
78

A Java Library for Bidirectional XML

Transformation

Dongxi Liu Zhenjiang Hu Masato Takeichi

Kazuhiko Kakehi Hao Wang

We propose a Java library BiXJ for bidirectional XML transformation. A bidirectional transformation gen-

erates target XML documents from source XML documents in forward transformations, and updates source

documents by reflecting back modifications on target documents in backward transformations. The benefit

of using BiXJ is that users can get the corresponding backward transformation automatically just by writing

one forward transformation. BiXJ has addressed several limitations of the existing bidirectional transforma-

tion languages, and can be used for general purpose XML processing. For example, this library provides a

way to write bidirectional XPath expressions, which is widely used to locate and extract data from XML

documents. To validate the usability and expressiveness of BiXJ, we have bidirectionalized some typical

examples of XQuery and XSLT using this library. The results of these experiments are promising.

1 Introduction

XML is widely used as the de facto standard for-

mat of data exchange or repository. XML docu-

ments often need to be transformed for different

reasons. For example, an XML file is transformed

into HTML format for displaying in Web browsers,

or transformed into a small XML file containing

only interesting data for users. In some cases, the

target XML documents generated by transforma-

tions are probably modified by users to update

some data or to correct some errors, and it is de-

sirable that these modifications on the target docu-

ments can be reflected back into source documents.

However, the current popular XML transforma-

双方向 XML変換のための Java ライブラリ.

劉 東喜, 胡 振江, 武市 正人,東京大学 大学院情報理工学系
研究科 数理情報学専攻, Department of Mathematical

Informatics, The University of Tokyo.

筧 一彦, 東京大学産学連携本部, Division of University

Corporate Relations, The University of Tokyo.

王 浩, 東京大学 大学院情報理工学系研究科 創造情報学
専攻, Department of Creative Informatics, The Uni-

versity of Tokyo.

コンピュータソフトウェア,Vol.XX,No.X(200X), pp.XX–

XX.

[論文] 2005 年 yy 月 zz 日受付.

tion languages, such as XSLT [1] and XQuery [2],

perform transformation only in one direction, gen-

erating target documents from source documents.

As a result, modifications on target documents can-

not be reflected back into the source documents

without using other separate mechanisms.

This work presents a Java library BiXJ for bidi-

rectional XML transformation. A bidirectional

transformation program can be executed in two di-

rections: forward direction and backward direction.

The forward transformation transforms a source

XML document into a target document, while

the backward transformation transforms the target

document (probably modified) together with the

original source document into the updated source

document. After the backward transformation, the

modifications in the target document will be re-

flected back into the source document. When writ-

ing BiXJ transformations, users just need to con-

sider how to generate the expected target docu-

ments from source documents, which is a similar

programming paradigm as that of using XSLT and

XQuery. With BiXJ, no extra efforts or other sep-

arate mechanisms are needed for users to update

source documents after target documents are mod-

ified. The only work they need to do is to execute

their BiXJ programs backwardly.

Vol. 16 No. 5 1999 79

In BiXJ, each language construct is defined with

two meanings: one for forward transformations and

the other for backward transformations. This style

of bidirectional transformation techniques has been

proposed in the literature [3] [4]. However, the

languages in [3] [4] are both domain-specific. The

language in [3] is designed for synchronizing tree-

structured data, and the language in [4] is mainly

used in an editor for editing tree-structured data.

Because of their domain-specific purposes, these

languages have several limitations when they are

used as general purpose XML processing languages.

First, these languages do not take the standard

XML data model [5], which is a tree with or-

dered labeled nodes or non-labeled data nodes (i.e.,

text content). The language in [3] takes a tree-

structured data model that only allows unordered

labeled nodes without repeated labels, and the lan-

guage in [4] uses a model which does not allow non-

labeled data nodes.

Second, a transformation in these languages can

only generate one target XML element, which is too

restrictive for XML transformations. For example,

if a book element contains one title element and

more than one author elements, then extracting

the author information from this book element will

return a sequence of author elements. XQuery and

XSLT allow to return more than one elements in

their transformation results.

Third, these languages use their own specific

methods to destruct tree-structured data, which

are probably unnatural for users who have been fa-

miliar with the existing XML transformation lan-

guages. For example, the construct hoist in [3]

and hoistX in [4] return a child element if the

source document contains only this element as its

child. However, in XML transformation, a widely

accepted way is to use XPath [6] to locate and ex-

tract data from XML documents, which is used in

both XQuery and XSLT.

Fourth, the view updating semantics of these lan-

guages is too restrictive. This semantics gives con-

ditions on whether a bidirectional transformation is

well-behaved [3]. That is, whether it can correctly

reflect modifications in target documents back into

source documents. Under this restrictive seman-

tics, to guarantee the well-behavedness of trans-

formations written in these languages, some rea-

sonable modifications on target data or the expres-

siveness of transformation languages have to be re-

stricted. This problem is discussed more in Section

4.

In this work, BiXJ is designed to extend the

expressiveness and usability of these existing lan-

guages, so that it can be used for general purpose

XML processing. In order to design such library,

we have to address the first three limitations dis-

cussed above. However, we are in a dilemma be-

cause the fourth limitation does not allow us to

make too much extensions, otherwise the transfor-

mations written in the extended language are prob-

ably not well-behaved. Our approach in this work

is to seek a more flexible view updating semantics

for bidirectional transformations, and then under

this semantics to extend the existing languages.

To demonstrate its expressiveness and usability, we

have used BiXJ to bidirectionalize some typical ex-

amples of XQuery and XSLT.

Since this library is written in Java, it can be

applied in any case where Java is used to process

XML documents, and moreover bidirectional trans-

formations are expected. For example, Java is one

of the most popular languages to implement web

service [7], so with this library, a Java program can

not only provide interesting XML data for clients,

but also update the original source XML data on

web servers after receiving the modified data from

clients. On the other hand, the transformation con-

structs in this library can also be represented as

XML elements and then interpreted using the cor-

responding Java classes at runtime. This provides

a convenient way for users to write BiXJ programs

if they do not know Java or their programs are not

used together with Java programs. The Java in-

terface of BiXJ and its XML representation will be

described in detail in Section 3.

The main contribution of this paper is the de-

sign and implementation of a Java library BiXJ for

bidirectional XML transformation, which addresses

the limitations of the existing bidirectional trans-

formation languages from the following aspects:

• BiXJ uses the standard XML data model and

allows to construct or destruct XML docu-

ments in a similar way as that in current XML

transformation languages. For example, the

child and descendant axes of XPath are sup-

ported in BiXJ, and with them we have demon-

strated how to make XPath expressions bidi-

80 コンピュータソフトウェア

rectional.

• We define a more flexible semantics of

bidirectional transformations, which underlies

the well-behavedness of BiXJ transformations

without restricting its expressiveness and rea-

sonable modifications on target documents.

• The transformations written in BiXJ can

be updated after backward execution be-

cause some modifications on target documents

should be reflected back into transformations

rather than into source documents.

• BiXJ provides flexible ways to write transfor-

mations, i.e., in Java class or in XML format,

and it is expressive enough to bidirectionalize

typical use cases of XQuery and XSLT.

The remainder of this paper is organized as fol-

lows. Section 2 gives a practical scenario of us-

ing the bidirectional XML transformation. Section

3 overviews the library BiXJ. Section 4 discusses

some issues in designing BiXJ. Section 5 describes

the transformations in the library in detail. Sec-

tion 6 gives examples of bidirectionalizing typical

XQuery and XSLT transformations. Section 7 dis-

cusses the related work and Section 8 concludes the

paper and gives the future work.

2 Bidirectional Transformation in Use

Consider the following XML fragment, which

contains some book information. The top element,

tagged by books, contains three child book ele-

ments. Each book element contains the child el-

ements title, author, year and publisher.
<books>

<book>

<title>Computer Programming</title>

<author>Tom</author><year>2003</year>

<publisher>Now Century</publisher>

</book>

<book>

<title>Data Structure</title>

<author>Peter</author><year>2005</year>

<publisher>Great Press</publsher>

</book>

<book>

<title>Computer Graphecs</title>

<author>Tom</author><year>1999</year>

<publisher>ACM Press</publisher>

</book>

</books>

Suppose that this XML is stored on a web server.

The web service on this server allows authors to

select the books they wrote for checking and cor-

recting error information, or ordinary customers to

request the information of their interesting books.

For the request from authors, the server performs

forward transformations and returns elements with

the tag mybooks, while for the request of ordi-

nary customers it generates elements tagged by

interestingbooks.

For example, when the author Tom wants the

title and publisher information of his books, the

server should transform the above source document

into the following one:
<mybooks>

<book>

<title>Computer Programming</title>

<publisher>Now Century</publisher>

</book>

<book>

<title>Computer Graphecs</title>

<publisher>ACM Press</publisher>

</book>

</mybooks>

Unfortunately, Tom finds several errors in the

above document: “Now” in the publisher element

of the first book should be “New” , and “Graphecs”

in the title element of the second book should

be “Graphics”. After correcting these errors, Tom

sends this changed document back to the server and

the server will perform a backward transformation

to update the source document.

Later, a customer asks the server to list the ti-

tle, author and publisher information of the books

published before the year 2000. Then, after a for-

ward transformation, the server answers with the

following XML data:
<mybooks>

<book>

<title>Computer Graphics</title>

<author>Tom</author>

<publisher>ACM Press</publisher>

</book>

</mybooks>

Note that this document contains the correct

book title now. This scenario is depicted in Fig-

ure 1.

3 Overview of BiXJ

Our library is built on JDOM [8], which provides

an easy way to process XML document in Java.

The class Element in JDOM abstracts the elements

in XML documents and operations on them. In this

Vol. 16 No. 5 1999 81

Web Server Clients

Transformation
in BiXJ

Forward

Backward
S

c

Tom

Customer

XML data

XML data

Fig. 1 A Scenario of Bidirectional

Transformation

work, we refine the class Element into three sub-

classes SrcElement, TgtElement and CodeElement

to help users to understand the roles of elements

in transformation. The first two subclasses corre-

spond to the source and target elements, respec-

tively, and the third subclass will be introduced

later.

The interface of BiXJ transformation is defined

as in Figure 2. In this interface, the methods

tranForward and tranBackward perform the for-

ward and backward transformations, respectively.

However, unlike the corresponding get and put in

[3], these two methods take lists of elements as their

source and target data. In XML transformation,

it is more interesting that the target data is a list,

but when we compose two transformations, the first

transformation may return a list of elements, and

the second takes this list as its input, so the source

data in these methods is also given a list type.

The method dump is specific to this library. For

a runtime object of type XAction, this method re-

turns an XML fragment of type CodeElement that

represents this transformation object. In BiXJ,

transformations can be updated during backward

executions, where the state of transformation ob-

jects (i.e. some fields) are changed. The dump

method is used to output the updated transfor-

mations to users. In Section 5, we will see some

constructs in BiXJ that update transformations in

backward executions, such as XConst. In addition,

the class CodeElement has the method used to in-

terpret a code element as a transformation object

during runtime.

We provide two ways to represent BiXJ transfor-

mation in Java class or by code element. Our de-

sign purpose is that Java class will be used by Java

programmers when writing Java programs to imple-

ment bidirectional XML transformations, and code

element will be used by users who do not know Java

or their applications are not Java applications. We

can imagine the following interesting applications

for the second representation:

• Code elements can be used as the intermedi-

ate code when translating the expressions of

high level transformation languages into bidi-

rectional transformations in BiXJ. The XML

representation is more compact, so the trans-

lation result is more readable. In the exam-

ples of Section 6, code elements are used to de-

scribe the typical transformations of XQuery

and XSLT.

• Code elements provide a means of modify-

ing transformation objects at runtime. After

dumping a transformation object into a code

element, this element will be processed like

an ordinary XML element, and then it can

be interpreted as a new transformation object

again. This technique can help implement self-

adjusting transformations. As we will see, the

implementation of xmap uses this technique to

update its argument transformation.

• Code elements can be incorporated into XML

documents to construct Programmable Struc-

tured Documents (PSD) [9]. For example, sup-

pose that there is a book document containing

a child element for the table of contents and

more than one child elements for chapters, and

the table of contents consists of all chapter ti-

tles. In the PSD framework, we do not need to

write the title elements in the table of contents

explicitly, instead we can write an expression as

the content of the table of contents to compute

these titles from the chapters. In this example,

we can use code elements of BiXJ to write this

expression, and when the titles in the table of

contents are changed, the corresponding titles

in chapters can also be updated, which is more

flexible than writing this expression in Haskell

[10].

• Code elements can be used as a kind of mobile

code. For example, in a cluster of web servers,

a runtime transformation object in one server

can be dumped and moved to other machine,

and then interpreted and run again.

All classes in BiXJ are summarized in Figure 4,

where x denotes a transformation object, and c is

82 コンピュータソフトウェア

public interface XAction{
public List<TgtElement> tranForward(List<SrcElement> sd);

public List<SrcElement> tranBackward(List<SrcElement> sd, List<TgtElement> td);

public CodeElement dump();

}

Fig. 2 The Java Interface of BiXJ

<xseq>

<xchildrennm>book</xchildrennm>

<xmap>

<xif>

<xequals><path>1<path>

<value>Tom</value>

<xequals>

<xid /><xhide />

<xif>

</xmap>

<xmap>

<xseq>

<xdistribute>2</xdistribute>

<xnewroot>book</xnewroot>

<xzip>

<xchildrennm>title</xchildrennm>

<xchildrennm>publisher</xchildrennm>

</xzip>

</xseq>

</xmap>

<xnewroot>mybooks</xnewroot>

</xseq>

Fig. 3 The Transformation for Tom

its corresponding code element; pred represents an

object for conditions and cpred is its XML repre-

sentation. The formal definitions of these classes

will be given in Section 5. With code elements,

the transformation for Tom in last section is given

in Figure 3. The element xequals represents a

predicate, which tests (in this case) whether the

author under book element is Tom. Its parame-

ter <path>1</path> indicates that the content of

the second child element in the source document is

tested.

4 Design Issues

Any transformation in BiXJ can be executed in

two directions: forward or backward. For forward

transformations, we care about the expressiveness

of BiXJ, while for backward transformations, we

need to concern its view updating semantics, which

is to determine whether a backward transformation

correctly reflects modifications in target documents

back into source documents. In this section, we dis-

cuss the view updating semantics for bidirectional

transformations in BiXJ, and in next section, we

will give its detailed definition.

4. 1 View Updating Semantics

In [3], the well-behavedness of bidirectional

transformations is guaranteed by two properties:

the first one, characterized by the GETPUT law, says

the backward transformation of an unchanged tar-

get document should not change the source docu-

ment, that is, a well-behaved bidirectional trans-

formation is side-effect free; the second one, char-

acterized by the PUTGET law, says the transforma-

tion of an updated source document should get the

same modified target documents, that is, a well-

behaved bidirectional transformation should reflect

all modifications in the target document into the

source document.

However, the second property is found restric-

tive for BiXJ. In what follows, we first characterize

the first property in BiXJ transformations and then

discuss the reasons why the second property is re-

strictive.

With methods tranForward and tranBackward,

the property of side-effect free can be stated as fol-

lows, which is the GETPUT law in [3]:

x.tranBackward(sd, x.tranForward(sd)) = sd

where sd is the source data, and x is a transforma-

tion object having interface XAction. This formula

means, if we transform sd into the target data, and

then transform it back immediately, then the ob-

tained source document should still be sd.

The property stated by PUTGET law in [3] can be

described as follows in our work:

x.tranForward(x.tranBackward(sd, td)) = td

Vol. 16 No. 5 1999 83

Class Constructors

XSeq([x1,...,xn])

XMap(x′)
XZip([x1,...,xn])

XIf(pred, x1, x2)

XID()

XConst(elmobj)

XHide()

XModifyName(nm)

XNewRoot(nm)

XDistribute(n)

XChildren()

XDescendant()

XChildrenNm(nm)

XActionNFun()

Code Element

<xseq>c1...cn</xseq>

<xmap>c′</xmap>
<xzip>c1...cn</xzip>

<xif>cpred c1 c2</xif>

<xid />

<xconst>elm</xconst>

<xhide />

<xmodifyname>nm

</xmodifyname>

<xnewroot>nm</xnewroot>

<xdistribute>n

</xdistribute>

<xchildren />

<xdescendant />

<xchildrennm>nm

</xchildrennm>

Description (Forward Meaning)

Applies x1,...,xn sequentially.

Applies x′ to each element in the source data.

Applies x1,...,xnto the corresponding child of

the source data, which must be an element.

Applies x1 to the source data if this data

satisfies pred, otherwise applies x2.

Identity transformation.

Constant transformation with elmobj as its result.

Returns the empty value ().

Modifies the tag of the source element to nm.

Makes the source data as the content of a node

with tag nm.

Makes n copies of the source element.

Returns all child elements of the source element.

Returns all descendant elements of

the source element.

Returns all child elements with name nm

in the source element.

Used as the parent class for all non-invertible

transformations.

Fig. 4 Classes in BiXJ

where sd is the source data and td is the target data

obtained by modifying the original target data gen-

erated by x.tranForward(sd). However, such prop-

erty is too restrictive. We will give four cases where

this property is violated.

The first case is relevant to conditional transfor-

mations, such as xif in Figure 3. For the example

in Section 2, if Tom modifies all his names in the

target data into his full name “Tom Bill”, then the

forward transformation x.tranForward will pro-

duce nothing from the updated source data because

there is no book with the author “Tom”. Hence,

the above property is violated, though the modifi-

cations have been correctly reflected into sd.

The second case is that sometimes the modifi-

cations on target documents should be reflected

back into the transformations rather than into the

source documents. Still using the example in Sec-

tion 2, if Tom changes the tag mybooks in the tar-

get data into Books-of-Tom, the source data should

be kept unchanged. Rather, the transformation,

< xnewroot >mybooks< /xnewroot >, in Figure 3

should be updated as <xnewroot>Books-of-Tom<

/xnewroot>, so that Tom can see his modifications

really take place when he does forward transforma-

tion again.

In the third case, the violation is caused by data

dependency in the target data, which has been rec-

ognized in [4]. For example, if an element in a

source document is duplicated in the target docu-

ment, then these two replicas are mutually depen-

dent, and only modifying one replica will cause the

PUTGET law violated. However, the proposed laws in

that work, PUTGETPUT and GETPUTGET, is not strong

enough to guarantee that all reasonable modifica-

tions can be reflected back into the source data in

a well-behaved transformation.

The fourth case is relevant to non-inverftible

functions. For example, suppose there is a trans-

formation that sums two integers in source data

in the forward direction and keeps the source data

unchanged in the backward direction. In this case,

changing the sum in the target data will violate the

PUTGET law since this modification is abandoned in

the backward transformation.

A way of solving the above problems is to re-

strict possible modifications on target documents

or exclude those problematic language constructs.

For example, the string “Tom”, the tag mybooks

and the sum in the above examples are not al-

lowed to change and the duplication operation (i.e.,

xdistribute in BiXJ and Dup in [4]) should be ex-

84 コンピュータソフトウェア

cluded. Obviously, this approach is too restrictive.

In our new view updating semantic, we still re-

strict modifications, but we only restrict modifi-

cations on the result of non-invertible functions,

such as sum of two integers. The definition of

our view updating semantics depends on the differ-

ences between two documents with the same struc-

ture, such as the differences between the original

source document and the corresponding updated

source document. The differences between two

documents are represented as a multiset of pairs,

and each pair includes two different text strings,

which are either tag names or text contents. A

pair represents a modification, that is, its first com-

ponent is changed to the second one. We write

diff(od,md) for the differences between the orig-

inal document od and its modified document md.

For the example in Section 2, suppose sd is the orig-

inal source document on the web server and sd ′ is

the updated source document. Then diff(sd,sd ′)
={(“Now Century”, “New Century”), (“Computer

Graphecs”,“Computer Graphics”)}. Since trans-

formations in BiXJ can be represented as XML doc-

uments, the differences between two documents can

also be applied to two transformations.

The view updating semantics in this work is de-

fined as follows: Suppose sd is a source document, x

a transformation object having interface XAction,

td a target document of sd transformed by x (i.e.,

x.tranForward(sd) = td), and td ′ is obtained by

modifying td and the modified data does not in-

clude the results of non-invertible functions. Then

the transformation x is well-behaved if the follow-

ing condition holds:

diff(sd, sd′) ∪ diff(c, c′) = diff(td, td′)
where sd′ = x.tranBackward(sd, td′), x′ is x with

its state updated by the backward transformation,

and c and c′ are the XML representations of x and

x′, respectively.

A sharp reader may argue that if there are con-

flict modifications in td′, the above equation will

not hold because not all modifications can be re-

flected back successfully. For the example in Sec-

tion 2, there are two books written by Tom in the

target data, and if Tom changes the tag mybooks

in his first book into Books-of-Tom, and that in

his second book into Tom-Book, then these two

modifications cause conflict when updating the pa-

rameter of xnewroot and one of the modifications

has to be abandoned. Note that the above equa-

tion depends on the normal terminated execution

of tranBackward. In BiXJ, some runtime tech-

nique helps solve this problem. If there are con-

flict modifications on target data, the execution of

tranBackward will be aborted due to exceptions

raised in xdistribute or xmap. It can be checked

that the above equation holds for all BiXJ transfor-

mations.

5 The Implementation of BiXJ

In this section, we will give the detailed defi-

nition of BiXJ transformations listed in Figure 4.

The transformations in BiXJ can be divided into

two kinds: basic transformations and transforma-

tion combinators. Some other interesting transfor-

mations can be derived from these basic transfor-

mations and transformation combinators. As ex-

amples of derived transformations, we will demon-

strate how to make XPath expressions bidirec-

tional.

The syntax of XML elements is defined below,

where the ending tags of elements are omitted and

their contents are put into brackets to save space.

element ::= <tag> [element, ..., element]

| <tag> [string] | ()

tag ::= string

Note that () is a special element, and in imple-

mentation, it is just a null element reference. We

will use x for denoting a transformation object, sd,

td or d for a sequence of elements, and e for a single

element.

5. 1 Basic Transformations

A basic transformation generally performs one

particular operation on source documents, such as

the constant transformation or the transformation

returning the child elements of source data.

XID: Let x = new XID().

x.tranForward(sd) = sd

x.tranBackward(sd, td) = td

XID is the identity transformation, which always

keeps the source and the target data identical.

XConst: Let x = new XConst(e).

x.tranForward(sd) = e

x.tranBackward(sd, e′) = sd

In this transformation, the state of the object x

Vol. 16 No. 5 1999 85

is changed with its parameter e replaced by e′ after

a backward execution. This effect is implicit in this

definition, but it can be observed when we use the

method dump to output x in its XML format. When

this updated x is used to perform a forward trans-

formation, the target data will be e′ rather than e.

In this transformation and some following transfor-

mations, the element e should be understood as a

singleton list [e]. We omit the brackets for brevity.

XHide: Let x = new XHide().

x.tranForward(sd) = ()

x.tranBackward(sd, ()) = sd

This transformation is to hide the source data,

so its target data is the empty value ().

XModifyName: Let x = new XModifyName(nm) and

e = <tag>[d].

x.tranForward(e) = <nm>[d]

x.tranBackward(e, <nm′>[d′]) = <tag>[d′]

After backward execution, the state of x is

changed with its parameter nm replaced by nm′

and the contents of the source data is also updated.

This transformation takes a single element as its

source data. It can be passed to the transforma-

tion combinator XMap to transform an element list.

XNewRoot: Let x = new XNewRoot(nm).

x.tranForward(sd) = <nm>[sd]

x.tranBackward(sd, <nm′>[sd′]) = sd′

This transformation puts a new root tag nm onto

the source data in the forward transformation, and

after the backward transformation, beside updat-

ing the source data, the state of x is also changed

with its parameter nm replaced by nm′.
XDistribute: Let x = new XDistribute(n), where

n is a natural number.

x.tranForward(e) = [e, ..., e]

(n copies of e)

x.tranBackward(e, td′) = merge(e, td′)
where

td′ = [e′1, ..., e′n]

In this definition, merge is an auxiliary function,

which returns an updated source data by combin-

ing all modifications on all copies of the source data.

If several copies contain different modifications at

the same place, then these are conflict modifica-

tions. In this case, merge will raise an exception

and the transformation is aborted. XDistribute is

more general than Dup in [4], which is used to main-

tain data dependency relation in target documents.

Moreover, by using merge function, XDistribute

allows to update source data in a batch style rather

than the interactive style adopted by Dup, so it is

suitable for updating XML document in a network

environment.

XChildren: Let x = new XChildren() and e =

< tag >[e1, .., en] .

x.tranForward(e) = [e1, .., en]

x.tranBackward(e, [e′1, .., e′n]) = < tag >[e′1, .., e′n]

This transformation corresponds to the child

axis in XPath. We will bidirectionalize XPath ex-

pressions using this transformation and some trans-

formation combinators later. We also implement

another commonly used axis, the descendant axis,

in the class XDescendant.

5. 2 Transformation Combinators

Transformation combinators are used to build

new transformations from already defined transfor-

mations.

XSeq: Let x = new XSeq([x1 , ..., xn]).

x.tranForward(d0) = dn

x.tranBackward(d0, d′n) = d′0
where

di = xi.tranForward(di−1)

d′i−1 = xi.tranBackward(di−1, d′i)
(1 ≤ i ≤ n)

XSeq takes a list of transformation objects as its

argument. These argument transformations are ap-

plied sequentially in transformation. Note that the

transformation x is updated if some of its argu-

ment transformations are updated during backward

transformations.

XMap: Let x = new XMap(x ′) and sd = [e1, ..., en].

x.tranForward(sd) = td

x.tranBackward(sd , td′) = [e′1, ..., e′n]

where

td = td1 + · · · + tdn

tdi = x′.tranForward(ei)

(td′1, .., td′n) = split(td′, [|td1|, ...|tdn|])
e′i = x′.tranBackward(ei, td′i)

(1 ≤ i ≤ n)

In this definition, the operator + is to concate-

nate two lists. In the backward transformation,

the target data td′ is divided into n sublists using

the operator split, and the ith sublist has length

|tdi|. Updating transformation itself is a bit com-

plex for this transformation. Suppose that after

backward transformation of td′
i (1 ≤ i ≤ n), the

86 コンピュータソフトウェア

transformation object x′ is updated to x′
i. Then,

we can generate a new transformation element by

using merge(c′, [c′1, ..., c
′
n]), where c′ and c′i are the

XML representations of x′ and x′
i, respectively.

This transformation element will be interpreted as

a transformation object, and then used to replace

the old object x′. Note that if merge raises an ex-

ception due to conflicts, the transformation will be

aborted.

XZip: Let x = new XZip([x1, ..., xn]) and e =

<tag>[e1, ..., en].

x.tranForward(e) = < tag >[td]

x.tranBackward(e, d′) = < tag ′>[e′1, ..., e′n]

where

td = td1 + · · · + tdn

tdi = xi.tranForward(ei)

< tag ′ >[td′] = d′

(td′1, .., td′n) = split(td′, [|td1|, ...|tdn|])
e′i = xi.tranBackward(ei, td

′
i)

(1 ≤ i ≤ n)

The actual implementation of XZip is more flex-

ible than this definition. It allows the argument

transformations of XZip and the contents of the

source data e to have different length. If the for-

mer is longer, then the extra tail of the argument

transformations are ignored; if the latter is longer,

then the extra contents are processed by identity

transformations.

XIf: Let x = new XIf(pred , x1, x2).

x.tranForward(sd) = x1.tranForward(sd)

if pred.qualify(sd)

= x2.tranForward(sd)

otherwise

x.tranBackward(sd , td) = x1.tranBackward(sd , td)

if pred.qualify(sd)

= x2.tranBackward(sd , td)

otherwise

In this definition, pred is an object with interface

XPredicate, which has a method qualify to judge

whether the source data element satisfies some

conditions. We have implemented several com-

monly used predicates, such as XTrue, XLessThan,

XGreaterThan, XEquals, XHasChild and XWithTag,

and three predicate operators XAnd, XOr and XNot.

The meaning of each predicate is obvious. For

example, XWithTag(nm) is to judge whether the

source data is an element with the tag nm.

5. 3 Bidirectional XPath

There are some transformations that need not to

be defined primitively. Rather, they can be defined

with the existing transformations. We give two ex-

amples in this section.

XChildrenNm: Let x = new XChildrenNm(nm).

x.tranForward(e) = tran.tranForward(e)

x.tranBackward(e, td) = tran.tranBackward(e, td)

where

tran = new XSeq([x1, x2])

x1 = new XChildren()

x2 = new XMap(x3)

x3 = new XIf(pred, x4, x5)

x4 = new XID()

x5 = new XHide()

pred = new XWithTag(nm)

This transformation corresponds to the XPath

step child::nm.

XPathStep: Let x = new XPathStep(nm, pred).

x.tranForward(e) = tran.tranForward(e)

x.tranBackward(e, td) = tran.tranBackward(e, td)

where

tran = new XSeq([x1, x2])

x1 = new XChildrenNm(nm)

x2 = new XMap(x3)

x3 = new XIf(pred, x4, x5)

x4 = new XID()

x5 = new XHide()

This transformation corresponds to the XPath

step child::nm[pred]. It can be represented as fol-

lows in XML format:

<xpathstep>

<name>nm<name> pred

</xpathstep>

With this transformation, the XPath expression

/nm1[pred1]/.../nmn[predn] is encoded as the fol-

lowing bidirectional transformation:

<xseq>

<xmap>

<xpathstep>

<name>nm1<name> pred1

</xpathstep>

</xmap>

...

<xmap>

<xpathstep>

<name>nmn<name> predn

</xpathstep>

</xmap>

<xseq>

Vol. 16 No. 5 1999 87

<lib>

<name>TU Lib</name>

<shelf>

<category>Engineering</category>

<cabinet>

<book>

<title>Data Structure</title>

<author>Tom</author>

<price>33</price>

<year>2004</year>

<publisher>

<name>TU Press</name>

<addr>US</addr>

</publisher>

</book>

......

</cabinet>

......

</shelf>

<shelf>

<category>Science</category>

.......

</shelf>

</lib>

Fig. 5 A Source XML Document

5. 4 Degraded Bidirectional Transforma-

tion

BiXJ does not support modifications on the tar-

get data generated by non-invertible functions.

That is, users should not modify these data, and

even if they make some modifications, these mod-

ifications will not be reflected back. In BiXJ, we

provide an abstract class XActionNFun for imple-

menting non-invertible functions, which has imple-

mented a trivial backward transformation by just

returning the original source data. Hence, when im-

plementing a non-invertible function, we just need

to define a subclass of XActionNFun and imple-

ment this function in the forward transformation

method.

In addition to implementing non-invertible func-

tions, the abstract class XActionNFun can also be

used to incorporate other existing XML transfor-

mation Java code into the bidirectional transfor-

mation framework if we do not care the backward

transformations of these code.

6 Bidirectionalizing XQuery and XSLT

In order to test the expressiveness and the us-

ability of the bidirectional transformations intro-

<Books-of-Tom>{
for $l in doc("lib.xml")/lib return

for $s in $l/shelf[category="Engineering"]

return

for $c in $s/cabinet return

for $b in $c/book

where $b/author ="Tom" and $b/price<50

return

<book>{
$b/title,

$b/price,

<press>

{$b/publisher/name/text()}
</press>

}</book>
}</Books-of-Tom>

Fig. 6 An XQuery Expression

duced above, we use them to bidirectionalize some

typical examples in XQuery and XSLT, which are

both popular and widely used XML processing lan-

guages.

All examples in this section use an XML file

“lib.xml” as the source document, which is partially

listed in Figure 5. For this document, we assume

that users are interesting in the engineering books

written by Tom with a price less than 50 dollar.

6. 1 Bidirectionalization of XQuery Ex-

pression

The structure of XQuery expressions generally

takes the FLWR form. The interesting book in-

formation for users can be obtained by using the

XQuery expression in Figure 6, which involves for,

where and return expressions. This expression

generates an element with the tag Books-of-Tom,

which contains a list of book elements. And each

book element has three child elements: title,

price and press. The press element contains the

publisher name.

The BiXJ script in Figure 7 implements the same

transformation as the above XQuery expression.

The whole script consists of a sequence of transfor-

mations wrapped by xseq. A simple way of writing

this script is to finish this task step by step, that

is, by adding a new transformation to the end of

the existing script and looking at the transforma-

tion result, and then repeating this procedure until

the expected result is obtained. However, it seems

88 コンピュータソフトウェア

<xseq>

<xnewroot>Books-of-Tom</xnewroot>

<xzip>

<xseq>

<xchildrennm>shelf</xchildrennm>

<xmap>

<xif>

<xequals>

<path>0</path>

<value>Engineering</value>

</xequals>

<xid/> <xhide/>

</xif>

</xmap>

<xmap>

<xchildrennm>cabinet</xchildrennm>

</xmap>

<xmap>

<xchildrennm>book</xchildrennm>

</xmap>

<xmap>

<xif>

<xand>

<xequals>

<path>1</path><value>Tom</value>

</xequals>

<xlessthan>

<path>2</path><value>50</value>

</xlessthan>

</xand>

<xid/><xhide/>

</xif>

</xmap>

<xmap>

<xseq>

<xdistribute>3</xdistribute>

<xnewroot>book</xnewroot>

<xzip>

<xchildrennm>title</xchildrennm>

<xchildrennm>price</xchildrennm>

<xseq>

<xchildrennm>publisher</xchildrennm>

<xchildrennm>name</xchildrennm>

<xmodifyname>press</xmodifyname>

</xseq>

</xzip>

</xseq>

</xmap>

</xseq>

</xzip>

</xseq>

Fig. 7 Bidirectionalization of XQuery

Expression

<xseq>

<xnewroot>html</xnewroot>

<xzip>

<xseq>

<xdistribute>2</xdistribute>

<xzip>

<xconst>

<title>Books-of-Tom</title>

</xconst>

<xseq>

<xnewroot>body</xnewroot>

<xzip>

<xseq>

<xnewroot>table</xnewroot>

<xzip>

<xseq>

<xdistribute>2</xdistribute>

<xzip>

<xconst>

<tr>

<th>title</th>

<th>price</th>

<th>press</th>

</tr>

</xconst>

<xseq>x1 x2</xseq>

</xzip>

</xseq>

</xzip>

</xseq>

</xzip>

</xseq>

</xzip>

</xseq>

</xzip>

</xseq>

Fig. 9 Bidirectionalization of XSLT Expression

a tedious task. In the future, we would like to de-

velop algorithms to translate the programs of high

level XML processing languages into BiXJ code. In

the following, we informally introduce some expe-

riences learned when writing such script.

The XQuery expression in Figure 6 consists of

two kinds of subexpressions: one is used to con-

struct the target element and the other is to de-

struct the source element.

The first kind of expressions includes three el-

ement constructors for Books-of-Tom, book and

press elements. They are encoded according to the

following principle: If the source data already con-

tains the content expected by a constructor, then

Vol. 16 No. 5 1999 89

<xsl:stylesheet xmlns:xsl=...>

<xsl:template match="/">

<html>

<title>Books-of-Tom</title>

<body>

<table>

<tr>

<th>title</th>

<th>price</th>

<th>press</th>

</tr>

<xsl:apply-templates />

</table>

</body>

</html>

</xsl:template>

<xsl:template match="/lib">

<xsl:apply-templates select="shelf[category = ’Engineering’]"/>

</xsl:template>

<xsl:template match="shelf">

<xsl:apply-templates select="cabinet"/>

</xsl:template>

<xsl:template match="cabinet">

<xsl:apply-templates

select="book[author = ’Tom’ and price < 50]"/>

</xsl:template>

<xsl:template match="book">

<tr>

<td><xsl:value-of select="title"/></td>

<td><xsl:value-of select="price"/></td>

<td><xsl:value-of select="publisher/name"/></td>

</tr>

</xsl:template>

</xsl:stylesheet>

Fig. 8 An XSLT Expression

we just modify the name of the source data with

the element name specified in the constructor, oth-

erwise we encode this constructor in the following

form:

<xnewroot>element name</newroot>

<xzip>code for constructing content</xzip>

In Figure 7, the constructor for press element

is encoded by simply modifying the name of the

source data to press, and the other two construc-

tors are encoded using the above form.

The second kind of expressions includes XPath

expressions. An XPath expression is a sequence of

path steps, and each step consists of an axis, a node

test and a qualifier. To encode the child axis and

name node test, the transformation xchildrennm

is used, probably with the help of xmap to pro-

cess an element list. The transformation xmap plays

the similar role as the for clause in XQuery. The

qualifier in an XPath step, such as category =

‘‘Engineeering’’, is encoded by an xif following

the corresponding axis and node test. As a com-

parison, in the next section, the XPath expression

in XSLT is encoded in the derived transformation

xpathstep.

6. 2 Bidirectionalization of XSLT

The style sheet of XSLT generally is made up

of a list of templates, which are connected by

apply-templates. The style sheet in Figure 8 gen-

erates the same interesting book information as the

above XQuery expression. This style sheet includes

five templates and transforms the data of interest

into an HTML file.

The BiXJ code in Figure 9 implements the same

transformation as the above XSLT style sheet. The

code is divided into three parts for readability. The

code in Figure 9 corresponds to the first template

in Figure 8; the code x1 in Figure 10 extracts the

interesting books from the source document, corre-

sponding to the second, third and fourth templates;

the code x2 in Figure 11 does the same thing as the

last template, which is to construct table rows.

The bidirectionalizing procedure starts with

the top template. When meeting with an

apply-templates in a template, we put here the

bidirectionalizing result of the applied template.

For each template, we almost follow the same rules

as used in bidirectionalizing XQuery expressions.

The exception is that if an element constructor con-

tains constant content, that is, it does not contain

content computed by apply-templates, then we

use xconst to construct this element directly. For

example, the code for constructing the title ele-

ment in Figure 9 belongs to this case.

7 Related Work

The BiXJ in this work takes a similar technical

style as the bidirectional languages in [3] [4]. As dis-

90 コンピュータソフトウェア

<xmap>

<xpathstep>

<name>shelf</name>

<xequals>

<path>0</path>

<value>Engineering</value>

</xequals>

</xpathstep>

</xmap>

<xmap>

<xpathstep>

<name>cabinet</name>

<xtrue />

</xpathstep>

</xmap>

<xmap>

<xpathstep>

<name>book</name>

<xand>

<xequals>

<path>1</path><value>Tom</value>

</xequals>

<xlessthan>

<path>2</path><value>50</value>

</xlessthan>

</xand>

</xpathstep>

</xmap>

Fig. 10 The BiXJ Code x1

cussed in Section 1, they have several limitations to

be used as general XML transformation languages.

In this work, BiXJ has addressed their limitations

and is used for general purpose XML processing.

In the database area, there is also some work to

do XQuery updating. For example, the work in

[11] transforms updates on query tree into SQL up-

dates, and then uses the database technology to

update the database. Obviously, this technique is

not suitable for updating native XML repositories.

In addition, it cannot be used to update the view

defined by XSLT, either.

The work [12] studies the problem of bidirection-

alizing HaXML [13] and shows that any transfor-

mation in HaXML can be compiled into a bidirec-

tional transformation. In work [14], the authors

give an injective language Inv to implement view

updating, and due to injectivity, so each program is

invertible. However, they are still not used in gen-

eral purpose XML processing. For example, they

do not support bidirectional XPath.

<xmap>

<xseq>

<xnewroot>tr</xnewroot>

<xzip>

<xseq>

<xdistribute>3</xdistribute>

<xzip>

<xseq>

<xchildrennm>title</xchildrennm>

<xmodifyname>td</xmodifyname>

</xseq>

<xseq>

<xchildrennm>price</xchildrennm>

<xmodifyname>td</xmodifyname>

</xseq>

<xseq>

<xchildrennm>publisher</xchildrennm>

<xchildrennm>name</xchildrennm>

<xmodifyname>td</xmodifyname>

</xseq>

</xzip>

</xseq>

</xzip>

</xseq>

</xmap>

Fig. 11 The BiXJ Code x2

8 Conclusion

In this paper, we solve the problem of view up-

dating for general purpose XML processing. The

proposed solution is a Java library BiXJ for bidirec-

tional XML transformation. By this library, given

a forward transformation, the backward transfor-

mation can be obtained for free. Hence, no extra

efforts or separate mechanisms are needed for users

to update source documents after target documents

are modified. We have demonstrated the expres-

siveness and usability of BiXJ by bidirectionalizing

the typical examples of two popular XML process-

ing languages XQuery and XSLT.

In the future, we will develop algorithms that

can translate XLST or XQuery expressions into the

code of BiXJ automatically.

9 Acknowledgment

Thanks to the PSD project members in the Uni-

versity of Tokyo for stimulating discussion on this

work. This work is partially supported by Compre-

hensive Development of e-Society Foundation Soft-

ware Program of the Ministry of Education, Cul-

Vol. 16 No. 5 1999 91

ture, Sports, Science and Technology, Japan. We

are also grateful to the anonymous reviewers for

their detailed and helpful comments and sugges-

tions.

References

[1] W3C Draft. XSL Transformations (XSLT) Ver-

sion 2.0 . http://www.w3.org/TR/xslt20/, 2005.

[2] W3C Draft. XML Query (XQuery) .

http://www.w3.org/XML/Query, 2005.

[3] J. Nathan Foster, Michael B. Greenwald,

Jonathan T. Moore, Benjamin C. Pierce, and Alan

Schmitt. Combinators for bi-directional tree trans-

formations: a linguistic approach to the view up-

date problem. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, 2005.

[4] Zhenjiang Hu, Shin-Cheng Mu, and Masato

Takeichi. A programmable editor for develop-

ing structured documents based on bidirectional

transformations. In Proceedings of the 2004 ACM

SIGPLAN symposium on Partial evaluation and

semantics-based program manipulation, 2004.

[5] W3C. The XML data model . http://www.w3.org/

XML/Datamodel.html, 2005.

[6] W3C. XML Path Language (XPath) .

http://www.w3.org/TR/xpath, 1999.

[7] Sun Developer Network (SDN). Java Technology

and Web Services . http://java.sun.com/webservices.

[8] J. Hunter and B. McLaughlin. JDOM Project.

http://www.jdom.org.

[9] D. Liu, Z. Hu, and M. Takeichi. An environment

for maintaining computation dependency in XML

documents. In Proceedings of ACM Symposium on

Document Engineering, 2005.

[10] Richard Bird. Introduction to Functional Pro-

gramming using Haskell. Prentice Hall Press, 1998.

[11] V. Braganholo, S. Davidson, and C. Heuser.

From XML view updates to relational view updates:

old solutions to a new problem. In Proceedings of

International Conference on Very Large Databases

(VLDB), 2004.

[12] Shin-Cheng Mu, Zhenjiang Hu, and Masato

Takeichi. Bidirectionalizing tree transformation lan-

guages: A case study. JSSST Computer Software,

23:129–141, 2006.

[13] Malcolm Wallace and Colin Runciman. Haskell

and XML: generic combinators or type-based trans-

lation? In Proceedings of the fourth ACM SIG-

PLAN international conference on Functional pro-

gramming, 1999.

[14] Shin-Cheng Mu, Zhenjiang Hu, and Masato

Takeichi. An algebraic approach to bidirectional

updating. In Second ASIAN Symposium on Pro-

gramming Languages and Systems (APLAS 2004),

2004.

