm Q12 Q4′

((Q11
6 −◦ Q21

6) − ◦ (Q12
6 −◦ Q22

6), N6) = e (N2, R4)

Q′
6 = (I − ◦O − ◦O − ◦O)−◦(O − ◦Q11

6 − ◦Q12
6 − ◦O)

−◦(O − ◦Q21
6 − ◦Q22

6 − ◦O)−◦(O − ◦O − ◦O − ◦I)

in (mm Q5 Q′
6, (N1 − ◦ Un)−◦ (O − ◦ N6))

g (a, b) = (|c| −◦ |s|)−◦ (| − s| −◦ |c|)

where c =
a√

a2 + b2
, s =

−b√
a2 + b2

paper.tex; 27/03/2007; 13:51; p.25

26

Note that Nij and Sij (i, j ∈ {1, 2}) have the same shape and Qij
k

(i, j, k ∈ {1, 2}) have the same shape.

We can efficiently parallelize some parts of these complicated re-

cursive functions, such as matrix multiplication and independent cal-

culations like (Q1, R1) = qrq A11 and (Q2, R2) = qrq A21. These

independent calculations are explicitly parallelized by describing them

with the map skeleton as follows.

 (Q1, R1) = qrq A11

(Q2, R2) = qrq A21


⇓

|(Q1, R1)|−◦ |(Q2, R2)| = map apply (|(qrq , A11)|−◦ |(qrq , A21)|)

Here, the function apply is defined as apply (f, x) = f x. It is, however,

still an open problem whether the complicated recursive functions can

be parallelized with our defined skeletons, although we can introduce

other skeletons such as divide-and-conquer skeleton to parallelize them.

This is our future work.

4. Developing Efficient Parallel Programs

It has been shown so far that compositions of recursive functions on

abide-trees including homomorphisms and skeletons provide us with a

powerful mechanism to describe parallel algorithms on two-dimensional

arrays, where parallelism in the original parallel algorithms can be well

paper.tex; 27/03/2007; 13:51; p.26

27

captured. In this section, we move on from issues of parallelism to the

issues of efficiency. We will illustrate a strategy to guide programmers

to develop efficient parallel algorithms systematically through program

transformation.

Recall homomorphisms have efficient parallel implementation as com-

position of our parallel skeletons. Thus, a goal of this derivation may

be to write a program by a homomorphism. However, not all functions

can be specified by a single homomorphism. Therefore, we first intro-

duce a more powerful tool called almost-homomorphism (12). Then, we

demonstrate the strategy with an example.

4.1. Almost-Homomorphism

Not all functions can be specified by a single homomorphism, but we

can always tuple these functions with some extra functions so that

the tupled functions can be specified by a homomorphism. An al-

most homomorphism is a composition of a projection function and a

homomorphism. Since projection functions are simple, almost homo-

morphisms are suitable for parallel computation as homomorphisms

are.

In fact, every function can be represented in terms of an almost

homomorphism at the cost of redundant computation. Let k be a

nonhomomorphic function, and consider a new function g such that

paper.tex; 27/03/2007; 13:51; p.27

28

g x = (k x, x). The tupled function g is a homomorphism.

g |a| = (k |a|, |a|)

g (x−◦ y) = g x ⊕ g y

where (k1, x1) ⊕ (k2, x2) = (k (x1−◦ x2), x1−◦ x2)

g (x − ◦ y) = g x ⊗ g y

where (k1, x1) ⊗ (k2, x2) = (k (x1 − ◦ x2), x1 − ◦ x2)

Then, k is written as an almost homomorphism:

k = π1 ◦ g = π1 ◦ (|g ◦ |·|,⊕,⊗|) .

However, the definition above is not efficient because binary operators

⊕ and ⊗ do not use the previously computed values k1 and k2. In order

to derive a good almost homomorphism, we should carefully define a

suitable tupled function, making full use of previously computed values.

We will see this in our parallel program development in the next section.

However, to determine the class of problems that have good (efficient)

almost-homomorphic implementation is an open problem.

4.2. A Strategy for Deriving Efficient Parallel Programs

Our strategy for deriving efficient parallel programs on two-dimensional

arrays consists of the following four steps, extending the result of lists

(24). The goal of the strategy is to write a given program by an efficient

almost-homomorphism that has an efficient implementation in parallel.

Step 1. Define the target program p as a composition of p1, . . . , pn that

are already defined, i.e. p = pn ◦ · · · ◦p1. Each of p1, . . . , pn may

paper.tex; 27/03/2007; 13:51; p.28

29

be defined as a composition of small functions or a recursive

function (see Section 3.3 and Section 3.4).

Step 2. Derive an almost homomorphism (Section 4.1) from the recur-

sive definition of p1.

Step 3. Fuse p2 into the derived almost homomorphism to obtain a new

almost homomorphism for p2 ◦ p1, and repeat this derivation

until pn is fused.

Step 4. Let π1 ◦ (|f,⊕,⊗|) be the resulting almost homomorphism for

pn ◦ · · · ◦ p1 obtained at Step 3. For the functions inside the

homomorphism, namely f , ⊕ and ⊗, try to repeat Steps 2 and

3 to find efficient parallel implementations for them.

In the following, we explain this strategy through a derivation of an

efficient program for the maximum rectangle sum problem: compute the

maximum of sums of all the rectangle data areas in a two-dimensional

data. This problem was originated by Bentley (2, 3) and improved by

Takaoka (41). The solution can be used in a sort of data mining and pat-

tern matching of two dimensional data. For example, for the following

two-dimensional data


3 −1 4 −1 −5

1 −4 −1 5 −3

−4 1 5 3 1


the result should be 15, which denotes the maximum sum contributed

by the sub-rectangular area with bolded numbers above. To appreciate

paper.tex; 27/03/2007; 13:51; p.29

30

difficulty of this problem, we ask the reader to pause for a while to

think of how to solve it.

We will omit some portions of the description in the following deriva-

tion for the readability. Please see the technical report (16) for the full

description.

Step 1. Defining a Clear Parallel Program

A clear and straightforward solution to the maximum rectangle sum

problem is as follows: enumerating all possible rectangles, then comput-

ing sums for all rectangles, and finally returning the maximum value

as the result.

mrs = max ◦map max ◦map (map sum)◦rects

where

max = reduce(↑, ↑)

sum = reduce(+, +)

Here rects is a function that takes a two-dimensional array and returns

all possible rectangles of the array. The returned value of rects is an

array of arrays of arrays, and the (k, l)-element of the (i, j)-element of

the resulting array is a sub-rectangle having rows from the i-th to the

j-th and columns from the k-th to the l-th of the original array. An

example of rects is shown below. Note that we think that the special

value is contained in the blank portion of the above-mentioned array,

and we write the blank of arbitrary size by NIL for brevity. Here, NIL

paper.tex; 27/03/2007; 13:51; p.30

31

may be an array of which element is −∞ or an array of it.

rects

1 2 3

5 6 7

 =





(
1
) (

1 2
) (

1 2 3
)

(
2
) (

2 3
)

(
3
)





1

5


1 2

5 6


1 2 3

5 6 7

2

6


2 3

6 7

3

7





(
5
) (

5 6
) (

5 6 7
)

(
6
) (

6 7
)

(
7
)





The function rects is mutual recursively defined as follows.

rects |a| = |||a|||

rects (x−◦ y) = (rects x − ◦ gemm(, zipwith(−◦)) (bottoms x) (tops y))

−◦(NIL − ◦ rects y)

rects (x − ◦ y) = zipwith4 fs (rects x) (rects y) (rights x) (lefts y)

where fs s1 s2 r1 l2 = (s1 − ◦ gemm(, − ◦) r1 l2)−◦(NIL − ◦ s2)

paper.tex; 27/03/2007; 13:51; p.31

32

where ‘ ’ indicates “don’t care” and generalized matrix multiplication

gemm is defined as follows.

gemm(⊕,⊗) = g

where

g (X1 − ◦ X2) (Y1−◦ Y2) = zipwith(⊕) (g X1 Y1) (g X2 Y2)

g (X1−◦ X2) Y = (g X1 Y)−◦ (g X2 Y)

g X (Y1 − ◦ Y2) = (g X Y1) − ◦ (g X Y2)

g |a| |b| = |a ⊗ b|

Figure 3 shows recursive computation of rects for the −◦ case. Since

indices i and j of the resulting array mean the top row and the bot-

tom row of the generated rectangles within the argument array, the

upper-left block (i ≤ mx and j ≤ mx) of the resulting array contains

rectangles included in the upper block of the argument, i.e. x. Thus, the

upper-left block is rects x, and the lower-right block is rects y similarly

(Figure 3-(a)). Each rectangle in the the upper-right block (i ≤ mx and

j > mx) consists of a rectangle at the bottom of x and a rectangle at

the top of y as shown in Figure 3-(b). Since there are all combinations

of i and j, this block is computed by a general matrix multiplication

of bottoms x and tops y as shown in Figure 3-(c). The computation of

the−◦ case is similar.

Functions bottoms, tops, rights and lefts are similarly defined as

mutual recursive functions shown in Figure 5, and their examples are

shown in Figure 6. Each of these functions is the partial result of rects

in the sense that it returns the rectangles that are restricted to include

segments of some edges of the input as shown in Figure 8. For example,

the tops returns the rectangles that include segments of the top edge

paper.tex; 27/03/2007; 13:51; p.32

33

(the top-most row) of the input array. Similarly, bottoms, rights and

lefts return the rectangles that include segments of the bottom edge, the

right edge and the left edge respectively. The other functions returns

the rectangles that include segments of two edges of the input. Usually,

users do not need to understand well these functions because these

functions often used are provided by experts.

Although this initial program is clear and has all its parallelism

specified in terms of our parallel skeletons, it is inefficient in the sense

that it needs to execute O(n6) addition operations for the input of n×n

array. We will show how to develop a more efficient parallel program.

Step 2. Driving Almost Homomorphism

First, we propose a way of deriving almost homomorphism from mutual

recursive definitions. For notational convenience, we define

4n
1fi = f1 M f2 M · · · M fn

x(4n
1⊕i)y = (x ⊕1 y, x ⊕2 y, . . . , x ⊕n y) .

Our main idea is based on the following theorem.

THEOREM 4.1 (Tupling).

Let h1, h2, . . . , hn be mutual recursively defined by


hi |a| = fi a ,

hi (x−◦ y) = ((4n
1hi) x) ⊕i ((4n

1hi) y) ,

hi (x − ◦ y) = ((4n
1hi) x) ⊗i ((4n

1hi) y) .

(3)

Then 4n
1hi is a homomorphism (| 4n

1 fi,4n
1⊕i,4n

1 ⊗i |) .

paper.tex; 27/03/2007; 13:51; p.33

34

Proof. The theorem is proven based on the definition of homomor-

phisms. See the technical report (16) for details.

Theorem 4.1 says that if h1 is mutually defined with other functions

(i.e. h2, . . . , hn) which traverse over the same array in the specific form

of Eq. (3), then tupling h1, . . . , hn will give a homomorphism. It follows

that every hi is an almost homomorphism. Thus, this theorem gives us

a systematic way to execute Step 2 of the strategy.

We apply this theorem to derive an almost homomorphism for rects.

The definition of rects and the extra functions are in the form of Eq. (3).

Thus, we can obtain the following almost homomorphism by tupling

these functions as follows (we show only operators corresponding to

rects for readability.)

rects = π1 ◦ (| 411
1 fi,411

1 ⊕i,411
1 ⊗i |)

where

f1 |a| = |||a|||

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

⊕1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s1 − ◦ gemm (, zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

⊗1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm(, − ◦) r1 l2)−◦(NIL − ◦s2)

These operators are straightforward rewriting of the definition of rects.

paper.tex; 27/03/2007; 13:51; p.34

35

Step 3. Fusing with Almost Homomorphisms

We aim to derive an efficient almost homomorphism for mrs. To this

end, we give the following theorem showing how to fuse a function with

an almost homomorphism to get new another almost homomorphism.

THEOREM 4.2 (Almost Fusion).

Let h and (| 4n
1 fi,4n

1⊕i,4n
1 ⊗i |) be given. If there exist ¯i,ªi (i =

1, . . . , n) and H = h1 × h2 × · · · × hn (h1 = h) such that for any i, x

and y,

hi (x ⊕i y) = H x ¯i H y

hi (x ⊗i y) = H x ªi H y

hold, then

h◦(π1◦(| 4n
1 fi,4n

1⊕i,4n
1 ⊗i |)) = π1◦(| 4n

1 (hi◦fi),4n
1¯i,4n

1 ªi |) .

(4)
Proof. The theorem is proven by some calculation and Theorem 2.3.

See the technical report (16) for details.

Theorem 4.2 says that we can fuse a function with an almost homo-

morphism to get another almost homomorphism by finding h2, . . . , hn

together with ¯1, . . . ,¯n, ª1, . . . ,ªn that satisfy Eq. (4). Thus, this

theorem gives us a systematic way to execute Step 3 of the strategy.

Returning to our example, we apply this theorem to mrs. The second

function p2 of our example is map (map sum), so h1 = map (map sum).

paper.tex; 27/03/2007; 13:51; p.35

36

Then, we calculate h1 (x ⊕1 y) to find other functions and operators.

h1 (x ⊕1 y)

= { Expand x, y and h1 }

map (map sum) ((s1 − ◦ gemm(, zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2))

= { Definition of map }

(map (map sum)s1 − ◦ map (map sum) (gemm(, zipwith(−◦)) b1 t2))

−◦(NIL − ◦ map (map sum)s2)

= { Promotion of map, folding }

(h1 s1 − ◦ gemm(, zipwith(+))(map (map sum) b1) (map (map sum) t2))

−◦(NIL − ◦ h1 s2)

In the last formula, functions applied to t1 and b1 should be h2 and h3

respectively, which suggests us to define h2, h3 and ¯1 as follows.

h1 = h2 = h3 = map (map sum)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

¯1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s1 − ◦ gemm (, zipwith(+)) b1 t2)−◦ (NIL − ◦ s2)

Similarly, we can derive ª1 by calculating h1 (x ⊗1 y) as follows:

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

ª1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm(, +) r1 l2)−◦(NIL − ◦ s2)

paper.tex; 27/03/2007; 13:51; p.36

37

and derive other functions and operators by doing similarly about ⊕i

and ⊗i. Finally, we get the following.

hi = map (map sum) (i = 1, . . . , 9)

h10 = h11 = map sum

map (map sum) ◦ rects = π1 ◦ (| 411
1 f ′

i ,411
1 ¯i,411

1 ªi |)

where

f ′
1 |a| = ||a||

Repeating such fusion with map max and max will yield the result

shown in Figure 7. In this final program, each of the nine elements of the

resulting tuple is the partial answer of its counterpart in Figure 8. Some

parts are calculated with a general matrix multiplication, and others

are updated with map and zipwith. For example, the element s0, which

is the solution of the maximum rectangle sum, is the maximum of the

solutions of upper and lower subarray or the maximum of the solutions

generated by combining partial answers of the top and the bottom

rectangles as shown in Figure 4-(a). Here, the rectangles that share

the same edge are combined by zipwith(+). Similarly, some elements

of the array r0, which is the partial solutions of the rectangles on the

right edge, are calculated with a general matrix multiplication as shown

in Figure 4-(b). Here, (i, j) element in the block is the maximum of

br1(i, k) + br1(k, j) for all k.

Provided that we divide the input array into two parts evenly, this

final parallel program uses only O(n3) addition operations as follows.

For an n × n input array, the program’s cost T (n, n) satisfies the next

paper.tex; 27/03/2007; 13:51; p.37

38

equation with gemm’s cost Tgemm(n, n) and some constants c1 and c2.

T (n, n) = 4T (n/2, n/2) + c1Tgemm(n/2, n/2) + c2n
2

Since the cost of the general matrix multiplication (gemm) is O(n3), the

answer of the above equation is T (n, n) = O(n3). This is much better

than the initial one. Moreover, since the general matrix multiplication

gemm(↑, +) used in the program is a distance matrix multiplication,

we can achieve subcubic cost with the special implementation of the

gemm(↑, +) used in Takaoka’s algorithm (41). However, the implemen-

tation is somewhat tricky, so that we cannot describe it with our

skeletons.

Step 4. Optimizing Inner Functions

For our example, we may proceed to optimize the operators and func-

tions such as f ′′′
i , ¯′′

i and ª′′
i in the program of Step 3. Since they cannot

be made efficient any more, we finish our derivation of an efficient

parallel program.

5. Implementation

In this section, we will give an efficient parallel implementation (on

PC clusters) of the parallel skeletons, which are primitive operations

on two-dimensional arrays defined in Section 3.1 and Section 3.2. Since

a homomorphism can be specified as a composition of the reduce and

map skeletons, homomorphisms have efficient parallel implementations.

paper.tex; 27/03/2007; 13:51; p.38

39

Our parallel skeletons are implemented as a C++ library with MPI.

We will report some experimental results, showing programs described

with skeletons can be executed efficiently in parallel.

5.1. Implementation of Data Parallel Skeletons

The four basic data parallel skeletons of map, zipwith, reduce and scan

can be efficiently implemented on distributed memory systems. To

illustrate this, we separate computations of a skeleton into two parts:

local computations within a processor and global computations crossing

processors.

For map skeleton, we can separate its computation as follows.

map f = map f ◦ gather ◦ dist p q

= map f ◦ reduce(−◦, − ◦) ◦ dist p q

= reduce(−◦, − ◦) ◦ map (map f) ◦ dist p q

= gather ◦map (map f) ◦ dist p q

The last formula indicates that we can compute map f by distributing

a two-dimensional array of the argument to the processors by dist p q,

applying map f to each local array independently on each processor,

and finally gathering the results onto the root processor by gather.

Thus, for a two-dimensional array of n×n size we can compute map f

in O(n2/P) parallel time, using P = pq processors and ignoring distri-

bution and collection provided that the function f can be computed in

O(1) time. This is the same also about zipwith.

paper.tex; 27/03/2007; 13:51; p.39

40

For reduce skeleton, we can separate its computation as follows.

reduce(⊕,⊗) = reduce(⊕,⊗) ◦ gather ◦ dist p q

= reduce(⊕,⊗) ◦ reduce(−◦, − ◦) ◦ dist p q

= reduce(⊕,⊗) ◦ map (reduce(⊕,⊗)) ◦ dist p q

The last formula indicates that we can compute reduce(⊕,⊗) by dis-

tributing a two-dimensional array of the argument to the processors by

dist p q, applying reduce(⊕,⊗) to each local array independently on

each processor, and finally reducing the results into the root processor

by reduce(⊕,⊗) described in the last formula. From the property of

Eq. (1), the last reduction over the results of all processors can be

computed by using tree-like computation in column and row directions

respectively like parallel computation of reduction on one-dimensional

lists. Thus, for a two-dimensional array of n × n size we can compute

reduce(⊕,⊗) in O(n2/P + log P) parallel time, using P = pq proces-

sors and ignoring distribution provided that the binary operators ⊕

and ⊗ can be computed in O(1) time. Note that we can also exe-

cute the tree-like computation in both of column and row directions

simultaneously.

For scan skeleton, we can separate its computation as follows.

scan(⊕,⊗) = reduce(⊕′,⊗′) ◦ map |·| ◦ gather ◦ dist p q

= reduce(⊕′,⊗′) ◦ map |·| ◦ reduce(−◦, − ◦) ◦ dist p q

= reduce(⊕′,⊗′) ◦ map (reduce(⊕′,⊗′) ◦ map |·|) ◦ dist p q

= reduce(⊕′,⊗′) ◦ map (scan(⊕,⊗)) ◦ dist p q

= gather◦dist p q◦reduce(⊕′,⊗′)◦map (scan(⊕,⊗))◦dist p q

paper.tex; 27/03/2007; 13:51; p.40

41

The second last formula indicates we can compute scan(⊕,⊗) by dis-

tributing a two-dimensional array of the argument to the processors

by dist p q, applying scan(⊕,⊗) to each local array independently

on each processor, and finally reducing the results into the root pro-

cessor by reduce(⊕′,⊗′). However, since the result of scan(⊕,⊗) is a

two-dimensional array, we want that the last operation of computing

scan(⊕,⊗) is gather like the case of map f . Thus, we compute under-

lined dist p q◦reduce(⊕′,⊗′) instead of the last reduction reduce(⊕′,⊗′).

Although under our notation the underlined computation cannot be

written in simpler form, we can compute it in sequence in column and

row direction like the case of reduce. The computation in each direction

can be done like those of lists (21). From the property of Eq. (2), we can

also compute scan(⊕,⊗) by computing scan↓(⊕) after scan→(⊗). Note

that scan↓(⊕) and scan→(⊗) can be computed in the same way of scan

on lists although it performs to two or more lists simultaneously. Thus,

for a two-dimensional array of n × n size we can compute scan(⊕,⊗)

in O(n2/P +
√

n2/P log P) parallel time, using P = pq processors and

ignoring distribution and collection provided that the binary opera-

tors ⊕ and ⊗ can be computed in O(1) time. Note that we can also

execute the global computation in both of column and row directions

simultaneously.

Finally, we note that gathering and re-distribution between succes-

sive calls of skeletons can be canceled when dist p q ◦ gather = id . This

condition is satisfied when the argument arrays of the successive calls

of skeletons are distributed in the same way. That is, once argument

arrays are distributed, we do not need extra communication caused by

re-distribution of arrays. Since this situation occurs very often, we omit

paper.tex; 27/03/2007; 13:51; p.41

42

communication cost of distribution of argument arrays in the cost of

skeletons. However, we sometimes need to change distribution of argu-

ment arrays in some computations. For example, iterated matrix-vector

multiplication xn = Axn−1, which is the kernel of many important algo-

rithms, needs such re-distribution between steps. In the computation,

we distribute the matrix A row-wisely and duplicate xn−1 onto each

processor. Each processor computes a slice of xn and then broadcasts it

to all other processors for the next iteration. In this case, the communi-

cation cost of the re-distribution (the broadcast) cannot be factored out

by the condition dist p q ◦gather = id . To take the communication cost

into account, we represent the communication via computation with

our skeletons. To illustrate it, we formalize the example as follows.

mvmul n A x0 = iter n step x0

where step = (zipwith iprod rA) ◦ duplicate

duplicate = scanr(À,À) ◦ scan(−◦, − ◦) ◦ map |·|

rA = rows A

rows = reduce(−◦, zipwith(− ◦)) ◦ map ||·||

In each iteration step, the argument vector xn−1 is redistributed (broad-

casted) by duplicate, which is a composition of skeletons, and then each

copy is used to produce an inner product with a row of the matrix A,

which is distributed row-wisely and named rA. This duplicate seems

not to do actual computation but does computation of re-distribution,

i.e. it copies a partial result on other processor and concatenates it to

its own partial result. Since the cost of the concatenating operators (i.e.

−◦ and − ◦) for arrays of N elements is considered to be O(N) in the worst

paper.tex; 27/03/2007; 13:51; p.42

43

case, the cost of duplicate is O(N log N) and this is equal to the cost

of the usual communication. This is the idea to take the communica-

tion cost into account. Note that gathering and re-distribution between

successive steps in the iteration can be canceled since the distribution

of the argument vector xn is the same at beginning of each step.

Besides duplicate, we can represent several communications such as

broadcasting and shifting via our skeletons.

bcast = scan(¿,¿)

shiftC = map(π1) ◦ scan(À,¯) ◦ map init

shiftR = map(π1) ◦ scan(¯,À) ◦ map init

where init a = (ε, a)

(x, a) ¯ (ε, b) = (a, b)

(x, a) ¯ (y, b) = (y, b) (y 6= ε)

The function bcast broadcasts the element on the root processor to

the other processors. The column-shifting function shiftC shifts each

column to the right and fills the first column with special value ε.

The row-shifting function shiftR shifts each row to the bottom. As

illustrated above, we represent explicit communications by computa-

tions with skeletons. However, sometimes those representations have

more costs than usual implementations and we need to consider special

implementations. Some of such communications are discussed in the

next section.

paper.tex; 27/03/2007; 13:51; p.43

44

5.2. Implementation of Data Communication Skeletons

We have efficient parallel implementations for the data communication

skeletons defined in Section 3.2.

Since dist distributes all elements of a two-dimensional array at the

root processor to all other processors and gather does the inverse, we can

compute dist and gather in O(n2) parallel time for a two-dimensional

array of n × n size.

Although the definition of rotr f given in Section 3 is complicated,

the actual operation of rotr f is simple. Function rotr f merely rotates

independently the i-th row by f i, and rotation of each row can be

done by four parallel communications. Without losing generality we can

assume that the amount of rotation r = f i satisfies 0 < r ≤ n/2 where

n is the length of the row because we just reverse the direction of rota-

tion in the case of n/2 < r. The operations are followings: (1) making

groups of 2r processors from the first processor of the row (i.e. n/(2r)

groups are made) and transmitting subarrays of first r processors to

the rest r processors in each group, (2) considering that processors from

the 0th to the r-th continue behind the last processor, making groups

of 2r processors from the r-th processor of the row and transmitting

subarrays of first r processors to the rest r processors in each group (i.e.

processors in the first n/(2r) groups have transmitted their subarrays),

(3) doing the former two operations on the rest processors that have

not transmitted their subarrays yet, considering the processors that

have done continue behind the processors. Since more than the half

processors have transmitted their subarrays by the end of the former

two operations, all processors can transmit their subarrays by the end

paper.tex; 27/03/2007; 13:51; p.44

45

of third operation. Thus, since the amount of one communication is

O(n2/P) for P processors, rotr f can be executed in O(n2/P) parallel

time. Similarly, rotc f can be executed in O(n2/P) parallel time.

5.3. Optimization by Fusion

Although it is easy to make a parallel program by composing paral-

lel skeletons, a simply composed skeletal program has overheads due

to redundant intermediate data structures, communications and syn-

chronizations. Thus, we perform optimization on user-written simple

skeleton programs by fusing successive skeletons to eliminate redundant

intermediate data structures, communications and synchronizations.

The main rules to perform optimization by fusion in our current

system are as follows.

map f ◦ map g ⇒ map (f ◦ g)

reduce(⊕,⊗) ◦ map f ⇒ (|f,⊕,⊗|)

(|f,⊕,⊗|) ◦ map g ⇒ (|f ◦ g,⊕,⊗|)

These rules are instances of the fusion rule of Theorem 2.3. Successive

skeletons on the left hand side are fused into one skeleton on the right

hand side. Then, intermediate data structures, communications and

synchronizations between skeletons on the left hand side are eliminated

in the right hand side. Here, a homomorphism (|f,⊕,⊗|) is just used as

an internal representation for the optimization, and users do not need

to consider homomopphisms explicitly. Since a homomorphism clearly

has an efficient implementation in parallel, we use the implementation

for homomorphisms produced by the optimization.

paper.tex; 27/03/2007; 13:51; p.45

46

This optimization can be done automatically by the library, in the

similar way to automatic optimization for lists (32). It is our future work

to formalize further rules for optimization by fusion.

5.4. Experimental Results

We implemented the parallel skeletons as part of the skeleton library

SkeTo (31) 1 with C++ and MPI, and did our experiment on a cluster

(distributed memory). Each of the nodes connected with Gigabit Eth-

ernet has a CPU of Intel R© Xeon R©2.80GHz and 2GB memory, with

Linux 2.4.21 for the OS, gcc 4.1.1 for the compiler, and mpich 1.2.7 for

the MPI.

We measured execution times and speedups for the following parallel

programs described by the parallel skeletons:

Frobenius Norm

fnorm = reduce(+, +) ◦ map square ,

Matrix Multiplication

mm (composition of skeletons; see Section 3.3) ,

Maximum Rectangle Sum

mrs (derived program written by skeletons; see Section 4.2) .

Figures 9 through 11 show measured speedups of the programs and

their optimized versions. Optimized programs are named XXX opt.

The speedup is a ratio of running time of the program on p processors

to that of hand-written sequential program on one processor, without

first distribution of arrays. Tables I through III show measured running
1 It is available at http://www.ipl.t.u-tokyo.ac.jp/sketo/

paper.tex; 27/03/2007; 13:51; p.46

47

times and speedups. Besides speedups with respect to hand-written

sequential programs, speedups with respect to the skeleton programs

on one processor are listed in the tables. The inputs are an 8000×8000

matrix for fnorm, a 3000 × 3000 matrix for mm , and a 1000 × 1000

matrix for mrs. The running time of mrs is relatively big because its

operators in its calculation are more complicated than those of the

others.

The result shows programs described with skeletons can be executed

efficiently in parallel, and proves the success of our framework. Both

simply composed skeleton programs and optimized programs achieve

good speedups. The optimized programs achieve better running time

than the simple programs. Since mrs requires a large amount of commu-

nication data and nested parallelism, speedup of mrs on 64 processors

for a 1000 × 1000 matrix is not so good.

To examine sequential performances of our skeleton programs, we

implemented sequential programs for the above programs. We com-

pared their calculation times with those of the skeleton programs on one

processor. The program fnorm simply written with our skeletons is five

times slower than the hand-made sequential program. This is caused by

overhead due to creation of intermediate data between map square and

reduce(+, +). Thus, the program optimized by fusion achieves the same

running time as the sequential program due to elimination of the inter-

mediate data. The program mm written with our skeletons is two times

slower than the hand-made sequential program. This is mainly caused

by overhead of methods for accessing elements of matrices, and some

compilers can eliminate this overhead. Thus, the program optimized by

fusion achieves better running time than the simple program, but it is

paper.tex; 27/03/2007; 13:51; p.47

48

still 1.6 times slower than the sequential program. Since operators in

the calculation of mrs are complicated, the overhead of skeletons are

relatively small. Thus, the running times of sequential program, simple

program and optimized program are almost the same.

Finally, we list part of the C++ code of mm written with the skele-

ton library in Figure 12, to give a concrete impression of the conciseness

our library provides.

6. Related Works

Besides the related work as in the introduction, our work is closely

related with the active researches on matrix representation for paral-

lel computations and the compositional approach to parallel program

development.

Recursive Matrix Representations

Wise et al. (42) proposed representation of a two-dimensional array by

a quadtree, i.e. a two-dimensional array recursively constructed by four

small sub-arrays of the same size. This representation is suitable for de-

scribing recursive blocked algorithms (15), which can provide better per-

formance than existing algorithms for some matrix computations such

as LU and QR factorizations (18,43). However, the quadtree representa-

tion requires the size of two-dimensional arrays to be the power of two.

Moreover, once a two-dimensional array is represented by a quadtree,

we cannot reblock the array by restructuring the quadtree, which would

paper.tex; 27/03/2007; 13:51; p.48

49

prevent us from developing more parallelism in the recursive blocked

algorithms on them.

Bikshandi et al. (5) proposed representation of a two-dimensional

array by a hierarchically tiled array (HTA). An HTA is an array par-

titioned into tiles, and these tiles can be either conventional arrays or

lower level HTAs. The outermost tiles are distributed across proces-

sors for parallelism and the inner tiles are utilized for locality. In the

HTA programming, users are allowed to use recursive index accessing

according to the structure of HTAs, so that they can easily transform

conventional programs onto HTA programs. Communication and syn-

chronization are explicitly expressed by index accessing to remote tiles.

Thus HTA programs can control relatively low-level parallelism and

can be efficient implementation. However, it is not presented how to

derive efficient HTA programs. We think it is good that we derive an

efficient algorithm on the abide-tree then implement it on HTAs.

A more natural representation of a two-dimensional array is to use

nested one-dimensional arrays (lists) (7,29,38). The advantage is that

many results developed for lists can be reused. However, this represen-

tation imposes much restriction on the access order of elements.

The abide-tree representation, as used in this paper, was first pro-

posed by Bird (7), as an extension of one-dimensional join lists. How-

ever, the focus there is on derivation of sequential programs for ma-

nipulating two-dimensional arrays, and there is little study on the

framework for developing efficient parallel programs. Our work provides

a good complement.

paper.tex; 27/03/2007; 13:51; p.49

50

Compositional Parallel Programming

This work was greatly inspired by the success of compositional (skele-

tal) parallel programming on one-dimensional arrays (lists) (35), and our

initial motivation was to import the results so far to two-dimensional

arrays. This turns out to be more difficult than we had expected.

Compositional parallel Programming using Bird-Meertens Formal-

ism (BMF) has been attracting many researchers. The initial BMF (6)

was designed as a calculus for deriving (sequential) efficient programs

on lists. Skillicorn (37) showed that BMF could also provide an archi-

tecture independent parallel model for parallel programming because

a small fixed set of higher order functions (skeletons) in BMF such as

map and reduce can be mapped efficiently to a wide range of parallel

architectures.

Systematic programming methods have actively been studied in the

framework of skeletal (compositional) parallel programming on lists.

The diffusion theorem (27) gives a powerful method to obtain suitable

composition of skeletons for a program recursively defined on lists and

trees. Chin et al. (10,26) have studied a systematic method to derive

an associative operator that plays an important role in parallelization,

based on which Xu et al. (44) build an automatic derivation system for

parallelizing recursive linear functions with normalization rules.

Our parallel skeletons can be seen as an instance of design-patterns

in object-oriented programmings. The difference between our approach

and usual design-pattern approaches is that we use a small number of

skeletons carefully designed rather than heedlessly increasing the num-

ber of patterns. This enables us to make a clear automatic optimization

paper.tex; 27/03/2007; 13:51; p.50

51

mechanism. We also give a methodology to derive an efficient program

described with skeletons.

APL (4, 17,28) is a pioneer language that supports operators to ma-

nipulate arrays, namely array operators. APL’s array operators are

extensions of scalar operations and functions to multi-dimensional ar-

rays in an element-wise manner, manipulations of the layout of arrays

such as shift and rotate, and reduction operators to collapse arrays

with binary operators. More complex computations on arrays are con-

structed by composition of these array operators. The ideas of APL

and our skeletal approach are the same in the sense that both pro-

vide users with a set of basic patterns of array computations and let

users make sophisticated computations by compositions of these basic

patterns. Also, both array operators and skeletons conceal complicated

parallelism form users. Main difference between APL and our skeletal

approach is as follows. We give a systematic methodology to derive

(make) correct, safe and efficient programs, i.e. how to derive efficient

programs from correct and safe programs that are not so efficient. Our

skeletons treat 2D arrays as ’2D’ in reductions since they can use two

binary operators for horizontal direction and vertical direction, while

treatment of multidimensional arrays in reductions of APL is rather

like ’1D’ because they use only one operator in one reduction. Our

skeletons are designed to consider derivations and optimizations for par-

allel programs of compositions of skeletons based on the mathematical

theory.

paper.tex; 27/03/2007; 13:51; p.51

52

7. Conclusion

In this paper, we propose a compositional framework that allows users,

even with little knowledge about parallel machines, to describe safe

and efficient parallel computation over two-dimensional arrays easily.

In our framework, two-dimensional arrays are represented by the abide-

tree that supports systematic development of parallel programs and

architecture-independent implementation, and programmers can easily

build up a complicated parallel system by defining basic components

recursively, putting components compositionally, and improving effi-

ciency systematically. The power of our approach is seen from the

nontrivial programming examples of matrix multiplication and QR de-

composition, and a successful derivation of an involved efficient parallel

program for the maximum rectangle sum problem (24). A demonstra-

tion of an efficient implementation of basic computation skeletons (in

C++ and MPI) on distributed PC clusters guarantees that programs

composed by these parallel skeletons can be efficiently executed in

parallel.

Currently, we have not succeeded in developing efficient and correct

parallel programs with parallel skeletons from their recursive specifica-

tions such as nested recursive functions on nested lists and divide-and-

conquer algorithm on quad-trees. Thus, it is our future work to con-

struct more powerful theories for a systematic programming methodol-

ogy that supports such derivations, and to introduce control skeletons

such as divide-and-conquer skeleton if needed. It is also our future

work to study an automatic optimization mechanism. The mechanism

should be able to eliminate inefficiency due to compositional or nested

paper.tex; 27/03/2007; 13:51; p.52

53

uses of parallel skeletons in parallel programs. Moreover, it should

be able to introduce low-level parallelism that currently our skele-

tons cannot describe. Some of the optimizations will be performed

based on the properties of operators in the skeletons. Finally, we men-

tion about higher-dimensional arrays. To extend our framework to

higher-dimensional arrays, we introduce constructors for new dimen-

sions and the condition that any pair of the constructors satisfies the

abide-property. Then, definitions of parallel skeletons and program-

ming methodology for higher-dimensional arrays are almost the same

as two-dimensional.

References

1. Alpatov, P., G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van

de Geijn, and Y. J. Wu: 1997, ‘PLAPACK: Parallel Linear Algebra Package’.

In: Proceedings of the SIAM Parallel Processing Conference.

2. Bentley, J.: 1984a, ‘Programming Pearls: Algorithm Design Techniques’.

Communications of the ACM 27(9), 865–873.

3. Bentley, J.: 1984b, ‘Programming Pearls: Perspective on Performance’. Com-

munications of the ACM 27(11), 1087–1092.

4. Bernecky, R.: 1993, ‘The role of APL and J in high-performance computation’.

APL Ouote Ouad 24(1), 17–32.

5. Bikshandi, G., J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J.

Garzaran, D. Padua, and C. von Praun: 2006, ‘Programming for Parallelism

and Locality with Hierarchically Tiled Arrays’. In: Proceedings of 11th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’06). New York, NY, USA, pp. 48–57.

paper.tex; 27/03/2007; 13:51; p.53

54

6. Bird, R. S.: 1987, ‘An Introduction to the Theory of Lists’. In: M. Broy (ed.):

Logic of Programming and Calculi of Discrete Design, Vol. 36 of NATO ASI

Series F. pp. 5–42.

7. Bird, R. S.: 1988, ‘Lectures on Constructive Functional Programming’. Tech-

nical Report Technical Monograph PRG-69, Oxford University Computing

Laboratory.

8. Bird, R. S.: 1998, Introduction to Functional Programming using Haskell.

Prentice Hall.

9. Bird, R. S. and O. de Moor: 1996, Algebras of Programming. Prentice Hall.

10. Chin, W. N., A. Takano, and Z. Hu: 1998, ‘Parallelization via Context Preser-

vation’. In: Proceedings of IEEE Computer Society International Conference

on Computer Languages (ICCL’98). pp. 153–162.

11. Cole, M.: 1989, Algorithmic Skeletons : A Structured Approach to the Man-

agement of Parallel Computation. Pitman, London: Research Monographs in

Parallel and Distributed Computing.

12. Cole, M.: 1995, ‘Parallel Programming with List Homomorphisms’. Parallel

Processing Letters 5(2).

13. Cole, M.: 2002, ‘eSkel Home Page’. http://homepages.inf.ed.ac.uk/mic/eSkel/.

14. Dongarra, J. J., L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel,

I. Dhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and

R. C. Whaley: 1997, ScaLAPACK User’s Guide. Society for Industrial and

Applied Mathematics.

15. Elmroth, E., F. Gustavson, I. Jonsson, and B. Kagstroom: 2004, ‘Recursive

Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library

Software’. SIAM Review 46(1), 3–45.

16. Emoto, K., Z. Hu, K. Kakehi, and M. Takeichi: 2005, ‘A Compositional Frame-

work for Developing Parallel Programs on Two Dimensional Arrays’. Technical

Report METR2005-09, Department of Mathematical Informatics, University of

Tokyo.

17. Falkoff, A. D. and K. E. Iverson: 1973, ‘The design of APL’. IBM Journal of

Research and Development 17(4), 324–334.

paper.tex; 27/03/2007; 13:51; p.54

55

18. Frens, J. D. and D. S. Wise: 2003, ‘QR Factorization with Morton-Ordered

Quadtree Matrices for Memory Re-use and Parallelism’. In: Proceedings

of 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’03). pp. 144–154.

19. Gibbons, J., W. Cai, and D. B. Skillicorn: 1994, ‘Efficient Parallel Algorithms

for Tree Accumulations’. Science of Computer Programming 23(1), 1–18.

20. Golub, G. H. and C. F. V. Loan: 1996, Matrix Computations (3rd ed.). Johns

Hopkins University Press.

21. Gorlatch, S.: 1996, ‘Systematic Efficient Parallelization of Scan and Other List

Homomorphisms’. In: Proceedings of 2nd International Euro-Par Conference

(Euro-Par’96), Vol. 1124 of Lecture Notes in Computer Science. pp. 401–408.

22. Grama, A., A. Gupta, G. Karypis, and V. Kumar: 2003, Introduction to Parallel

Computing. Addison-Wesley, second edition.

23. Hains, G.: 1994, ‘Programming with Array Structures’. In: A. Kent and J. G.

Williams (eds.): Encyclopedia of Computer Science and Technology, Vol. 14.

M. Dekker inc, New-York, pp. 105–119. Appears also in Encyclopedia of

Microcomputers.

24. Hu, Z., H. Iwasaki, and M. Takeichi: 1997, ‘Formal Derivation of Efficient Par-

allel Programs by Construction of List Homomorphisms’. ACM Transactions

on Programming Langauges and Systems 19(3), 444–461.

25. Hu, Z., H. Iwasaki, and M. Takeichi: 2002, ‘An Accumulative Parallel Skeleton

for All’. In: Proceedings of 11st European Symposium on Programming (ESOP

2002), LNCS 2305. pp. 83–97.

26. Hu, Z., M. Takeichi, and W. N. Chin: 1998, ‘Parallelization in Calculational

Forms’. In: Proceedings of 25th ACM Symposium on Principles of Programming

Languages. San Diego, California, USA, pp. 316–328.

27. Hu, Z., M. Takeichi, and H. Iwasaki: 1999, ‘Diffusion: Calculating Efficient

Parallel Programs’. In: Proceedings of 1999 ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation (PEPM’99).

pp. 85–94.

28. Iverson, K. E.: 1962, A Programming Language. John Wiley and Sons.

paper.tex; 27/03/2007; 13:51; p.55

56

29. Jeuring, J.: 1993, ‘Theories for Algorithm Calculation’. Ph.D. thesis, Utrecht

University. Parts of the thesis appeared in the Lecture Notes of the STOP

1992 Summerschool on Constructive Algorithmics.

30. Jonsson, I. and B. Kagstroom: 2003, ‘RECSY – A High Performance Library

for Sylvester-Type Matrix Equations’. In: Proceedings of 9th International

Euro-Par Conference (Euro-Par’03), Vol. 2790 of Lecture Notes in Computer

Science. pp. 810–819.

31. Matsuzaki, K., K. Emoto, H. Iwasaki, and Z. Hu: 2006, ‘A Library of Construc-

tive Skeletons for Sequential Style of Parallel Parogramming (Invited Paper)’.

In: Proceedings of the First International Conference on Scalable Information

Systems (INFOSCALE 2006). To appear.

32. Matsuzaki, K., K. Kakehi, H. Iwasaki, Z. Hu, and Y. Akashi: 2004, ‘A Fusion-

Embedded Skeleton Library’. In: Proceedings of 10th International Euro-Par

Conference (Euro-Par’04), Vol. 3149 of Lecture Notes in Computer Science.

pp. 644–653.

33. Miller, R.: 1994, ‘Two Approaches to Architecture-Independent Parallel Com-

putation’. Ph.D. thesis, Computing Laboratory, Oxford University.

34. Mullin, L. (ed.): 1991, Arrays, Functional Languages, and Parallel Systems.

Kluwer Academic Publishers.

35. Rabhi, F. A. and S. Gorlatch (eds.): 2002, Patterns and Skeletons for Parallel

and Distributed Computing. Springer-Verlag.

36. Reif, J. and J. H. Reif (eds.): 1993, Synthesis of Parallel Algorithms. Morgan

Kaufmann.

37. Skillicorn, D. B.: 1992, ‘The Bird-Meertens Formalism as a Parallel Model’.

In: NATO ARW “Software for Parallel Computation”.

38. Skillicorn, D. B.: 1994, Foundations of Parallel Programming. Cambridge

University Press.

39. Skillicorn, D. B.: 1996, ‘Parallel Implementation of Tree Skeletons’. Journal of

Parallel and Distributed Computing 39(2), 115–125.

40. Stewart, G. W.: 2001, Matrix Algorithms. Society for Industrial and Applied

Mathematics.

paper.tex; 27/03/2007; 13:51; p.56

57

41. Takaoka, T.: 2002, ‘Efficient Algorithms for the Maximum Subarray Prob-

lem by Distance Matrix Multiplication’. In: Proceedings of Computing: The

Australasian Theory Symposium (CATS’02). pp. 189–198.

42. Wise, D. S.: 1984, ‘Representing Matrices as Quadtrees for Parallel Processors’.

Information Processing Letters 20(4), 195–199.

43. Wise, D. S.: 1999, ‘Undulant Block Elimination and Integer-Preserving Matrix

Inversion’. Science of Computer Programming 22(1), 29–85.

44. Xu, D. N., S.-C. Khoo, and Z. Hu: 2004, ‘PType System: A Featherweight

Parallelizability Detector’. In: Proceedings of Second Asian Symposium on

Programming Languages and Systems (APLAS’04), Vol. 3302 of Lecture Notes

in Computer Science. pp. 197–212.

paper.tex; 27/03/2007; 13:51; p.57

58

map f 0BBB�x11 x12 � � � x1nx21 x22 � � � x2n...xm1 xm2 � � � xmn1CCCA = 0BBB� f x11 f x12 � � � f x1nf x21 f x22 � � � fx2n...f xm1 f xm2 � � � f xmn1CCCA
redu
e(�;
) 0BBB�x11 x12 � � � x1nx21 x22 � � � x2n...xm1 xm2 � � � xmn1CCCA = (x11
 x12
 � � �
 x1n)�(x21
 x22
 � � �
 x2n)�...(xm1
 xm2
 � � �
 xmn)
zipwith f 0BBB�x11 x12 � � � x1nx21 x22 � � � x2n...xm1 xm2 � � � xmn1CCCA 0BBB� y11 y12 � � � y1ny21 y22 � � � y2n...ym1 ym2 � � � ymn1CCCA= 0BBB� f x11 y11 f x12 y12 � � � f x1n y1nf x21 y21 f x22 y22 � � � f x2n y2n...f xm1 ym1 f xm2 ym2 � � � f xmn ymn1CCCA
s
an(�;
) 0BBB�x11 x12 � � � x1nx21 x22 � � � x2n...xm1 xm2 � � � xmn1CCCA = 0BBB� y11 y12 � � � y1ny21 y22 � � � y2n...ym1 ym2 � � � ymn1CCCAwhere yij = (x11
 x12
 � � �
 x1j)�(x21
 x22
 � � �
 x2j)�...(xi1
 xi2
 � � �
 xij)

Figure 1. Intuitive Definition of Four Primitive Skeletons on Two-Dimensional
Arrays

paper.tex; 27/03/2007; 13:51; p.58

59

X00 X01 X02X11 X12 X10X22 X20 X21rotr fX00 X01 X02X10 X11 X12X20 X21 X22 f z = �z
X00 X01 X02X10 X11 X12dist 2 3X00 X01 X02X10 X11 X12 gather .

Figure 2. An Image of Communication Skeletons (each rectangle corresponds to
each processor; Xij represents a subarray.)

paper.tex; 27/03/2007; 13:51; p.59

60

re
ts xmxmx re
ts ymymy Z != !re
ts xnmx ymx
j

i(a)
rxry ijk l

x
y (b)

Z = �bottoms x tops y
(
)

Figure 3. Recursive Computation of rects

paper.tex; 27/03/2007; 13:51; p.60

61

+b1t2s1s2
x1
x2 i j

(a)
+max br1tr2r1r2

x1
x2 k ij(b)

Figure 4. Computation of the Operator for Derived mrs

paper.tex; 27/03/2007; 13:51; p.61

62tops jaj = jjjajjjtops (x�Æ y) = tops x � Æ map (zipwith(�Æ) (
ols 0 x)) (tops y)tops (x � Æ y) = zipwith4 ft (tops x) (tops y) (toprights x) (toplefts y)where ft t1 t2 tr1 tl2 = (t1 � Æ gemm (; � Æ) tr1 tl2)�Æ (NIL � Æ t2)bottoms jaj = jjjajjjbottoms (x�Æ y) = map (�z ! zipwith(�Æ) z (
ols 0 y)) (bottoms x)�Æ bottoms ybottoms (x � Æ y) = zipwith4 fb (bottoms x) (bottoms y) (bottomrights x) (bottomlefts y)where fb b1 b2 br1 bl2 = (b1 � Æ gemm (; � Æ) br1 bl2)�Æ (NIL � Æ b2)rights jaj = jjjajjjrights (x�Æ y) = (rights x � Æ gemm (; zipwith(�Æ)) (bottomrights x) (toprights y))�Æ(NIL � Æ rights y)rights (x � Æ y) = zipwith3 fr (rights x) (rights y) (rows 0 y)where fr r1 r2 ro2 = map (� Æro2) r1�Æ r2lefts jaj = jjjajjjlefts (x�Æ y) = (lefts x � Æ gemm (; zipwith(�Æ)) (bottomlefts x) (toplefts y))�Æ (NIL � Æ lefts y)lefts (x � Æ y) = zipwith3 fl (lefts x) (lefts y) (rows 0 x)where fl l1 l2 ro1 = l1 � Æ map (ro1 � Æ) l2toprights jaj = jjjajjjtoprights (x�Æ y) = toprights x � Æ map (zipwith(�Æ) (right 0 (toprights x))) (toprights y)toprights (x � Æ y) = zipwith ftr (toprights x) (toprights y)where ftr tr1 tr2 = map (� Ætop 0 tr2 � Æ) tr1�Æ tr2bottomrights jaj = jjjajjjbottomrights (x�Æ y) = map (�z ! zipwith(�Æ) z (top 0 (bottomrights y))) (bottomrights x)�Æbottomrights ybottomrights (x � Æ y) = zipwith fbr (bottomrights x) (bottomrights y)where fbr br1 br2 = map (� Ætop 0 br2 � Æ) br1�Æ br2toplefts jaj = jjjajjjtoplefts (x�Æ y) = toplefts x � Æ map (zipwith(�Æ) (right 0 (toplefts x))) (toplefts y)toplefts (x � Æ y) = zipwith ftl (toplefts x) (toplefts y)where ftl tl1 tl2 = tl1 � Æ map (right 0 tl1 � Æ) tl2bottomlefts jaj = jjjajjjbottomlefts (x�Æ y) = map (�z ! zipwith(�Æ) z (top 0 (bottomlefts y))) (bottomlefts x)�Æbottomlefts ybottomlefts (x � Æ y) = zipwith fbl (bottomlefts x) (bottomlefts y)where fbl bl1 bl2 = bl1 � Æ map (right 0 bl1 � Æ) bl2
ols 0 jaj = jjajj
ols 0 (x�Æ y) = zipwith(�Æ) (
ols 0 x) (
ols 0 y)
ols 0 (x � Æ y) = (
ols 0 x � Æ gemm (; � Æ) (right (
ols 0 x)) (top (
ols 0 y)))�Æ (NIL � Æ
ols 0 y)rows 0 jaj = jjajjrows 0 (x�Æ y) = (rows 0 x � Æ gemm (;�Æ) (right (rows 0 x)) (top (rows 0 y)))�Æ (NIL � Æ rows 0 y)rows 0 (x � Æ y) = zipwith(� Æ) (rows 0 x) (rows 0 y)top = redu
e(�; � Æ) Æmap j�jbottom = redu
e(�; � Æ) Æmap j�jright = redu
e(�Æ;�) Æmap j�jleft = redu
e(�Æ;�) Æmap j�jtop 0 = the Ætopbottom 0 = the Æbottomright 0 = the Ærightleft 0 = the Æleft
Figure 5. Extra Functions for rects

paper.tex; 27/03/2007; 13:51; p.62

63

re
ts �a b
 d�=0BBBBBB���a� �a b��b� � 0BB��a
� �a b
 d��bd� 1CCA��
� �
 d��d� �
1CCCCCCAtops �a b
 d�=0BB���a� �a b��b� � 0BB��a
� �a b
 d��bd� 1CCA1CCA bottoms �a b
 d�=0BBBBBB�0BB��a
� �a b
 d��bd� 1CCA��
� �
 d��d� �

1CCCCCCArights �a b
 d�=0BBBBBB���a b��b� � 0BB��a b
 d��bd� 1CCA��
 d��d� �
1CCCCCCA lefts �a b
 d�=0���a� �a b�� ��a
� �a b
 d����
� �
 d�� 1A

toprights �a b
 d�=0BB���a b��b� � 0BB��a b
 d��bd� 1CCA1CCA bottomrights �a b
 d�=0BBBBBB�0BB��a b
 d��bd� 1CCA��
 d��d� �
1CCCCCCAtoplefts �a b
 d�=���a� �a b�� ��a
��a b
 d��� bottomlefts �a b
 d�=0���a
� �a b
 d����
� �
 d�� 1A
ols �a b
 d�=0BB��a
� �a b
 d��bd� 1CCA rows �a b
 d�=0��a b� �a b
 d��
 d� 1A

Figure 6. Examples of Extra Functions for rects

paper.tex; 27/03/2007; 13:51; p.63

64mrs = �1 Æ (j 4111 f 000i ;4111 �00i ;4111 	00i j)where(4111 f 000i) jaj = (a; jaj; jaj; jaj; jaj; jaj; jaj; jaj; jaj; jaj; jaj)(s1; t1; b1; r1; l1; tr1; br1; tl1; bl1;
1; ro1)(4111 �00i) (s2; t2; b2; r2; l2; tr2; br2; tl2; bl2;
2; ro2)= (s0; t0; b0; r0; l0; tr0; br0; tl0; bl0;
0; ro0)wheres0 = (s1 " max (zipwith(+) b1 t2) " s2t0 = zipwith3 ft t1
1 t2where ft t1
1 t2 = t1 " (
1 + t2)b0 = zipwith3 fb b1
2 b2where fb b1
2 b2 = (b1 +
2) " b2r0 = (r1 � Æ gemm (";+) (tr br1) tr2)�Æ (NIL � Æ r2)l0 = (l1 � Æ gemm (";+) bl1 (tr tl2))�Æ (NIL � Æ l2)tr0 = tr1 � Æ map
 (zipwith(+) (right tr1)) tr2br0 = map
 (zipwith(+) (left br2)) br1 � Æ br2tl0 = tl1�Æmapr (zipwith(+) (bottom tl1)) tl2bl0 = mapr (zipwith(+) (top bl2)) bl1�Æ bl2
0 = zipwith(+)
1
2ro0 = (ro1 � Æ gemm(;+) (right ro1) (top ro2))�Æ (NIL � Æ ro2)(s1; t1; b1; r1; l1; tr1; br1; tl1; bl1;
1; ro1)(4111 	00i) (s2; t2; b2; r2; l2; tr2; br2; tl2; bl2;
2; ro2)= (s0; t0; b0; r0; l0; tr0; br0; tl0; bl0;
0; ro0)wheres0 = s1 " max (zipwith(+) r1 l2) " s2t0 = (t1 � Æ gemm (";+) tr1 tl2)�Æ (NIL � Æ t2)b0 = (b1 � Æ gemm (";+) br1 bl2)�Æ (NIL � Æ b2)r0 = zipwith3 fr r1 r2 ro2where fr r1 r2 ro2 = (r1 + ro2) " r2l0 = zipwith3 fl l1 l2 ro1where fl l1 l2 ro1 = l1 " (ro1 + l2)tr0 = mapr (zipwith(+)(top tr2)) tr1�Æ tr2br0 = mapr (zipwith(+)(top br2)) br1�Æ br2tl0 = tl1 � Æ map
 (zipwith(+) (right tl1)) tl2bl0 = bl1 � Æ map
 (zipwith(+) (right bl1)) bl2
0 = (
1 � Æ gemm(;+) (right
1) (top
2))�Æ (NIL � Æ
2)ro0 = zipwith(+) ro1 ro2
Figure 7. Derived Efficient Program of Maximum Rectangle Sum

paper.tex; 27/03/2007; 13:51; p.64

65

sbl br
tl tr
l rb

t

r

Figure 8. Corresponding Parts of Elements in the Tuple

paper.tex; 27/03/2007; 13:51; p.65

66

 0

 10

 20

 30

 40

 50

 60

 64 32 24 16 8 4 1

sp
ee

du
p

w
.r

.t.
 s

eq
ue

nt
ia

l p
ro

gr
am

processors

fnorm
fnorm_opt

linear

Figure 9. Speedup of F-norm

 0

 10

 20

 30

 40

 50

 60

 64 32 24 16 8 4 1

sp
ee

du
p

w
.r

.t.
 s

eq
ue

nt
ia

l p
ro

gr
am

processors

mm
mm_opt

linear

Figure 10. Speedup of Matrix Multiplication

paper.tex; 27/03/2007; 13:51; p.66

67

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64 16 4 1

sp
ee

du
p

w
.r

.t.
 s

eq
ue

nt
ia

l p
ro

gr
am

processors

mrs
mrs_opt

linear

Figure 11. Speedup of Maximum Rectangle Sum

paper.tex; 27/03/2007; 13:51; p.67

68

template <
lass C,
lass A,
lass B>void mm(dist_matrix<C> &Z2,
onst dist_matrix<A> &X2,
onst dist_matrix &Y2){ dist_matrix < matrix < int > > *A2;dist_matrix < matrix < int > > *B2;A2 = all_rows2(X2);B2 = all_
ols2(Y2);m_skeletons::map_i(Tri< matrix >(), *B2);m_skeletons::zipwith(Iprod<C>(), *A2, *B2, Z2);delete B2;delete A2;}
Figure 12. C++ Code of Matrix Multiplication by Parallel Skeletons

paper.tex; 27/03/2007; 13:51; p.68

69

Table I. Experimental Results of F-norm for 8000 × 8000 Matrices

#processors 1 2 4 8 16 24 32 64

fnorm

time (s) 1.40 0.70 0.39 0.19 0.097 0.065 0.049 0.025

speedup 1.00 1.99 3.59 7.21 14.45 21.55 28.65 55.86

speedups 0.20 0.40 0.71 1.43 2.87 4.27 5.68 11.08

fnorm opt

time (s) 0.28 0.14 0.070 0.035 0.018 0.012 0.009 0.005

speedup 1.00 1.99 3.98 7.88 15.46 22.65 30.00 52.01

speedups 1.00 1.99 3.98 7.88 15.46 22.65 30.00 52.01

† speedups is a speedup with respect to hand-written sequential program.

paper.tex; 27/03/2007; 13:51; p.69

70

Table II. Experimental Results of Matrix Multiplication for 3000× 3000 Matrices

#processors 1 2 4 8 16 24 32 64

mm

time (s) 247.02 96.26 49.26 22.66 12.09 9.05 6.56 3.91

speedup 1.00 2.57 5.02 10.90 20.44 27.30 37.64 63.23

speedups 0.49 1.25 2.43 5.29 9.92 13.25 18.27 30.70

mm opt

time (s) 193.34 89.86 44.17 21.89 11.51 8.64 6.36 3.79

speedup 1.00 2.15 4.38 8.83 16.80 22.39 30.42 50.99

speedups 0.62 1.33 2.71 5.48 10.42 13.89 18.87 31.63

† speedups is a speedup with respect to hand-written sequential program.

paper.tex; 27/03/2007; 13:51; p.70

71

Table III. Experimental Results of Maximum
Rectangle Sum for 1000 × 1000 Matrices

#processors 1 4 16 64

mrs

time (s) 157.01 31.04 13.05 9.92

speedup 1.00 5.06 12.03 15.84

speedups 0.96 4.88 11.59 15.26

mrs opt

time (s) 151.32 31.09 12.97 10.17

speedup 1.00 4.87 11.67 14.88

speedups 1.00 4.87 11.67 14.88

† speedups is a speedup with respect to hand-written sequential program.

paper.tex; 27/03/2007; 13:51; p.71

