
S
a

H
a

b

c

a

A
R
R
1
A
A

K
S
B
R

1

a
u
t
c
R
s
a
d
F
r
A
u
a

h
y
(

0
d

The Journal of Systems and Software 84 (2011) 711–723

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

upporting runtime software architecture: A bidirectional-transformation-based
pproach

ui Songa, Gang Huanga,∗, Franck Chauvela, Yingfei Xiongb, Zhenjiang Huc, Yanchun Suna, Hong Meia

Key Laboratory of High Confidence Software Technologies (Ministry of Education), School of Electronic Engineering and Computer Science, Peking Uni., Beijing, China
Generative Software Development Lab, University of Waterloo, Canada
GRACE Center, National Institute of Informatics, Tokyo, Japan

r t i c l e i n f o

rticle history:
eceived 22 January 2010
eceived in revised form
5 September 2010
ccepted 8 December 2010
vailable online 21 December 2010

eywords:

a b s t r a c t

Runtime software architectures (RSA) are architecture-level, dynamic representations of running soft-
ware systems, which help monitor and adapt the systems at a high abstraction level. The key issue to
support RSA is to maintain the causal connection between the architecture and the system, ensuring that
the architecture represents the current system, and the modifications on the architecture cause proper
system changes. The main challenge here is the abstraction gap between the architecture and the sys-
tem. In this paper, we investigate the synchronization mechanism between architecture configurations
and system states for maintaining the causal connections. We identify four required properties for such
oftware architecture
idirectional transformation
untime system management

synchronization, and provide a generic solution satisfying these properties. Specifically, we utilize bidi-
rectional transformation to bridge the abstraction gap between architecture and system, and design an
algorithm based on it, which addresses issues such as conflicts between architecture and system changes,
and exceptions of system manipulations. We provide a generative tool-set that helps developers imple-
ment this approach on a wide class of systems. We have successfully applied our approach on JOnAS JEE
system to support it with C2-styled runtime software architecture, as well as some other cases between

ical a
practical systems and typ

. Introduction

Nowadays, IT systems are required to be continuously avail-
ble whereas the systems are running, their environments and
ser requirements are constantly changing. This calls for the sys-
em management at runtime to find and fix defects, adapt to the
hanged environments, or meet new requirements (France and
umpe, 2007; Kramer and Magee, 2007). Currently, many main-
tream platforms have provided management APIs for retrieving
nd updating the system state at runtime (Sicard et al., 2008), but
irect management upon these low-level APIs is not an easy task.
irst, the management API reflects the system in a solution space,
equiring the knowledge of platform implementation. Second, the

PIs are designed for general-purpose management, and thus are
sually too tedious and complicated for a particular management
ctivity.

∗ Corresponding author. Tel.: +86 10 6275 7670.
E-mail addresses: songhui06@sei.pku.edu.cn (H. Song),

uanggang@sei.pku.edu.cn (G. Huang), franck.chauvel@sei.pku.edu.cn (F. Chauvel),
ingfei@gsd.uwaterloo.ca (Y. Xiong), hu@nii.ac.jp (Z. Hu), sunyc@sei.pku.edu.cn
Y. Sun), meih@pku.edu.cn (H. Mei).

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.12.009
rchitecture models.
© 2010 Elsevier Inc. All rights reserved.

To control the management complexity, many researchers pro-
pose to utilize software architecture for runtime management
(Garlan et al., 2004; Oreizy, 1998; Sicard et al., 2008). They represent
the running system as a dynamic architecture model, which has a
causal connection with the system state. That means if the system
state evolves, the architecture configuration will change accord-
ingly. And similarly, if the architecture configuration is modified,
the system will change accordingly, too. Thanks to this causal con-
nection, management agents (human administrators or automated
management services) can monitor and control the system by read-
ing and writing this abstract architecture model, utilizing mature
architecture-based techniques (such as architecture manipulation
languages and architecture analysis; Blair et al., 2009) to make
high-level management decisions at runtime. We name such archi-
tecture models as Runtime Software Architectures (RSA, Huang et al.,
2006).

There are many approaches to RSA-based runtime manage-
ment. These approaches reveal the usage and advantage of RSA,
but their mechanisms for maintaining causal connection are tightly

coupled with the target system, requiring the systems to be imple-
mented according to specific styles (Blair et al., 1998; Oreizy, 1998)
or instrumented with specific management capabilities (Garlan
et al., 2004; Huang et al., 2006). Due to the tight coupling, these
approaches cannot be directly applied on the existing systems that

dx.doi.org/10.1016/j.jss.2010.12.009
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:songhui06@sei.pku.edu.cn
mailto:huanggang@sei.pku.edu.cn
mailto:franck.chauvel@sei.pku.edu.cn
mailto:yingfei@gsd.uwaterloo.ca
mailto:hu@nii.ac.jp
mailto:sunyc@sei.pku.edu.cn
mailto:meih@pku.edu.cn
dx.doi.org/10.1016/j.jss.2010.12.009

7 tems and Software 84 (2011) 711–723

a
i
c

e
n
b
b
r
n
T
s
t

c

1

2

3

a
p
m
g
t
c
t
a
s
i
t
s
r
g
T

•

•

•

i

w

12 H. Song et al. / The Journal of Sys

re already implemented without consideration of RSA, because it
s tedious and error-prone to instrument them with RSA-enabling
ode.

In this paper, we focus on providing RSA support to the
xisting systems. The key issue is to maintain the casual con-
ection based on the general-purpose management API provided
y the target system. We sum up this issue as a synchronization
etween architecture model and system state, and identify four
equired properties for such synchronization, namely consistency,
on-interference introspection, effective reconfiguration, and stability.
hese properties are necessary for management agents to use the
ynchronized architecture model for monitoring and controlling
he system.

However, there are some challenges to implement such syn-
hronization.

. There is an abstraction gap between the system state and the
architecture model. The system state is determined by the imple-
mentation of the target platform, located in the solution space,
while the architecture model is determined by the management
requirements, located in the problem space. To represent the
system in the proper perspective, the architecture model and
the system state usually have heterogeneous forms and asym-
metric contents, and thus it is not easy to determine the effect
of architecture changes on the system side, and vice versa.

. Since the architecture and the system are changing simultane-
ously, the synchronization has to deal with the conflicts between
architecture modifications and system changes.

. The system modifications through the API do not always lead to
the expected effects. The synchronization needs to handle such
modification exceptions properly, in order to prevent the man-
agement agents from getting the inaccurate information of the
running system.

In this paper, we present a generic approach to synchronize
rchitecture models and running systems, satisfying the above
roperties. To address the above challenges, we use bidirectional
odel transformations to propagate changes across the abstraction

ap between architecture and system, employ a two-phase execu-
ion to filter out conflicts in the changes, and employ a three-way
heck to identify modification exceptions. We provide a genera-
ive tool-set to assist developers in implementing this approach on
wide class of systems. Developers need only provide high-level

pecifications about the system and the required architecture style,
ncluding two meta-models to specify what constitutes the archi-
ecture model and the running system, a model transformation to
pecify their relation, and a declarative specification about how to
etrieve and update the system state, and our tool-set automatically
enerates the required synchronizer to support RSA on this system.
he contributions of this paper can be summarized as follows.

We formalize the generic synchronization between architecture
models and running systems, and define a set of required prop-
erties for such synchronization.
We provide an architecture–system synchronization algorithm
based on bidirectional transformation, satisfying the above
requirements.
We provide a generative tool-set to assist developers in imple-
menting the approach on a wide scope of systems, supporting

RSAs on them.

We have applied this approach to several practical systems,
ncluding JOnAS/JEE and PLASTIC.1 These case studies demonstrate

1 The tool-set and the artifacts used in the case studies can be found in our project
ebsite: http://code.google.com/p/smatrt.
Fig. 1. A client/server styled runtime architecture for a PLASTIC-based mobile sys-
tem.

the feasibility, efficiency and wide applicability of our approach and
tool-set.

This work is based on a series of our earlier approaches. We
utilize the code generation approach for wrapping low-level man-
agement APIs (Song et al., 2009, 2010). The idea of using model
transformation to achieve synchronization was discussed in Xiong
et al. (2009b).

The rest of this paper is structured as follows. Section 2
illustrates the basic concepts of RSA. Section 3 discusses the syn-
chronization for maintaining causal connection. Section 4 presents
our synchronization approach based on bidirectional model trans-
formation, and Section 5 introduces our generative tool-set to help
implementing this approach. Section 6 describes our case studies.
Section 7 summarizes related work and Section 8 concludes this
approach.

2. Runtime software architecture

2.1. An illustrative example

The right part of Fig. 1 shows a simple mobile computing system
for file transmission, which we construct upon the PLASTIC Multi-
radio Networking Platform (IST, 2008). As shown in the figure, three
devices are currently registered on a central desktop, which pushes
files into these devices via different types of connections, including
Wi-Fi, Bluetooth and wired cable. At runtime, the administrator
may wish to monitor what devices are registered, and how they are
connected. He also needs to reconfigure the system, e.g., when the
Wi-Fi signal is too weak for the first device, he could switch the
connection into Bluetooth.

The left part of Fig. 1 is an architecture model conforming to the
Client/Server architecture style (Garlan et al., 2004). The Clients
stand for the devices, the Server stands for the desktop computer,
and the Links stand for the connections between them. Adminis-
trators could add or remove clients, change connection types. If they
find a client that needs further maintenance, they add a be-careful
mark on it.

To support the management activities mentioned above, the
architecture model must have a causal connection (Blair et al., 1998)
with the running system. The architecture model must change as
the system changes. For example, if a device unregisters itself, the
corresponding client element in the architecture will disappear.
Similarly, the architecture modifications must cause correct system
changes. For example, if the administrator switches a link type, the
real network connection will be reset.

2.2. A formal description of runtime software architecture
The above example illustrates three elements of RSA, i.e., the
architecture model, the system state, and the causal connection.
This section discusses these elements in detail, with the help of a
simple formal description.

http://code.google.com/p/smatrt

H. Song et al. / The Journal of Systems and Software 84 (2011) 711–723 713

+name* : String
Structure

+name* : String
Server

server

+name* : String
+type : String

Link +name* : String
+mark : Single

Clientlink

client

server

+name* : String
Desktop

+name* : String
+networkType : String

Device
device

architecture
meta-model

system
meta-model

d syst

2

(
t
p
S
w
s
m
v

fi
�
c
p
m
t
(
t
c
m

2

o
s
o
w
b
F
t
b

c
f
g
n
a
w

a
m
n
e
h

a
c

system, there must be a client in the architecture model with the
same name, and vice versa”. We illustrate this relation using a QVT
transformation as shown in Fig. 3. It defines that the Structure
and the Server together map to the Desktop; A Client and its
connected Link together map to a Device.

transforma�on CS2PLA(arc:CS,sys:PLASTIC){
key Structure{name};...key Device{name};
top rela�on StructServer2Desktop{

tmpName:String;
enforce domain arc strt:Structure{name=tmpName,

server=svr,client=clnt:Client{},link=lnk:Link{}};
enforce domain arc svr:Server{name=tmpName};

rela�on
Fig. 2. The definition of architecture an

.2.1. Architecture models
Architecture models are constituted of a set of model elements

like clients and servers). These elements have attributes, and refer
o other elements. The types of architecture elements in our exam-
le are shown in the left part of Fig. 2: A root element typed as
tructure contains several Servers and Clients, which connect
ith each other through Links. An architecture configuration is a

et of element instances conforming to these element types. Model
anipulations (like adding a component or changing an attribute

alue) change the model from one configuration to another.
We use A to stand for the set of all possible architecture con-

gurations (which is determined by the meta-model), and use
A ⊆ A × A to denote all possible changes from one architecture

onfiguration to another. Following Alanen and Porres (2003), we
resent the model changes as a composition of primitive model
odifications, including creating or deleting an element, and get-

ing or setting a property. From this point of view, model differ
−: A × A → �A) finds a set of primitive modifications to represent
he changes, and model merge (+: A × �A → A) execute the modifi-
ations to get a new model. For architecture models, the effect of
odifications is predictable, i.e., ı = a′ − a ⇒ a + ı = a′.

.2.2. Runtime system states
According to Sicard et al. (2008), a running system is constituted

f system elements, like the devices and the desktop computer. The
ystem elements may have local states (like the connection type),
r be associated with each other. The type of system states (like
hat elements exists, their local state values, and the references

etween them) can be also defined by a meta-model, as shown in
ig. 2. Similar to architecture models, we use S and �S to stand for
he system meta-model and all possible changes. The changes may
e caused by the system itself, or by manipulations from outside.

For the above example, reading and modifying the system state
an be performed through the PLASTIC API. To see all the devices
rom the desktop computer, we invoke the API on the desktop to
et all registered MNClients, each of which stands for a device con-
ected to this desktop. We can invoke getActualNetworkQoS on
MNClients to see its connection, and invoke activateBestNet-
ork on it to change the type.2

Unlike architecture models, manipulations on running systems
re not always predictable, i.e., ı = s′ − ss + ı = s′. The modifications

ay have no effect or side effect. For example, if we modify a device’s

etwork into Bluetooth but the device is suddenly outside the cov-
rage of the desktop’s Bluetooth signal, then this manipulation
as no effect. If we delete (disconnect) the network between the

2 Originally, PLASTIC only open the interface for resetting networks according to
set of QoS requirements. To simplify our example, we altered it a bit to open the

apability for switching networks directly by types.
client

em elements for the running example.

desktop and the first device, then the device itself is also unreach-
able from the desktop, and thus the resulting system changes also
include a side effect that is a deletion of the device. The reason for
this is that the APIs usually do not reflect the complete system
state. We abstract a running system as a tuple: (S, E, �), with S,
the system meta-model, E, the set of environment (e.g., the device
is out of the Bluetooth range), and �, the state transition function:
� : S × E × �S → S, standing for the system logic (e.g., if a network-
link is removed, the device also disappears). For a current state
s ∈ S, in the current environment ε ∈ E, and after the execution of a
manipulation ı ∈ �SM

, the result �(s, ε, ı) is the subsequent state of
this system.

2.2.3. Causal connections
Chan and Chuang (2003) and Sicard et al. (2008) refined the con-

cept of “causal connection” into the following two requirements.

• Correct Introspection. No matter how system changes, the man-
agement agents could always get the correct system state through
the architecture model.

• Correct Reconfiguration. Management agents could directly
modify the architecture model, and the modifications will
dynamically cause the correct system change.

Here the correctness depends on a given relation between the
architecture configuration and the system state R ⊆ A × S. When (a,
s) ∈ R, we say that architecture a and system s are consistent, or
a is a reflection of s. For our illustrative example, this consistency
relation embodies the information like “if there is a device in the
enforce domain sys dsktp:Desktop{name=tmpName, device=dvc:Device{}};
where{ClientLink2Device(svr,clnt,lnk,dvc);}; }

rela�on ClientLink2Device{
tmpName:String; tmpType:String;
enforce domain arc svr:Server{};
enforce domain arc clnt:Client{name=tmpName};
enforce domain arc lnk:Link{client=clnt,server=svr,type=tmpType};
enforce domain sys dvc:Device{name=tmpName, type=tmpType}; } }

Fig. 3. The relation between architecture and system.

7 tems a

3
s

a
ε

S

T
m
s
fi

3

s
c
s

S

t
s

P

(

(
(
c

P

a

p
a
t
n
t
A
A

P

a

e
t
t
c
c
a

P

(

r
A
c
t
p
s
n
t

14 H. Song et al. / The Journal of Sys

. Maintaining causal connections by architecture–system
ynchronization

We defined the architecture–system synchronization (ASS)
ccording to a relation R, for a system �, and under the environment
, as a function:

ynch(R,ε,�) : A × A × S → A × S

he first two inputs are architecture configurations before and after
anagement agent’s modification. The third input is the current

ystem state. The outputs are the synchronized architecture con-
guration and system state.

.1. The four properties

In order to satisfy the two requirements above (i.e., intro-
pection and reconfiguration), we use a series of properties to
onstrain the synchronization behavior. Specifically, for any (ao, ac,
c) ∈ A × A × S if

ynch(R,ε,�)(ao, ac, sc) = (as, ss)

hen we require the results (as and ss) to satisfy the following propo-
itions.

roperty 1 (Consistency).

as, ss) ∈ R

First of all, we require the synchronized architecture configuration
as) and system state (ss) to be consistent, so that Management Agents
MAs) could use the resulted architecture configuration to deduce the
urrent system state and the modification effect.

roperty 2 (Non-interfering introspection).

o = ac ⇒ ss = sc

Consistency alone does not ensure correct introspection. For exam-
le, suppose that in ao and ac, the types of the first links are all Wi-Fi,
nd in sc, the corresponding connection type has changed to Blue-
ooth. In this situation, the ASS could choose to change the real
etwork type back to Wi-Fi. Although this result satisfies consistency,
he MA will not get the genuine system state, but the one polluted by
SS. Therefore, we require that if the architecture is not modified, the
SS cannot change the system.

roperty 3 (Effective reconfiguration).

c − ao ⊆ as − ao

Similarly, consistency is not enough for correct reconfiguration. For
xample, if the MA modifies the link from Wi-Fi to Bluetooth and in
he current system the connection is still Wi-Fi, then to satisfy consis-
ency, the ASS could ignore the architecture modification and leave the
urrent system unchanged (that means the result is (ao, sc)). To ensure
orrect reconfiguration, we require that all the MA’s modifications (i.e.,
c − ao) remain in the final architecture change (i.e., as − ao).

roperty 4 (Stability).

ac, sc) ∈ R ⇒ as = ac ∧ ss = sc

Finally, we add an extra property to guarantee that, when the cur-
ent architecture model and system state are already consistent, the
SS leave them unchanged. This property prevents irrelevant system
hanges from interfering the architecture model. It also allows the MAs

o record some extra information on the architecture model. For exam-
le, the MAs could change the layout of the architecture model or mark
ome part of it to make it more intuitive, and since this change does
ot have any relation with the running system, this property ensures
hat the synchronization does not break the layout.
nd Software 84 (2011) 711–723

3.2. The challenges

There are several challenges to implement an architecture–
system synchronization that satisfies the above properties.

First, the architecture model and the system structure are het-
erogeneous and asymmetric. Heterogeneity means that the relation
between architecture and system is not a simple one-to-one map-
ping between architecture and system elements. In our example,
the link elements in the architecture model do not have corre-
sponding system elements. They just represent of the connection
type of the devices. Asymmetry means that the architecture and
the system may all contain some information which is not rele-
vant to the other side. For example, the “be careful” mark on the
client elements does not have any counterpart in the real system.
Due to the heterogeneity and asymmetry, it is challenging to propa-
gate changes correctly from the system to the architecture and vice
versa. And moreover, according to the Stability property, we also
have to identify the irrelevant information and keep it unchanged
during the synchronization.

Second, the architecture and system changes may happen simul-
taneously, and thus these changes may conflict. For example, if the
MA changes the type of the first link, and in the meantime, the first
device is closed. Then if the ASS still propagates the architecture
modification, it will invoke the management API to reset the net-
work of this inexistent device, and cause unexpected results. If such
conflicts are not properly handled, the synchronization may even
cause harmful invocations to the management API.

Third, the system modifications are not predictable for the
ASS, because it cannot get complete system information from the
management API. If the exceptions are not properly handled, the
synchronization results may be inconsistent. For example, if the
MA changes the first link to Bluetooth, the proper system change
is to switch the connection type of the first device. If this switch-
ing operation fails, to ensure consistency, the ASS should catch the
exception and roll back the modification of link type.

4. Architecture–system synchronization based on
bidirectional transformation

This section presents our approach to implementing
architecture–system synchronization. Aiming at the three chal-
lenges discussed in the last section, our main ideas can be
summarized as follows.

• We utilize bidirectional transformation and model comparison
to translate changes between architecture and system.

• We employ a two-phase execution to filter out conflicting changes,
preventing them from harming the system.

• We add a validating read after changing the system to get the
actual effects of the system modifications, in order to construct a
consistent architecture model even in the presence of modifica-
tion exceptions.

In this section, we first introduce the enabling techniques of
our approach. Then we explain the algorithm on our illustrative
example. Finally, we evaluate the algorithm according to the four
properties (Section 3.1).

4.1. Enabling techniques
4.1.1. Bidirectional transformation
Bidirectional transformation uses one relation between two sets

of models (i.e., two meta-models) to derive two directions of trans-
formations between them. Formally speaking, according to Stevens
(2007), for two meta-models M and N, and a relation R ⊆ M × N, the

H. Song et al. / The Journal of Systems a

desktop

client1

ct=wi-fi

client2

ct=bluetooth

desktop

client1

ct=bluetooth

s2s1 =s2 - s1

delete(client2)
set(client1, ct,
wi-fi, bluetooth)

desktop

client2 client3

desktop

client3

s4=s3+s3

delete(client2)
set(client1, ct,

d d

d

b

n
s
(
e
i
n
t
e

4

t
c
a
f
e
b
w
b
c

4

o
M
a
c
m
l
B
a
a
w
r
e
t

4

t
r
t
t
s
o
o

ct=wi-fi ct=wi-fi ct=wi-fi
wi-fi, bluetooth)

Fig. 4. Sample for model difference.

i-transformation is constituted of two functions:

	R : M × N → N
�R : M × N → M

“	R looks at a pair of models (m, n) and works out how to modify
so as to enforce the relation R: it returns the modified ver-

ion. Similarly, �R propagates changes in the opposite direction.”
Stevens, 2007). Note that the transformation requires two param-
ters, because the relation between the two models is not bijective,
.e., for m ∈ M, there may exist more than one n ∈ N satisfying (m,
) ∈ R. This is because each of the models may contain the informa-
ion that is not reflected in the other one. Detail discussions and
xamples could be found in Czarnecki et al. (2009).

.1.2. Model difference and merge
Model difference denoted by “−” compares two models to get

he difference between them, i.e., −: M × M → �M. It represents the
alculated difference as a set of primitive model operations (Alanen
nd Porres, 2003). Model merge denoted by “+” executes the dif-
erence into a model to get a new model, i.e., +: M × �M → M. For
xample, the top half of Fig. 4 shows two models and the difference
etween them, and in the bottom half, we merge this difference
ith another model: the delete operation eliminates client2,

ut the set operation has no effect, because the target element
lient1 does not exists in this model.

.1.3. System-model adaptation
The model transformation and difference techniques are based

n standard models, usually the models conforming to the OMG’s
OF standard (OMG, 2006). We assume the architecture models

lready conform to MOF standard, because more and more people
hoose MOF-based languages, like UML, to describe architecture
odels, and there are tools to convert architecture models in other

anguages into MOF-compliant ones (Cuadrado and Molina, 2009).
ut for system state, since most systems only provide ad hoc man-
gement APIs, we need a system-model adapter to support reading
nd writing the system state in a model-based way. Specifically,
hen reading, this adapter returns a MOF-compliant model that

eflects the current system state. By contrast, when writing, it gen-
rates the proper invocation of the management API according to
he model operation, changing the system state.

.2. The synchronization algorithm

Fig. 5 shows our algorithm in pseudo-code. It takes two archi-
ecture configurations before and after modification (ao and ac,
espectively) as inputs. It propagates the architecture modifica-

ions into the current system, and reflects the new system state as
he output architecture configuration (as). This algorithm has four
teps. We first calculate what the architecture modifications mean
n the system side. Then we use a two-phase execution to filter
ut conflicting changes, and execute the valid ones on the system.
nd Software 84 (2011) 711–723 715

After the execution, we fetch the result system state, and feed it
into the architecture. Finally, we check the result to see if all the
MA’s architecture modifications are successfully executed.

To explain this algorithm intuitively, we use a synchroniza-
tion scenario on our mobile computing system, as shown in Fig. 6.
The top half of this figure illustrates the evolution of the archi-
tecture configuration during the execution of this algorithm, and
the bottom half illustrates the evolution of system state. The orig-
inal architecture model ao contains one server and three clients.
The MA resets two links into Wi-Fi, and add a be-careful mark on
a client. The modification result is ac. In the meantime, the sys-
tem has changed into sc, with one device disappearing (shown by
dashed lines and grayed text). Note that the architecture modifica-
tion and the system change conflict, i.e., the MA changed the type of
the third link, but the corresponding device (tab) does not exist in
the system any more. We expect the resulting architecture model
(as) to reflect the system change (a client deleted) and keep the non-
conflicting architecture modifications (the type of the first link and
the mark of the second one). The resulting system state (ss) contain
the effect of this architectural modifications (i.e., having the first
network changed into Wi-Fi).

Step 1: Modification Recognition. Our first step is to recognize
the meaning of the MA’s architecture modifications on the system
side. We first read the system-model adapter to get the current
system state and preserve it as a system model sc (as shown in
Fig. 6, marked as sc). Then, we use this system model as a reference
to transform the original and modified architecture models (i.e.,
ao and ac, respectively) into two system models (s′

o and s′
c). These

two system models are not the representations of the real original
and current system states, but the images of the two architecture
models. We compare these two images, and get the difference as
follows:

[set(phone, network, bluetooth, wi-fi),
set(tab, network, cable, wi-fi)]

This difference is the meaning of the MA’s architecture modifica-
tions (resetting two link types) in the system side, and we name it
as the desired system changes (ıd) by the MA.

Step 2: Two-phase execution. Our second step is to execute
the desired system modifications into the running system. Due
to the conflicts between architecture and system changes, the
desired modifications may contain some invalid modifications, like
setting the network type of the tab device. We cannot directly exe-
cute these modifications into the system, and thus we employ a
“two-phase” execution: the first phase filters out the invalid modi-
fications, and the second phase executes the valid ones. Specifically,
in the first phase, we execute the desired modifications on the sys-
tem model sc. Since this execution is not performed on the real
system, the invalid modification does not harm the system. More-
over, according to the behavior of the model merge (Alanen and
Porres, 2003), this modification does not change the model. After
this “fake” execution, we get a system model which records the
desired and valid system state by the MA (see sd in Fig. 6). We
compare this model with sc again, and get the valid modifications,
i.e.

[set(phone, network, bluetooth, wi-fi)]

Finally, in the second step, we invoke the system adapter to exe-

cute this valid modification (ıv) into the real system. Notice that
currently we check the validity in a simple way: Checking if the
modifications are syntactically meaningful to the current system
state. We plan to introduce OCL into system meta-model to specify
semantical constraints, in the future.

716 H. Song et al. / The Journal of Systems and Software 84 (2011) 711–723

Input: ao and ac, the original and current architecture model
Output: as the synchronized architecture, and δl the failed mod-
ifications
Side-effect: changing system state from so into sc

1 Modification recognition:

2 sc
read←− adapter; *get the system’s "current state"

3 s′o ←
→
R (ao, sc); *get system model reflecting the original arch.

4 s′c ←
→
R (ac, sc); *get system model reflecting the modified arch.

5 δd ← s′c − s′o; *the "desired system change" reflecting MA’s modification

6 Two-phase execution:

7 sd ← sc + δd; *attempt to execute the change" to the static model

8 δv ← sd − sc; *the "valid change" that passes the attempt

9 adapter write←− δv *executing the valid change to the system

10 Result feedback:

11 ss
read←− adapter *retrieve the synchronized state (ss = σ(sc, ε, δv))

12 as ← ←−
R (ac, ss); *get the "final architecture"

13 Effectiveness Check:

14 δm ← ac − ao; *get the MA’s "modification"

15 δa ← as − ao; *get the "actual arch change" after synchronization

16 δl ← δm − δa; *get the "lost change", and warn the MA

nizat

i
a
t
t
d
s
t
i

Fig. 5. Synchro

Step 3: Result feedback. Our third step is to propagate the orig-
nal system change (the disappearance of the cable device) and the
ctual effect of the system modification (setting phone’s network
o Wi-Fi) into the architecture model. We use the adapter again

o read the system state. This state is the real modification result
etermined by the system state before synchronization (sc), the
ystem logic (�) and the current environment (ε). If this modifica-
ion is executed successfully, the retrieved system model is like sc

n Fig. 6. Then we use the backward transformation to transform

sample:Structre

phone:Client

mark=null

ao

pda:Client

mark=null

tab:Client

mark=null

server:Server

bluetooth wi-fi cable

samp

phone:Client

mark=null

p

m

ser

wi-fi

server:Desktop

phone:Device

network=bluetooth

pda:Device

network=wi-fi

tab:Device

network=cable

server:Des

phone:De

network=w

pda:Dev

network=w

tab:Dev

network=w

ac

so' sc'
server:Desktop

phone:Device

network=bluetooth

pda:Device

network=wi-fi

tab:Device

network=wi-fi

sc

Fig. 6. Sample architecture m
ion algorithm.

this final system state into the architecture side, as the resulted
architecture model. In order to preserve the irrelevant architecture
modifications (like marking the “pda” client), we use the modified
architecture model (sc) as the basis to perform this transformation.
Step 4: Effectiveness check. We cannot always ensure the effec-
tive reconfiguration property (we discuss this later in Section 4.4).
So we employ an extra step to check what architecture modifica-
tions have not been successfully propagated. We first compare ao

and ac, and the difference is constituted of the original architecture

le:Structre

da:Client

ark=care

tab:Client

mark=null

ver:Server

wi-fi wi-fi

sample:Structre

phone:Client

mark=null

pda:Client

mark=care

server:Server

wi-fi wi-fi

ktop

vice

i-fi

ice

i-fi

ice

i-fi

Server:Desktop

phone:Device

network=wi-fi

pda:Device

network=wi-fi

Server:Desktop
phone:Device

network=wi-fi

pda:Device

network=wi-fi

as

sd ss

odel and system state.

tems a

m

T
a

F
e

W
c

4

4

m
(
r
R
t
(

1
s
2
a
ı
p
u

i
t
c
p
f
t
m
a
m
d
m
p
s

4

d
t
t

fi

t
t

H. Song et al. / The Journal of Sys

odifications from the MA (ım).

[set(link1, type, bluetooth, wi-fi),
set(link3, type, cable, wi-fi),
set(pda, mark, null, care)]

hen we compare ao with as, and the difference reflects the actual
rchitecture evolution (ıa).

[set(link1,type, bluetooth, wi-fi),
set(link3, type, cable, wi-fi),
delete(tab)]

inally, we calculate the relative complement of ıa in ıs, to see which
xpected modifications do not remain in the actual effect:

[set(link3, type, cable, wi-fi)]

e warn the MA about this “lost modification”, so that the MA could
hoose to re-try this modification or to find a substitute solution.

.3. Assumptions

.3.1. Our algorithm depends on the following assumptions.
First, we assume that a pair of forward and backward transfor-

ations 	R and �R satisfy two basic properties of bi-transformation
Stevens, 2007). The first property is Correctness. That means the
elation R holds on the transformation results: (m, 	R(m, n)) ∈ R ∧

� ((m, n), n) ∈ R. The second property is Hippocraticness. That means
he transformations do nothing for the already consistent models:
m, n) ∈ R ⇒ 	R(m, n) = n ∧ �R(m, n) = m.

Second, we assume the model difference and merge (like Line
4 or Line 7, but not for the reading and writing on system
tates through adapters) to be deterministic (Alanen and Porres,
003): ∀m, m′ ∈ M, ı ∈ �M . ı = m′ − m ⇒ m′ = m + ı. In addition, we
lso require the modifications to be idempotent, i.e., ∀m ∈ M,
⊆ �M . m + ı + ı = m + ı. For MOF-based models, to satisfy idem-
otency, we require the multiple properties to be unique and
nordered (Xiong et al., 2009a).

Finally, we assume that the environment does not change dur-
ng a synchronization process.3 This assumption is not difficult
o satisfy in practical situations. On the one hand, most system
hanges concerned by MAs do not happen frequently, like com-
onents added or parameter changed. On the other hand, as a
ully automated process, the synchronization spends much less
ime, comparing with the time for MAs to make their manage-

ent decision. For the systems where the casual violation of this
ssumption is not acceptable, developers could utilize an environ-
ent lock before each synchronization process. This assumption

oes not prevent multi-objective management: Different manage-
ent agents could utilize different RSA of the same system, and

erform management activities simultaneously, providing that the
ynchronization processes do not overlap.

.4. Discussion about the algorithm and the properties

We evaluate this algorithm according to the four properties we
iscussed before. In summary, this algorithm satisfies three proper-

ies in any situations, and satisfies “effective reconfiguration” when
he MA’s modification intention is reachable at the current system.

The algorithm satisfies Consistency, i.e., (as, ss) ∈ R. After the
nal backward transformation (Line 12), as and ss have the follow-

3 A duration after the MA modifies the architecture and launches the synchroniza-
ion, and before they get the resulted architecture configuration. We do not require
he environment to be stable during the time when MA modifies the architectures.
nd Software 84 (2011) 711–723 717

ing relation: as = �R(ac, ss). According to the “Correctness” property
of bi-transformation, (as, ss) ∈ R.

It satisfies Stability: (ac, sc) ∈ R ⇒ as = ac ∧ ss = sc. Since ac and
sc are consistent, i.e., (ac, sc) ∈ R, the “Hippocraticness” property of
bi-transformation ensures that the forward transformation (Line 4)
results s′

c = sc . ıd changes some state into sc (Line 5), and thus exe-
cuting ıd on some state will also return sc, so finally, ıv = �. Since
we assume that the environment is stable, executing an empty
modification will not cause the system to change, and thus we get
ss = sc. For the other part of Stability, since ss = sc ∧ (ac, sc) ∈ R ⇒ (ac,
ss) ∈ R, the “Hippocraticness” property also ensures the backward
transformation does not change the architecture, and thus we get
ac = as.

It satisfies Non-interfering Introspection: ao = ac ⇒ ss = sc.
ao = ac means that the two transformations in Lines 2 and 3 has the
same inputs. The deterministic transformation produces the same
outputs, i.e., so = sm, and thus in Line 5, ıd = �(so, sm) = �. Similar to
the above discussion, this empty change will cause no effect on the
current system, and so ss = sc.

It satisfies Effective Reconfiguration, if the MA’s desired sys-
tem modification is reachable for the current system. We first explain
the premise. The desired system modification (ıd in Line 5) is the
intention of MA’s architecture modification. We say the desired
system modification is reachable for the current system, if we can
successfully effect this modification in the current system. For-
mally, a reachable modification ı ∈ �S for the current system (s,
ε, �) must satisfies �(s, ε, ı) = s + ı.

Due to space limitation, we give only an informal proof for this
theorem. We divide MA’s architecture modification (ım = ac − ao in
Line 14) into two parts, say ım = ıms ∪ ımi. ıms is significant to the
system (like changing the link type), and the desired system mod-
ification ıd is the image of ıms in the system side. According to
the premise, after the adapter reading and writing, the ıd will be
merged into the current system, and is contained in the resulted
system state ss. In the backward transformation, ac contains ıms

and as contains its image. This implies that the transformation does
not need to break ıms to make as consistent with ss, and thus as

still contains ıms. The other part, the ımi, is insignificant to the sys-
tem (like marking a device). These modifications will never break
the consistency between architecture and system. According to the
“Hippocraticness” property, the backward transformation will keep
this modification in as. As a result, the whole ım remains in the
resulted architecture as, and thus ac − ao ⊆ as − ao.

In practical situations, we cannot ensure that the MA’s modifi-
cation is always reachable for the current system. First, MA needs
a relatively long time to make modification decisions. During this
time, the system may change and making the MA’s modification
outdated. Second, for some specific system logic and environment,
the modifications will fail or cause side-effects, and MAs cannot
predict that. It is usually a big burden if we constrain the MA to
only perform reachable modifications. As a result, in this paper,
we choose a simpler solution: we allow MA to perform any mod-
ification, and after synchronization, we inform them about the
violations to this property (the “effectiveness check” step). Such
violations help MAs understand the current system, and find rea-
sonable modifications through attempts.

5. Generating synchronizers for legacy systems

We developed a tool-set named SM@RT to help developers in

implementing our synchronization approach on different systems
to provide runtime software architectures for them. As a genera-
tive tool-set (shown in Fig. 7), from the developer’s specifications
about the system and the architecture (Layer 3), the tool-set (Layer
2) automatically generates the synchronizer (Layer 1) to maintain

718 H. Song et al. / The Journal of Systems and Software 84 (2011) 711–723

w of S

c
t

t
o
e
s
a

1

2
3
4

t
m
i
t
p
a
m
m
w

s
s
m
r
t

5

s
F
a
s

m
m
u
c

tion, and the Java code (Lines 4–8) shows how to invoke the API.
The logic for this API invocation is as follows: We get the instance
of MNClient for this device, retrieve its QoS information, and return
the network type from the information.4
Fig. 7. Overvie

ausal connection between the architecture and the system at run-
ime (Layer 0). We design this generative tool-set in two steps.

First, we provide a generic implementation of the synchroniza-
ion algorithm discussed in Section 4. This engine is independent
f architecture styles and running systems. To make this generic
ngine works for a specific legacy system and a specific architecture
tyle, we need to customize it with the following artifacts (recall the
lgorithm in Fig. 5):

. the architecture and system meta-models that guide model com-
parison,

. the relation between them to guide the transformations,

. the system adapter for manipulating the system state, and

. the XMI parser to read and write the architecture
model

Our second step is to assist developers in providing these cus-
omization artifacts. For the first two artifacts, we choose the MOF

odel and the QVT transformation language for developers to spec-
fy the meta-models and the relation, respectively. But since writing
he adapters and the parsers from scratch is tedious and error-
rone, we provide further assistance for the last two artifacts. We
utomatically generate XMI parsers from the architecture meta-
odel, and automatically generate the adapter from the system
eta-model and a declarative specification of the management API,
hich we name as “access model”.

In summary, the SM@RT tool-set has two main parts: a generic
ynchronization engine, and two generation tools. It also contains
ome auxiliary tools, like the graphical editor for specifying MOF
eta-models and the textual editor for the access models. In the

est of this section, we briefly present our implementation of the
wo major parts.

.1. Implementing the generic synchronization engine

We implement the synchronization algorithm in Fig. 5 using a
et of existing model processing tools based on Eclipse Modeling
ramework (EMF: Budinsky et al., 2003), which can be regarded as
n implementation for Essential MOF (EMOF: OMG, 2008, a core
ubset of MOF standard).
We choose an open source QVT transformation engine, the
ediniQVT (QVT, 2009), to implement the bidirectional transfor-
ations. mediniQVT is implemented on the EMF framework, and

ses the EMF generated Java classes to manipulate models. It is a
omplete QVT implementation, supporting the expressive power
M@RT toolset.

defined by QVT language, and satisfying the properties we require
as assumptions.

We apply a model comparison engine that we have developed
before (Xiong et al., 2009a) to implement the model different and
merge. This comparison engine is also implemented on the EMF
framework, conforming to the definition by Alanen and Porres
(2003). As an experimental tool, our comparison engine has some
constraints on the meta-models, i.e., any classes must have an ID
attribute and the multi-valued references are not ordered.

To work for a specific system, this generic implementation can
be customized by two meta-models defining the architecture and
system, and a QVT transformation specifying their relation. The
meta-models and the QVT transformation for our running exam-
ple are shown in Figs. 2 and 3. The attributes marked with stars are
the IDs of the classes.

5.2. Generating specific XMI parsers and system adapters

The generator for XMI parsers takes the architecture meta-
model as an input, and produces the parser automatically. We
implement this generator by directly reusing the EMF code gen-
eration facility.

The generator for system adapters takes as inputs the system
meta-model and an “access model”, and produces the adapter.
This generator is an achievement of our previous work (Song et al.,
2009), and in this paper, we just briefly introduce its input and
output.

To generate the adapter for a specific system, we require devel-
opers to provide an “access model” to specify how to invoke the
system’s management API. An access model is a set of items, each
of which defines a piece of code that implements a primitive manip-
ulation operation (get, set, create, etc.) on a specific kind of system
data (Device, Network, etc.). Fig. 8 shows one of the items in the
access model for PLASTIC, defining how to “get a device’s connection
type”. The meta element (Line 2) indicates the type of target system
element. The manipulation (Line 3) indicates the primitive opera-
4 As mentioned before, we revise PLASTIC a bit to add “network type” as a new
QoS value, and let the PLASTIC framework to choose network directly by type. Note
that this revision is not a necessary part for applying our approach. We did it just
for making this example straightforward.

H. Song et al. / The Journal of Systems a

1 @Map
2 @MetaElement=Device::Network
3 @Manipulation=Get
4 @CodeFragment=@Begin
5 MNClient mnc=(MNClient)$core;
6 QoSInfo qos=mnc.getActualNetworkQoS();
7 $result=qos.getNetworkType();

t
m
t
m
(
m
b
s
a
r
M
b

6

v
v
I
d
c

6

t
J
t
S

8 @End @EndMap

Fig. 8. Excerpt of access model for PLASTIC.

From the access model, our generator automatically produces
he system adapter. The adapter maintains an EMF compliant

odel at runtime, and external programs (like our synchroniza-
ion engine) use the standard operations to manipulate this runtime

odel, like copying the runtime model to a common static model
the read operation in the algorithm in Fig. 5), or executing the

odifications to the runtime model (the write operation). In the
ackground, the adapter synchronizes the model state with the
ystem state at real time, so that the external programs could
lways get the current system state, and their modifications on the
untime model will immediately be executed to the real system.
ore details about this low-level real-time synchronization could

e found in our previous paper (Song et al., 2009).

. Case studies

We have applied our approach on several practical systems, pro-
iding RSA support for them. These cases illustrate its feasibility and
alidity, as well as the development efficiency for implementing it.
n the following of this section, we first describe a C2-JOnAS case in
etail. Then we present other cases briefly, and summarize all the
ases.

.1. C2-JOnAS
Our first case study is to provide C2-styled runtime archi-
ecture for JOnAS. Here JOnAS (OW2, 2008) is an open source
EE application server, while C2 (Oreizy, 1998) is an architec-
ure style aiming at the runtime evolution of UI-centric systems.
ince many JEE applications are UI-centric, it is a natural idea

Fig. 9. Specifications for generati
nd Software 84 (2011) 711–723 719

to use C2-styled architecture models for managing JOnAS-based
systems.

We prepare the four inputs as shown in Fig. 9, to let the
SM@RT tool-set generate the synchronizer. We defined the archi-
tecture meta-model (Fig. 9(a)) following the description of C2 style
(Oreizy, 1998), where Architectures contain several Components
and Connectors, which link to each other through above and
below associations. We defined the system meta-model (Fig. 9(b))
according to the JOnAS document. We care about the EJBs, JDBC-
DataSources and WebModules running on a system, and a set of
their attributes. We defined the access model (Fig. 9(c)) by studying
the sample code for using JOnAS management API (Hanson, 2004).
We wrapped the Java code for deploying and un-deploying EJBs,
data sources and web modules, and for getting and setting their
attributes. The pop-up diagram shows a sample item for invoking
getAttribute method of JMX to get all kinds of attributes. Finally,
we defined a QVT transformation to connect the architecture and
system meta-models. We use five QVT relations to reflect all types
of management elements to components. Fig. 9(d) shows one of
these relations. It specifies that a Component maps to a JDBCData-
Source, if and only if they had the same name, and the Component
links to a Connector named “jdbc”.

The generated synchronizer maintains a C2-styled runtime
architecture for a JOnAS system. For this case, the target system
is a JOnAS server deployed with a Java Pet Store (JPS) application
(Sun, 2002). We launch the synchronization engine with an empty
model as the initial architecture. After the first synchronization, we
obtain an architecture model showing the current structure of the
running JPS. The left snapshot of Fig. 10 shows this model opened
in a graphical C2 architecture editor, after a manual adjustment
of the layout. At this time, the area inside the red dashed frame
is empty. This system contains one component (HSQL1) to provide
the data, several other components to organize and aggregate the
data (such as CatalogEJB and ShoppingCartEJB), and finally one
component to present the data (petstore). We use the following
two management scenarios to further show how to use the RSA and
how the synchronizer works.

We first use a simple experiment to show how to use this RSA to

tune system parameters at runtime: We write a script to continu-
ously request the SignOn component, and we soon notice that the
Pool Size of HSQL1 becomes 50, which means the data source’s
connection pool is full. So we change the Max Pool to 100 and
launch the synchronizer. After a while, we launch the synchronizer

ng C2-JOnAS synchronizer.

720 H. Song et al. / The Journal of Systems and Software 84 (2011) 711–723

C2-ba

a
m
P
(
H
d
t

b
c
m
P
r
a
d
m
i
t
w
c
(
t
b
P
t
d

6

t
J
c
s
r
i
a
c

m
m
a
J
d
t

Fig. 10. Snapshots of

gain, and the Pool Size exceeds 50. That means the database’s
aximal pool size has been successfully enlarged. Then we set Max

ool to 20,000, but after synchronization, this value becomes 9999
the upper limit of connection pool supported by this version of
SQL), and we receive a notification warning us that the change
id not succeed, suggesting us for further actions like rolling back
he modification.

Our second scenario simulates the runtime evolution case used
y Oreizy (1998). We want to add RSS (Really Simple Syndication)
apability into JPS at runtime to support subscription of pet infor-
ation. Following the typical C2-based evolution scenario, we add

roductArtist and ItemArtist components for organizing the
aw data as products (a product represents a pet breed; Sun, 2002)
nd items (same breed of pets from different sellers are regarded as
ifferent items), respectively, and add the rss component for for-
atting the data as an RSS seed. These new components are shown

nside the red box in Fig. 10. We implement these components as
wo EJBs and one web module, and then launch the synchronizer,
hich automatically deploys them onto the JOnAS server. Now we

an subscribe an RSS seed with all items via “http://localhost/rss”
top-right of Fig. 10). After that, we find the item information is
oo tedious, and want to see if the product information will be
etter. We just change the link above rss from ItemArtist to
roductArtist, and launch the synchronization again. The sys-
em behavior is changed immediately, and we get an RSS seed with
ifferent contents, from the same address (bottom-right of Fig. 10).

.2. Client/Server-JOnAS

The second case study is a combination of the first one and
he running example. We provide a Client/Server-styled RSA for
OnAS, where the server represents the data source and the
lients represent the EJBs interacting with this data source. The
erver and the clients all have a resource attribute, which rep-
esent the data source’s max connection pool and the EJB’s
nstances amount, respectively. This RSA is useful for database
dministrators to see how the data source interacts with other
omponents.

To construct the synchronizer, we directly reuse the meta-
odel we have defined for Client/Server style (Fig. 3), and the

eta-model and access model for JOnAS (Fig. 9). We write
new QVT transformation to specify that Server maps to

2EEDataSource, and Client maps to the EJB that depends on this
ata source, and their attributes map correspondingly. This QVT
ransformation has 56 lines in total.
sed JEE management.

We perform a self-adaptation scenario on this RSA, imitating
the one presented by Garlan et al. (2004). We specify the self-
adaptation rule using an extended version of OCL (Song et al., 2007).
context Server do

let sum:Real=self.link->

collect(e|e.client.consumption)->sum()

in sum > self.resource => self.resource <- sum

At the architecture level, this rule means that if a server’s resource
is less than the sum of all its clients’ consumption, then enlarge this
server’s resource. We input this rule to the extended OCL engine,
and execute “synchronize, OCL-execute, synchronize” every five
minutes. The effect on JOnAS system is automatically enlarging the
data source’s connection pool, when the sum of EJB’s instance size
(an instance implies a potential database connection) exceeds the
data source’s maximal connection pool size.

6.3. Other case studies

Besides the running example on PLASTIC, and the above two
cases on JOnAS, we also performed several other cases on different
platforms, implementing different kinds of RSAs. We perform these
cases based on the system adapters we have generated in our earlier
work (Song et al., 2009).

Jar-UML. We wrap the BCEL (Byte Code Engineering Library,
http://jakarta.apache.org/bcel/) API to reflect the class struc-
ture inside a Jar file, and write a QVT transformation to
map this Java-specific class structure with the UML class
diagram. This case is a reproduction of the Jar2UML tool
(http://ssel.vub.ac.be/ssel/research/mdd/jar2uml). It is a weakened
case of RSA, since it only supports the introspection of class struc-
tures, without reconfiguration.

Eclipse-GUI. The target system for this case is any Eclipse win-
dow (views, editors, dialogs, etc.). We generate a system adapter to
reflect the SWT widgets (buttons, text box, containers, etc.) consti-
tuting the window. The architecture model is a generic GUI model
constituted of components connected with composition relations.
Using this RSA, developers can change the attributes of the widgets
dynamically, such as the text, the background color, etc. They can
also add or remove widgets into the window at runtime.

6.4. Summary and discussion
Table 1 lists all the cases we have introduced in this paper. In
this section, we summarize these cases to evaluate and discuss
our RSA approach in three aspects. We first discuss the application
scope of this approach, including what target systems it applies to

http://localhost/rss
http://jakarta.apache.org/bcel/
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml

H. Song et al. / The Journal of Systems and Software 84 (2011) 711–723 721

Table 1
Summary of the cases. For each target system, we list the platform name, the size of system meta-model (the total number of model elements, including classes, attributes,
associations), and the size of access model (lines of code). For the architecture, we list the name of style or ADL, and the size of architecture meta-model (for the last two
cases, we reuse the existing ADL and tools, without defining meta-models). Then we list the size of QVT (lines of code), and the approximate upper bound of time spent (in
seconds) for a single synchronization. Finally, we briefly describe the type of management activities we have tried on these RSAs.

Target system Architecture QVT Time max Usage

Platform mm acc Style mm

1 PLASTIC 6 547 C/S 15 15 0.5 Dynamic configuration
2
1

a
t
e
i
t
m

6
6
A
s
c
t
f
g

6
r
e
s
(
c
t
u

6
A
b
u
s
B
t
m
a
a
n
A
r
e
(
f
a
c
v

6

t
a
f
t

t

2 JOnAS 61 237 C2
3 JOnAS 61 237 C/S
4 BCEL 29 124 UML
5 SWT 43 178 ABC

nd what kind of RSA usages it supports. Then we evaluate how
his approach supports these RSA usages on the target systems,
mphasizing on how the four properties (Section 3.1) are embod-
ed in these cases. Finally, we show its practicability, i.e., it is easy
o implement this approach on different systems, and the imple-

entations have acceptable performance.

.4.1. Application scope

.4.1.1. This approach applies to a wide range of target systems.
ccording to Table 1, we have applied it on four different kinds of
ystems, covering enterprise (JOnAS), desktop (SWT), and mobile
omputing systems (PLASTIC). Actually, whether it applies to a par-
icular system depends on whether we can construct the adapter
or this system, and Song et al. (2009) has revealed that we can
enerate adapters for a wide range of systems.

.4.1.2. This approach supports typical RSA usages. The above cases
eproduces several typical RSA usages presented in classical lit-
ratures (like the runtime evolution in Oreizy, 1998, and the
elf-adaptation in Garlan et al., 2004) and the ordinary usages
like reversing the class structure of jar files or dynamically
onfiguring the GUI). With this conclusion, we can expect that
his approach has the potential to support a wide range of RSA
sage.

.4.1.3. The usage of RSA depends on the capability of the management
PI. We realize runtime evolution and self-adaptation on JOnAS,
ecause its JMX API supports deploying components and config-
ring their parameters at runtime. On the contrary, we do not
upport changing the UML model reflected from Jar files, because
CEL does not support changing the class structures. That means
he RSA usage is mainly limited by the capability of the manage-

ent APIs. This limitation is reasonable, for the current goal of this
pproach is to help management agents to utilize the existing man-
gement capabilities of the target systems in an RSA-based way, but
ot to instrument the systems with new management capabilities.
ctually, the usage is also influenced by the adapter and the QVT
elation. However, we have showed that we can generate the strong
nough adapters to wrap all the provided management capabilities
Song et al., 2009), and we also believe that as the standard trans-
ormation language, QVT is capable of relating the system with any
rchitecture model (this could also be demonstrated weakly by the
ases, because we define all the required relations as QVT rules, in
ery small sizes).

.4.2. Evaluation about the four properties
This section evaluates if we provide the right RSAs for run-

ime management. We have define the right RSA by four properties,

nd proved that our approach satisfies these properties. The cases
urther demonstrate that these properties are necessary and impor-
ant for RSA-based runtime management.

Obviously, in all the cases, the synchronization satisfies Consis-
ency, otherwise the reasoning upon the RSA is meaningless. Notice
9 157 2 Runtime evolution
7 56 1 Self-adaptation
– 139 6 Reverse engineering
– 104 1 Dynamic configuration

that even the modification has exceptions, like we assign a too big
value to the pool size in case #2, the resulted architecture is also
consistent with the resulted system state. This ensures the man-
agement agents always plan their activities based on the genuine
current system state.

Non-Interfering Introspection ensures that all the system changes
are reflected immediately. Therefore, in the self-adaptation case
(#3) the adaptation engine observes the situation of too many
resource consumptions on time, to make proper changes.

The synchronizer satisfies Effective Reconfiguration for the rea-
sonable architecture modifications, like the change of maximal pool
size to 100 and the addition of components. But the change of
maximal pool size to 20,000 is not effectively reconfigured to the
system. This is not the fault of the synchronizer, but because we, as
the administrator, performed an invalid modification. The synchro-
nizer raises a warning to help us notice and analyze this failure.

Finally, the synchronizer satisfies Stability, and thus the tuning
on the architecture layout (case #2) is preserved after the synchro-
nizations. This property also allows the management activities to be
performed step by step. Take the evolution scenario in case #2 as an
example, we can first add a component without connecting it with
any connectors. At this step, the relation is not broken, and thus we
can still execute the synchronization to see the system changes,
before we go on to finish configuring this new component.

6.4.3. Implementation efficiency and execution performance
This section discusses how much effort is required to imple-

ment RSA on a particular system, and how it works in practical
environment.

The major benefit of our approach is that it enables developers to
efficiently implement runtime architecture on existing systems. The
case studies highlight this benefit. The RSA we provide for JOnAS
is not a trivial one: It reflects 6 kinds of management elements
(supporting adding and removing most of them) and 54 kinds of
attributes (with 12 of them writable), but to implement it, we only
defined four model-level specifications (as shown in Fig. 9), with
90 model elements and 394 lines of code in total. The whole work
takes us only 2 full days, from study, specification to debugging. The
generated code contains 27,024 lines of code. The other cases also
use inputs in small sizes to generate complex code. By contrast, a
case study in the Rainbow project costs 102 K lines of manual code
(Garlan et al., 2004), and the case in C2 project costs 38K lines of
code (Oreizy, 1998). Although the cases and the contrasts are not
directly matched, the code size at least reveals that our generative
tool-set could save developers’ effort. The efficiency depends on
the complexity of RSA usages, as well as the type of the target plat-
form. For commercial solutions, like JOnAS and SWT, we write small
code for a big architecture meta model (bigger architecture sup-

ports more powerful management capabilities), in contrast with
the academics prototype platform like PLASTIC.

The cases also reveal the potential of reuse supported by our
approach. For case #3, we reuse the system specifications on JOnAS
(case #2), and add only two attributes on the C/S architecture

7 tems a

m
t

p
m
m
i
U
t
t
a
p
p
h
a
o
#
c
n
F
n
l
J
a
d
f
i
s
v
a
w

c

s
i
F
v
s
m
t
A
c

s
a
c
m
Q
a
d

7

t
t
l
a

(
l
i
l
o

22 H. Song et al. / The Journal of Sys

eta-model (case #1). Reuse will further increase the efficiency
o implement our approach.

The performance of this synchronizer is acceptable for human
articipant runtime management. We define acceptable perfor-
ance with the reference to the existing and widely used runtime
anagement tools. For JOnAS, the official runtime management

nterface is a web-based management console, the jonasAdmin.
sing this default console, after each modification, the administra-

or has to wait about 1 s (depending on the environment) before
he page is refreshed. For Java class structure, using eclipse JDT, it
lso takes about 1 s to expend the full structure of a medium-sized
ackage (1000 classes). Since these tools are already widely used in
ractical runtime management, and also considering the delay of
uman decision, we regard the synchronization time around 1 s
s acceptable for manual runtime management. From this point
f view, case #1, #2 and #5 are acceptable. For case #1 and case
5, the average synchronization time for all kinds of architecture
hanges is 0.31 and 0.85 s, respectively. For case #2, the synchro-
ization time varies for different kinds of architecture changes.
or example, changing the pool size and adding the RSS compo-
ents (case #1) take 0.75 and 1.37 s in average. Case #4 takes

onger time: Constructing the UML model from scratch for a large
ar file (bcel.jar itself) with 1155 classes takes 5.62 s on aver-
ge. The good news is that for such reverse engineering task, we
o not often need to construct the system architecture. However,
or automated management, like case #3, the performance is not
deal: The self-adaption loop takes 0.81 s in average. That means the
elf-adaptation loop has to be performed in a much longer inter-
al, in order to avoid too heavy system burden. So currently, our
pproach is only proper to the automated management scenarios
hich handle the not-so-frequent system changes.

There are complex factors that affect the performance of syn-
hronizers.

First, the execution time of synchronization process is con-
tituted of the time spent on QVT transformation and the API
nvocations. The latter plays the leading role in the current cases.
or example, the difference of the two scenarios in case #1 (0.75 s
s 1.37 s) is caused by the fact that deploying an EJB costs 0.6 s while
etting an attribute is almost transient. Similarly, case #4 takes so
uch time mainly because it had to invoke the BCEL for so many

imes to collect the information about the one thousand classes.
lternatively, the time spent by the model transformation is almost
onstant for the existing cases (between 0.5 and 1 s).

Second, the performance is affected by both the complexity (the
ize of meta-models and the QVTs) and the scale (the size the final
rchitecture model for a specific scenario) of the RSA. The current
ases show that the scale is more important (case # 4 takes much
ore time than others). We have tested mediniQVT with complex
VT rules, and found that the execution time becomes unaccept-
ble when the QVT rules reach 1000 lines. But so far, the RSA cases
o not require so complex relations.

. Related work

Using software architecture for runtime management is a hot
opic in the recent decade, and much work has been devoted to
he high-level representation and utilization of RSA, and the low-
evel mechanisms for maintaining causal connection between an
rchitecture model and a running system.

For the representation and utilization of RSA, Kramer and Magee

1990) first propose to represent system structures as nodes and
inks, and allow people to manage the system by adding, remov-
ng or replacing these nodes and links. Oreizy (1998) propose a
ayered architecture style named C2 to support runtime evolution
f GUI-centric systems. Garlan et al. (2004) propose using RSA for
nd Software 84 (2011) 711–723

policy-driven self-adaptation, and their policies originate from the
design time architecture constraints. Oreizy et al. (2008) surveyed
many relevant approaches, and summarized several typical archi-
tecture styles. Huebscher and McCann (2008) also surveyed several
approaches, focusing on the ones that use RSA for self-adaptation.
In this paper, we do not focus on a specific representation or usage
of RSA, but the generic approach to implement RSAs in different
styles, supporting different usages.

Current approaches employ different mechanisms to maintain
the causal connections between architecture models and running
systems. We roughly classify the mechanism into three kinds,
according to their degree of coupling with the target systems. First,
some early approaches require the target systems to be devel-
oped with built-in RSA support. For example, Oreizy (1998) require
their target systems to developed under the Java-C2 framework.
To use Fractal architecture at runtime (Bruneton et al., 2004), the
system classes must implement the interfaces defined by Fractal.
This requirement limits their applicability in practice. Second, some
approaches allow the target systems to be developed under indus-
trial standards, but enhance their runtime platforms (middlewares)
with RSA mechanisms. These approaches are also known as “reflec-
tive middleware”, covering many mainstream component models,
like DynamicTAO (Kon et al., 2000) and OpenORB (Blair et al., 2002)
for CORBA, and PKUAS (Huang et al., 2006) for JEE. The problem here
is that these platforms are not yet well accepted in practice, and
thus few existing systems are constructed on them. Third, some
researchers try to insert probes and effectors into existing sys-
tems to collect runtime data, organize them as architecture model,
and effect architecture modifications (Garlan et al., 2004; Schmerl
et al., 2006). But since most existing systems are not designed for
code-level evolution, inserting code into them, if possible, is usually
tedious and unsafe. Our approach is close to the third type in that
we also seek to provide a generic mechanism for existing systems,
but we choose a safer way, utilizing the low-level management APIs
provided by the existing systems.

Another advantage of our approach is its ease of application:
To bridge the abstraction gap between architecture and system,
developers only need to provide a declarative specification about
their relation. Some approaches embed similar ideas. Chan and
Chuang (2003) allow developers to map detailed system events
into abstract architecture events using a simple event composition
language, and Schmerl et al. (2006) develop a more sophisticated
language to map events. Taking the specification, their event trans-
formation engines causally connect the architecture and system
during runtime. In this paper, we choose model transformation
language for specifying state-based (not event-based) relations
between architectures and systems, which is proper to the way
of manipulating system states through active APIs invocations (not
by passive event notifications).

Our general solution for architecture–system synchroniza-
tion has its root in the research on bidirectional transformation
(Czarnecki et al., 2009) and model synchronization (Vogel et al.,
2009). We applied this technique to a novel field, i.e., synchronizing
a common model (the architecture) with a dynamically changing
model (the system), and thus we meet some new challenges like
conflicting changes.

8. Conclusions

In this paper, we presented a synchronization approach to main-

taining runtime software architectures for a wide range of existing
systems. We applied bidirectional model transformation to bridge
the abstraction gap between architecture models and system states,
and adapted bidirectional transformation to handle conflicting
changes and identify modification failures. This approach satisfies

tems a

a
i
t
a
a
t

m
I
a
c
p
m
m
b
m
r
d
t
o
a
t

o
t
f
t

A

o
e
6
C
P
E

R

A
B

B

B

B

B

C

C

C

F

G

H
H

H

H. Song et al. / The Journal of Sys

set of well-defined properties, i.e., Consistency, Non-interfering
ntrospection, Effective reconfiguration, and Stability, which ensure
he validity of the RSAs for runtime management. We also provided

generative tool-set to assist developers in implementing this
pproach on different running systems. We applied our approach
o provide RSAs for some practical systems.

Our approach requires the target systems to have low-level
anagement capabilities, usually some kinds of management APIs.

t could also utilize other forms of management capabilities, such
s configuration files, system commands, etc., provided that people
ould define how to manipulate them as pieces of code. But in this
aper, we use only management APIs as examples. Since runtime
anagement becomes an important concern for modern systems,
ore and more systems provide such low-level management capa-

ilities. Our approach is an effort to link such existing low-level
anagement capabilities with the research on architecture-based

untime management. An issue here is how to help developers
etermine if the management API is sufficient for a particular archi-
ectural adaptation. We have an approach to analyze the capability
f system API (Song et al., 2010), and we plan to provide a QVT
nalysis support to find out if the architecture operations used by
he architecture adaptation is included in API capability.

Currently, our approach cares only about the structural aspect
f RSA. That means after each synchronization, the resulted archi-
ecture configuration is a snapshot of the current system state. In
uture, we will investigate how to analyze a series of such snapshots
o obtain the behavioral models for the system.

cknowledgements

This work is sponsored by the National Basic Research Program
f China under Grant No. 2009CB320703; the National Natural Sci-
nce Foundation of China under Grant No. 60873060, 60933003,
0821003; the High-Tech Research and Development Program of
hina under Grant No. 2009AA01Z116; the EU Seventh Framework
rogramme under Grant No. 231167; the Program for New Century
xcellent Talents in University.

eferences

lanen, M., Porres, I., 2003. Difference and union of models. In: UML , pp. 2–17.
lair, G., Bencomo, N., France, R., 2009. Models@ run.time. Computer 42 (10),

22–27.
lair, G., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parlavantzas,

N., 2002. Reflection, self-awareness and self-healing in OpenORB. In: The First
Workshop on Self-healing Systems , pp. 9–14.

lair, G., Coulson, G., Robin, P., Papathomas, M., 1998. An architecture for next gen-
eration middleware. In: IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing.

runeton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J., Rhone-Alpes, I., 2004.
An open component model and its support in Java. In: CBSE , pp. 7–22.

udinsky, F., Brodsky, S., Merks, E., 2003. Eclipse Modeling Framework. Pearson
Education, http://www.eclipse.org/modeling/emf.

han, A.T.S., Chuang, S.-N., 2003. MobiPADS: a reflective middleware for context-
aware mobile computing. IEEE Trans. Softw. Eng. 29 (12), 1072–1085.

uadrado, J., Molina, J., 2009. A model-based approach to families of embedded
domain-specific languages. IEEE Trans. Softw. Eng. 35 (6), 825–840.

zarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J., 2009. Bidi-
rectional transformations: a cross-discipline perspective. Theory Pract. Model
Transform., 260–283.

rance, R., Rumpe, B., 2007. Model-driven development of complex software: a
research roadmap. In: Future of Software Engineering (FOSE) in ICSE’07 , pp.
37–54.

arlan, D., Cheng, S., Huang, A., Schmerl, B.R., Steenkiste, P., 2004. Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37
(10), 46–54.
anson, J., 2004. Pro JMX: Java Management Extensions.
uang, G., Mei, H., Yang, F., 2006. Runtime recovery and manipulation of soft-

ware architecture of component-based systems. Autom. Softw. Eng. 13 (2),
257–281.

uebscher, M.C., McCann, J.A., 2008. A survey of autonomic computing – degrees,
models, and applications. ACM Comput. Surv. 40 (3), 1–28.
nd Software 84 (2011) 711–723 723

ikv++, 2009. mediniQVT., http://projects.ikv.de/qvt.
IST STREP Project, 2008. PLATIC Multi-radio Device Management – Developer Guide.,

http://www.ist-plastic.org/.
Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhã, C., Campbell, R., 2000. Mon-

itoring, security, and dynamic configuration with the dynamicTAO reflective
ORB. In: Middleware , pp. 121–143.

Kramer, J., Magee, J., 1990. The evolving philosophers problem: dynamic change
management. IEEE Trans. Softw. Eng. 16 (11), 1293–1306.

Kramer, J., Magee, J., 2007. Self-managed systems: an architectural challenge. In:
Future of Software Engineering (FOSE) in ICSE , pp. 259–268.

OMG, October 2006. Meta Object Facility (mof) Core Specification. Available Speci-
fication ptc/04-10-15. OMG.

OMG, 2008. Catalog of OMG Modeling and Metadata Specifications.,
http://www.omg.org/technology/documents/modeling spec catalog.htm.

Oreizy, P., Medvidovic, N., Taylor, R.N., 1998. Architecture-based runtime software
evolution. In: ICSE , pp. 177–186.

Oreizy, P., Medvidovic, N., Taylor, R.N., 2008. Runtime software adaptation: frame-
work, approaches, and styles. In: ICSE, Companion Version , pp. 899–910.

OW2 Consortium, 2008. JOnAS Project. Java Open Application Server.,
http://jonas.objectweb.org.

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H., 2006. Discovering architectures
from running systems. IEEE Trans. Softw. Eng. 32 (7), 454–466.

Sicard, S., Boyer, F., De Palma, N., 2008. Using components for architecture-based
management: the self-repair case. In: The 30th International Conference on
Software Engineering (ICSE) , pp. 101–110.

Song, H., Huang, G., Xiong, Y., Chauvel, F., Sun, Y., Mei, H., 2010. Inferring meta-
models for runtime system data from the clients of management APIs. In:
MODELS (2) , pp. 168–182.

Song, H., Sun, Y., Zhou, L., Huang, G., 2007. Towards instant automatic model refine-
ment based on OCL. In: APSEC , pp. 167–174.

Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H., 2009. Generating syn-
chronization engines between running systems and their model-based views.
In: Models in Software Engineering, the MoDELS Workshops (LNCS 6002) , pp.
140–154.

Stevens, P., 2007. Bidirectional model transformations in QVT: semantic issues and
open questions. In: MoDELS , pp. 1–15.

Sun, 2002. Java PetStore., http://java.sun.com/developer/releases/petstore/.
Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B., 2009. Incremental model

synchronization for efficient run-time monitoring. In: Models in Software Engi-
neering, the MoDELS Workshops (LNCS 6002) , pp. 124–139.

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H., 2009a. Supporting automatic
model inconsistency fixing. In: ESEC/FSE ,. ACM, pp. 315–324.

Xiong, Y., Song, H., Hu, Z., Takeichi, M., 2009b. Supporting parallel updates with
bidirectional model transformations. In: ICMT , pp. 213–228.

Hui Song is a PhD candidate of computer science in Peking University, China. His
research interests include model-driven engineering and run-time system manage-
ment.

Gang Huang is an associate professor at Peking University. He received his PhD in
2003 from Peking University. His research interests are in the area of distributed
computing with emphasis on middleware, including the construction and man-
agement of middleware, software engineering with emphasis on component based
development and software architecture, and Internetware which is a new paradigm
for software of Internet as a Computer.

Franck Chauvel is a post-doctoral researcher in Peking University. He received his
Ph.D. degree in Computer Science from the University of South Britanny (France)
in 2008. He is now researching into the field of design and implementation of self-
adaptive systems.

Yingfei Xiong is a post-doctoral fellow at the Generative Software Development
Lab in the University of Waterloo. He received his PhD degree from the University
of Tokyo. His research focus on consistency management, including bidirectional
transformation, fix generation and change tracking.

Zhenjiang Hu is a professor of National Institute of Informatics in Japan. He received
his PhD degree from Department of Information Engineering of University of Tokyo
in 1996. His main interest is in programming languages and software construction
in general, and functional programming, program transformation and model driven
software development in particular.

Yanchun Sun is an associate professor of computer science at Peking Univer-
sity. She holds a PhD degree in Computer Science from Northeastern University.
Her research interests include software engineering theory, software engi-
neering supporting environment, software reuse and component technology,
software architecture, computer supported cooperative work, and software project
management.

Hong Mei is a Professor and PhD Advisor in the Department of Com-

puter Science and Technology, Peking University. He received his Doctorate
degree in Computer Science from Shanghai Jiao Tong University in 1992. His
current research interests include Software Engineering and Software Engi-
neering Environment, Software Reuse and Software Component Technology,
Distributed Object Technology, Software Production Technology, and Programming
Language.

	Supporting runtime software architecture: A bidirectional-transformation-based approach
	Introduction
	Runtime software architecture
	An illustrative example
	A formal description of runtime software architecture
	Architecture models
	Runtime system states
	Causal connections

	Maintaining causal connections by architecture–system synchronization
	The four properties
	The challenges

	Architecture–system synchronization based on bidirectional transformation
	Enabling techniques
	Bidirectional transformation
	Model difference and merge
	System-model adaptation

	The synchronization algorithm
	Assumptions
	Our algorithm depends on the following assumptions.

	Discussion about the algorithm and the properties

	Generating synchronizers for legacy systems
	Implementing the generic synchronization engine
	Generating specific XMI parsers and system adapters

	Case studies
	C2-JOnAS
	Client/Server-JOnAS
	Other case studies
	Summary and discussion
	Application scope
	This approach applies to a wide range of target systems
	This approach supports typical RSA usages
	The usage of RSA depends on the capability of the management API

	Evaluation about the four properties
	Implementation efficiency and execution performance

	Related work
	Conclusions
	Acknowledgements
	References

