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a b s t r a c t 

The vertex-centric programming model, designed to improve the programmability in graph processing ap- 

plication writing, has attracted great attention over the years. Multiple shared memory frameworks that 

have implemented the vertex-centric interface all expose a common tradeoff: programmability against 

memory efficiency and performance. 

Our approach consists in preserving vertex-centric programmability, while implementing optimisations 

missing from FemtoGraph, developing new ones and designing these so they are transparent to a user’s 

application code, hence not impacting programmability. We therefore implemented our own shared 

memory vertex-centric framework iPregel, relying on in-memory storage and synchronous execution. 

In this paper, we evaluate it against FemtoGraph, whose characteristics are identical, but also an asyn- 

chronous counterpart GraphChi and the vertex-subset-centric framework Ligra. Our experiments include 

three of the most popular vertex-centric benchmark applications over 4 real-world publicly accessible 

graphs, which cover all orders of magnitude between a million to a billion edges. We then measure the 

execution time and the peak memory usage. Finally, we evaluate the programmability of each framework 

by comparing it against the original Pregel, Google’s closed-source implementation that started the whole 

area of vertex-centric programming. 

Experiments demonstrate that iPregel, like FemtoGraph, does not sacrifice vertex-centric programmabil- 

ity for additional performance and memory efficiency optimisations, which contrasts with GraphChi and 

Ligra. Sacrificing vertex-centric programmability allowed the latter to benefit from substantial perfor- 

mance and memory efficiency gains. However, experiments demonstrate that iPregel is up to 2300 times 

faster than FemtoGraph, as well as generating a memory footprint up to 100 times smaller. These results 

greatly change the situation; Ligra and GraphChi are up to 17,0 0 0 and 70 0 times faster than FemtoGraph 

but, when comparing against iPregel, this maximum speed-up drops to 10. Furthermore, on PageRank, it 

is iPregel that proves to be the fastest overall. When it comes to memory efficiency, the same observa- 

tion applies; Ligra and GraphChi are 100 and 50 times lighter than FemtoGraph, but iPregel nullifies these 

benefits: it provides the same memory efficiency as Ligra and even proves to be 3 to 6 times lighter than 

GraphChi on average. In other words, iPregel demonstrates that preserving vertex-centric programmabil- 

ity is not incompatible with a competitive performance and memory efficiency. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

From social networks analysis to database queries, graph pro-

essing has become ubiquitous. The vertex-centric programming
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odel introduced by Google in Pregel [1] offers a simple interface

hat enables users, such as data scientists, to easily develop graph

rocessing applications. By exposing a set of highly-abstracted rou-

ines to the user, the vertex-centric interface greatly improves pro-

rammability. Through improved code readability and a less er-

or prone code writing, the vertex-centric interface supports fast

rototyping of graph applications. In the meantime, it requires no

pecialist programming expertise from the user, since the paral-

elisation and optimisations are offloaded to the underlying frame-
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work implementation. However, the vertex-centric programming

model has traditionally been a compromise between the abstrac-

tion offered to the user and the performance achieved, as well as

the memory footprint generated. To improve performance, certain

vertex-centric frameworks abandon some features of the vertex-

centric model. Whilst this improves performance, it can signifi-

cantly impact the programmability and ease of use. 

In order to support the processing of current and next gener-

ation graphs, vertex-centric models must maximise performance,

so a key challenge is how to achieve this in a way that does not

adversely impact the benefits of the vertex-centric model. The dif-

ficulty arises because the framework handles many aspects of the

computation, from vertex selection to thread-safety, through inter-

vertex communications. 

FemtoGraph , for instance, is a framework that preserves the

programmability of the vertex-centric interface. However, it does

not efficiently handle the high volume of messages exchanged be-

tween vertices, which results in a large memory footprint. In ad-

dition, the performance observed is orders of magnitude worse

than that of vertex-centric frameworks that make design choices

in favour of performance by sacrificing programmability. There are

certain frameworks, such as GraphChi , that do provide a better per-

formance and memory efficiency by no longer abstracting certain

computational steps from the user. Ligra provides an even better

performance and memory efficiency, at the expense of an even

greater programmability loss. Indeed, the programming model is

no longer vertex-centric but vertex-subset-centric, where the user

is required, for instance, to explicitly use parallelism and atomic

operations. 

By contrast, our approach focuses on improving performance

and memory efficiency at no programmability cost. A major goal

has been to design our framework to be optimisable without re-

quiring application code rewriting for the user. 

Our vertex-centric framework, iPregel [2] , uses shared memory

parallelism and in-memory storage. In this paper, we describe the

novel features of iPregel in more detail and evaluate iPregel against

vertex-centric 1 frameworks specifically designed for single-node

execution too. We selected FemtoGraph , GraphChi and Ligra because

they rely on fundamentally different designs. In this work, we do

not only consider performance, but also the memory efficiency and

general programmability. The results collected demonstrate that

iPregel and FemtoGraph provide equally the best programmability.

However, iPregel proves to be up to both 2300 times faster and 100

times more memory efficient than FemtoGraph . When compared

against the frameworks optimised for performance, we observe

that the memory footprint of iPregel is as small as that of Ligra , and

up to 7.5 times smaller than GraphChi ’s. In comparison to GraphChi

and Ligra , the performance observed on iPregel varies for different

benchmarks; for the Connected Components and SSSP benchmarks,

iPregel is several times slower than Ligra and GraphChi , while re-

maining in the same order of magnitude. However, in PageRank,

iPregel consistently exhibits the best performance above 4 threads,

regardless of the graph. We thus demonstrate successful preser-

vation of the vertex-centric programmability with no consequence

on memory footprint. The impact on performance is greatly min-

imised compared to FemtoGraph , and for some benchmarks, iPregel

even exhibits a greater performance than all frameworks tested. 

The contributions described in this paper can be summarised

as follows: 

• Programmability independent optimisations , allowing the

user to focus on application logic, then leverage the potential

of optimisations without requiring code rewritings. 
1 And vertex-subset-centric. s
• A lightweight and efficient implementation of our framework

iPregel , as well as a set of benchmark applications. 
• A thorough exploration of vertex centric frameworks, includ-

ing our own iPregel , contrasting three major attributes; perfor-

mance, memory efficiency and programmability. 

The rest of the paper is organised as follows: Section 2 presents

elated work and Section 3 briefly introduces the terminology

sed throughout this paper. Section 4 provides an overview of

he iPregel framework, from its interface and implementation to

he optimisations designed and how they can be leveraged by the

ser. Section 5 describes the other frameworks evaluated, followed

y Section 6 which presents the application benchmarks selected.

he conditions under which these experiments were run are out-

ined in Section 7 . Finally, the results collected are presented, dis-

ussed and analysed in Section 8 , before we draw conclusions in

ection 9 and discuss potential further work directions. 

. Related work 

First developed in 2010 through Pregel [1] , the vertex-centric

rogramming model has proven to be an intuitive way of devel-

ping graph processing algorithms. Many implementations have

merged, the majority of which rely on distributed memory ar-

hitectures. Vertex-centric applications represent a real challenge

o such architectures: they exhibit a high, and irregular, volume

f communications as well as frequent global synchronisations.

onetheless, with the exception of a few state-of-the-art machines

hat provide up to 160 terabytes of RAM 

2 in a single memory

pace, only distributed memory architectures are able to provide

nough RAM to process in-memory industry graphs, such as those

mployed by Facebook [3] , which can contain up to a trillion edges.

To address this limitation, GraphChi [4] was developed; which

s a single-node vertex-centric framework able to process graphs

f any size. It does this via out-of-core computations; GraphChi re-

ies on disk storage as an extension of memory. In this approach,

he graph is divided into disjoint intervals, each of which is rep-

esented by a shard that stores all incoming edges of the vertices

n that interval, on disk. GraphChi then loads shards 3 in turn into

emory and processes concurrently the vertices belonging to the

nterval represented by the shard in memory. With this design,

raphChi is able to process graphs that do not fit in-memory, over-

oming the fundamental limitation of single-node frameworks, at

he expense of costly disk accesses. 

Ligra [5] , a shared memory framework using in-memory stor-

ge, has been a game changer with regard to the viability of

n-memory execution of large graphs. Its authors argue that the

mount of memory available in high-end single nodes is sufficient

o process graphs with hundreds of billions of edges. Although

his is true for certain state-of-the-art machines, realistically, as

f 2018, a cluster node commonly has between 64 and 512GB

f memory. Despite not meeting the memory needs of a trillion-

dge graph, these nodes do provide enough memory to process

raphs up to a hundred billion edges in Ligra . Therefore, single-

ode frameworks that rely exclusively on in-memory storage like

igra can be viable also at large scale. Ligra demonstrates [5] that

t is able to scale to graphs containing almost 13 billion directed

dges, while preserving a parallel efficiency between 45% and 80%

n 40 cores. From a programming perspective, Ligra is described as

 vertex-subset-centric framework in [6] . This categorisation is mo-

ivated by the observation that Ligra retains a centralised view of
2 Record currently held by ”The Machine”, made by Hewlett Packard Enterprise. 
3 When determining the size of a shard, GraphChi ensures that it is sufficiently 

mall to fit in-memory. 
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Fig. 1. User-defined functions of iPregel . 

Fig. 2. Main functions (not all) provided by iPregel. 
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Fig. 3. A Bulk-Synchronous Parallel superstep. 
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he graph being processed, contrasting with a pure vertex-centric

ramework. 

FemtoGraph [7] exposes the same characteristics as Ligra ,

amely shared memory parallelism and in-memory storage. The

ajor difference resides in the fact that FemtoGraph preserves the

ertex-centric programming model, exposed via its programming

nterface, which is identical to that of the initial Pregel. However,

ased on the results reported in [7] , at best FemtoGraph provides

ittle to no performance gain compared to existing graph process-

ng frameworks. In addition, FemtoGraph appears to suffer from

ignificant performance overhead at low number of threads. 

. Terminology 

This section provides the reader with the technical terms that

ill be used throughout this paper. 

A graph is made of vertices linked via edges that can be di-

ected or undirected. Vertices standing at both ends of an edge are

alled neighbours . A directed edge linking the source vertex v src to

he destination vertex v dst is said to be an outgoing edge of v src and

n incoming edge of v dst , abbreviated out-edge and in-edge respec-

ively. Similarly, v src is known as an incoming neighbour of v dst , ab- 

reviated in-neighbour , and v dst is said to be an outgoing neighbour

f v src , or out-neighbour . Adjacency list is the term used to refer to

he list of all neighbours of a given vertex. In directed graphs, it

an be an out-adjacency list or in-adjacency list. 

Finally, this paper will refer to the concept of broadcast , which

n iPregel and other vertex-centric frameworks means sending a

essage to all out-neighbours of the broadcasting vertex. 

. Overview of iPregel 

.1. Interface 

In iPregel , the user is provided with a simple Application Pro-

ramming Interface (API), in which they must define the combine

nd compute functions, the signatures of which are illustrated in

ig. 1 . The compute function contains the computation to execute

n each vertex. The combine function is called when a vertex that

as a mailbox already containing a message receives another mes-

age. 

Fig. 2 illustrates supporting functions provided by iPregel that

llow the user to track the superstep progression, read the mes-

ages received from last superstep, send a message to a specific

ut-neighbour or all out-neighbours at once, and halt the vertex

urrently processed respectively. 

Although iPregel relies on shared memory parallelism, commu-

ications are achieved via a message-passing abstraction. Typically,
essage-passing abstractions are provided when writing codes for

istributed memory architectures, nonetheless the motivation be-

ind this choice for shared memory is multifaceted. Firstly, it pro-

ects the user from potential data races that arbitrary memory ac-

esses could allow. Secondly, direct memory accesses require the

rogrammer to know exactly where to write information, which

mplies exposing implementation details to the user. Finally, this

bstraction provides iPregel with the freedom to optimise the un-

erlying communication mechanisms whilst preserving a consis-

ent interface to the user. 

.2. Implementation 

The Bulk-Synchronous Parallel model (BSP [8] ), on which iPregel

elies, is illustrated in Fig. 3 . This is a very common approach in

ertex-centric processing, where the execution flow progresses in

terations, called supersteps, each made of three steps: 

1. Local computation 

2. Communications 

3. Global synchronisation 

In the context of vertex-centric programming, the first step con-

ists in executing the user-defined function compute on each ac-

ive vertex. During this phase, vertices can modify their state and

ave access to the messages they received during the previous su-

erstep. During the second phase, the communications in Fig. 3 ,

ertices send messages to their out-neighbours. Finally, once every

ctive vertex has been processed and every outgoing message de-

ivered, the superstep completes and a new superstep begins (syn-

hronisation in Fig. 3 ). 

As mentioned, iPregel applies the compute function defined by

he user to each active vertex, at every superstep. When a ver-

ex receives more than one message, the user’s combine function

s applied to combine messages on-the-fly. Under the hood, the

essage-passing abstraction provided to the user is implemented

s direct memory accesses by iPregel . We argue that this gives the

est of both worlds, it allows the user to rely on a simple inter-

ace for communication while exploiting the shared memory per-

ormance of a single-node solution. 

From a parallelisation perspective, the iPregel framework is de-

eloped in C and relies on OpenMP [9] to support shared memory

oncurrency. Vertices are stored in a global array, and the list of

heir neighbour identifiers (known as their adjacency list) in an-

ther global array, both of which are shared by all threads. The ver-

ex workload is then distributed using the default static schedule
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Fig. 4. Execution flow of the vertex selection mechanism. 
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in OpenMP, in other words, the total number of vertices is evenly

distributed across all threads and no work-stealing strategy is used.

Section 4.3 presents the optimisations strategies employed by

iPregel . They all abide to the overarching philosophy of iPregel : op-

timisations should not require user source code rewriting or make

the code more error prone, and implementation details related to

the optimisations must stay abstracted from the user. This moti-

vated the design of iPregel to trigger optimisations via compilation

flags, which leaves the user source code untouched. 

4.3. Optimisations 

The optimisations presented in this section are not mutually ex-

clusive. In other words, iPregel handles any combination of optimi-

sations, without requiring additional work from the user, only a

change of compilation flags is needed. 

4.3.1. Selection bypass 

The first phase in vertex-centric frameworks consists in select-

ing the vertices to execute: this is already known to be a tricky as-

pect of vertex-centric models [10] . The naive approach is to check

the status of each vertex and process those that are active. 

However, for inactive vertices these checks are unfruitful and

result in wasted memory accesses. This is important because

frameworks that use in-memory storage and shared memory paral-

lelism already place a high pressure on memory bandwidth. There-

fore, keeping unproductive memory accesses to a minimum pre-

vents aggravating that pressure. The naive approach becomes es-

pecially problematic in programs that contain a small number of

active vertices, resulting in many wasted checks. 

Thus we analysed the selection phase, which typically decides

to run a vertex if it at least one of the following conditions is met:

1. It is the first superstep 

2. The vertex is already active (that is, it did not halt when it was

last processed) 

3. The vertex received a message during previous superstep 

Condition 1 becomes false at the end of the first superstep.

Thus, from the second superstep onwards, a vertex is active if and

only if conditions 2 or 3 are met. One cannot assert which con-

dition it is, unless the algorithm exhibits what we refer to as sys-

tematic halt : every time a vertex is processed it halts at the end

of the compute function. In other words, this algorithmic partic-

ularity guarantees that condition 2 is always false. It is the case

in the Connected Components and SSSP benchmarks presented in

Sections 6.2 and 6.3 respectively. By contrast, in the PageRank

benchmark presented in Section 6.1 , a vertex processed will not

halt if the number of supersteps elapsed is less than the prede-

fined threshold. In other words, in PageRank a vertex may be ac-

tive in superstep n without having received a message in superstep

n − 1 . 

In the systematic halt situation however, this configuration is

not possible. Indeed, since condition 1 is false after the first su-

perstep and condition 2 is always false, only condition 3 remains;

a vertex is active if, and only if, it received a message in previ-

ous superstep (as depicted in Fig. 4 ). Thus, the list of active ver-

tices for superstep n + 1 can be established by monitoring mes-

sage exchanges during superstep n and finding which vertices are

the recipients of these exchanged messages. This is why when an

algorithm exposes systematic halt , iPregel can monitor message ex-

changes and automatically determine which vertices to run next

superstep. 

Integrating the systematic halt feature is straightforward; it can

be embedded in the function called by vertices to send messages

( ip_send_message and ip_broadcast as given in Fig. 2 ). The modifi-

cation consists in appending the recipient vertex identifier to the
ist of vertices to run during next superstep. However, one must

void duplicate identifiers so that a given vertex is not processed

ultiple times. This is again straightforward because when a ver-

ex sends a message, the thread that runs that vertex must check if

he recipient vertex already has a message in its mailbox, to deter-

ine whether it should apply the message combination presented

n Section 4.3.3 . From there, integrating the systematic halt feature

onsists of the thread adding the recipient vertex identifier to the

ist of vertices to execute during next superstep if that recipient

ertex’s mailbox is empty. Multiple threads accessing the same list

an raise data races, this is why in iPregel , each thread maintains

ts own list. At the end of every superstep, these lists are merged

nto a single one. Then, one only needs to process the vertices in

hat list, without having to check their active status or the pres-

nce of pending messages. To exploit parallelism, this list is split

venly across all threads. 

There are multiple benefits from our selection bypass tech-

ique. Firstly, not having to check each individual vertex saves

emory accesses and removes possible branch mispredictions on

he vertex active state (execute if active, skip if inactive) since ver-

ices in the merged list are known to be active. Secondly, this fea-

ure improves load balancing because threads receive exclusively

ertices that are guaranteed to be run. This contrasts with the

aive approach, where threads may receive identical numbers of

ertices, potentially containing drastically different proportions of

nactive vertices. In other words, our technique of selection by-

ass makes the active vertex distribution optimal with regard to

he number of active vertices per thread. 

.3.2. Message exchange 

Typically, vertex-centric applications are communication inten-

ive. Optimising the message exchange mechanism can therefore

esult in substantial improvements in performance. 

There are two means by which a message can be transmitted:

he sender can push it to a recipient mailbox, or the recipient can

ull it from a sender’s outbox. The push version can result in race
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Fig. 5. The implementation in iPregel of a combiner keeping only the minimum 

value of messages received. 

Fig. 6. Comparison of vertex-centric and BSP models of computation. 
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4 Available at https://github.com/GraphChi/graphchi-cpp . 
onditions in the event of multiple vertices pushing to the same

ecipient mailbox concurrently. In iPregel , this is prevented with

he use of busy-waiting locks. These are more efficient than their

lock-waiting counterparts, given that the combination operation

s typically very small. However, the push version can be imple-

ented without locks at all if the combination operation conve-

iently corresponds to an atomic operation. In Ligra [5] , the user

an exploit lock-free combination by writing a second, atomic, im-

lementation of their combiner. Providing this optimisation with-

ut involving additional code writing may require a code parsing

hase from the framework to determine whether a given combiner

ode can be atomically processed. In its current state, iPregel does

ot leverage the lock-free combiner optimisation. 

The pull-based approach, due to the read-only nature of poten-

ial inter-thread interactions, has the advantage of being data-race

ree. Thus, threads can process message exchanges in parallel with

o synchronisation. Vertices must have a mailbox to receive mes-

ages, as well as an outbox in which they can buffer the messages

o send. Each message in the outbox must be attached with the

ecipient identifier, so that each out-neighbour knows which mes-

age take, if any. Such an approach would result in a heavy mem-

ry overhead, unless the same value is sent to all out-neighbours

ia a broadcast. 

In that case, only one message needs to be stored in the ver-

ex outbox, with no need to store the recipient identifier, since ev-

ry out-neighbour is meant to read that message. It was observed

hat this optimisation can be applied to the majority of vertex-

entric applications, since communications are typically performed

ia broadcasts to neighbours. This optimisation assumes that at

ost one broadcast is issued per vertex per superstep. 

However,in order to support this lock-free design, iPregel must

heck, for each vertex, the outbox of every out-neighbour, which

esults in numerous memory accesses. In applications that expose

 low number of active vertices, this optimisation generates a high

umber of memory accesses that consist in checking an empty

utbox, hence wasting memory bandwidth and generating unpro-

uctive extra work. Although Ligra can dynamically switch be-

ween the push and pull communications at runtime via a thresh-

ld defined by the user, iPregel must be told whether to use the

ormer or the latter via a compilation flag. The user must therefore

etermine experimentally whether it is beneficial in their case to

nable this optimisation. 

.3.3. Message combination 

Vertex-centric frameworks that complete communications via

essage-passing provide each vertex with a mailbox. Messages re-

eived are then queued in the recipient mailbox. Due to the high-

olume of messages exchanged in vertex-centric applications, this

esign eventually results in large mailboxes that no longer fit in-

emory. This is where the concept of a combiner can be leveraged.

In the vast majority of vertex-centric applications, the user is

nterested in the sum, average, minimum or maximum value of

he messages received. These happen to be both associative and

ommutative operations. Therefore, rather than queuing messages

nd then combining them in the user’s compute function, the user

an declare a combination operation that will be applied by the

ramework on-the-fly as messages arrive in the mailbox. The order

n which messages are combined does not have to be enforced

ue to the commutativity property of the combination operation.

he associativity allows for parallel reductions in a multi-threaded

nd/or distributed environment. 

Combiners result in a significant reduction of mailbox size be-

ause each mailbox now stores a single message. Moreover, the

ramework no longer needs to dynamically resize mailboxes to fit

ew incoming messages. This saves numerous reallocations that

an potentially become costly in a multi-billion edge graph. Fur-
hermore, combiners expose additional optimisation opportunities

o the framework, which can now optimise and parallelise the

ombination process. 

To use this feature, the iPregel user must define their own com-

ine function and implement the operation to apply every time a

ew message is received. An example of a combiner calculating the

inimum value of messages received is given in Fig. 5 . 

. Frameworks considered 

To evaluate iPregel , we consider in this paper only frameworks

hat are designed specifically for graph processing in shared mem-

ry. Nevertheless, Fig. 6 , which is taken from McCune et al. [6] ,

ighlights three types of frameworks that could be considered.

mong these categories, iPregel belongs to the middle; combining

ertex-centric programming and synchronous execution. In order

o provide a comparison of iPregel against a variety of frameworks,

ne framework of each type has been selected. 

.1. GraphChi 

The first vertex-centric framework to offer out-of-core com-

utations [4] , GraphChi belongs to the category of vertex-centric

rameworks that exploit asynchronous execution, shown on the left

n Fig. 6 . For a graph that can fit entirely in memory, the out-of-

ore nature of GraphChi makes comparisons with an in-memory

ramework, such as iPregel , unfair. Fortunately, it turns out that

raphChi provides in-memory implementations 4 of its algorithms,

hich are automatically chosen by GraphChi when memory allows.

oncretely, when running a GraphChi application, the user can pass

he amount of RAM available via a runtime parameter. GraphChi

hen estimates the amount of memory needed for its in-memory

ersion, and selects it if the memory available is sufficient. Experi-

ents presented in this paper use the in-memory version of the

mplementations provided by GraphChi , the exception being the

ingle Source Shortest Path (SSSP) for which no implementation at

ll is provided. We therefore developed an in-memory implemen-

ation for SSSP, given in Fig. 7 . 

Another particularity of this framework is its asynchronous ex-

cution flow, where vertex updates are immediately visible, unlike

ts synchronous counterparts where updates take effect only in the

ollowing superstep. The advantage of the former is to help reach

onvergence faster, while the latter is easier to reason about by

roviding clearer semantics. 

https://github.com/GraphChi/graphchi-cpp
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Fig. 7. Compute function for SSSP in GraphChi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. PageRank implemented in iPregel. 
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5.2. FemtoGraph 

FemtoGraph [7] is a shared memory vertex-centric framework

that uses exclusively in-memory storage and synchronous exe-

cution. It thus belongs to the middle category shown in Fig. 6 ,

like iPregel . However, FemtoGraph 5 is designed and hard-coded for

PageRank, in which all vertices are run at every superstep. As a

consequence, FemtoGraph does not implement a vertex selection

mechanism: it runs each vertex at every superstep, without check-

ing their active status or the presence of pending messages in its

mailbox. By contrast, the Connected Components and SSSP bench-

marks do require vertices to be selected since they may become

inactive during the computation. As a result, such algorithms can-

not be implemented in FemtoGraph without rewriting parts of the

framework itself. Also, we have not been able to observe correct

results across all the graphs tested. Nonetheless, FemtoGraph re-

mains an interesting reference since it is the only other vertex-

centric framework specifically designed for in-memory storage and

synchronous execution, like iPregel . 

5.3. Ligra 

Out of the three categories illustrated in Fig. 6 , Ligra 6 be-

longs to the rightmost: non-vertex-centric frameworks, which in-

cludes vertex-subset-centric, with synchronous execution. Its ap-

proach, described as vertex-subset-centric in [6] as opposed to

vertex-centric, consists in dividing the graph processed into sub-

sets, which are run in turn. Ligra executes on each subset two

functions defined by the user: one to apply to every vertex and

one to apply to every edge. In addition, the user must implement

the compute function, which in Ligra is the function that defines

the overall execution flow of the application, from a graph-centric

view. For instance, the user is in charge of writing the main loop,

as well as its termination condition, within which they must ex-

plicitly pass the graph to the vertex and edge functions they de-

fined earlier. Nonetheless, Ligra is a graph processing framework
5 Available at https://github.com/DataSys-IIT/FemtoGraph . 
6 Available at https://github.com/jshun/ligra . 

o  

t  

c  

e  
hat relies on shared memory parallelism, in-memory storage and

ynchronous execution, so in that regard it acts as the non-vertex-

entric counterpart of iPregel . 

. Benchmark applications 

In this work, we evaluate frameworks across three applications,

amely PageRank, Connected Components and the Single-Source

hortest Paths. These three applications are widely used in vertex-

entric experiments and thus act as standard benchmarks. 

.1. PageRank 

Initially presented in [11] , the PageRank algorithm is designed

o order web pages based on their importance calculated from the

umber of hyperlinks pointing to them. 

The iPregel implementation of a PageRank algorithm presented

n Fig. 8 is based on the original Pregel version introduced in

1] . During the first superstep, each vertex begins with an initial

ageRank value of one divided by the number of vertices, and

roadcasts (as defined in Section 3 ) its PageRank value divided

y its number of out-neighbours. From the next superstep on-

ards, each vertex sums the PageRank values received from its in-

eighbours, then it updates its current PageRank value and broad-

asts it again as described earlier. This is repeated for a pre-defined

umber of supersteps, after which vertices halt and the execution

erminates. In practice however, a PageRank application would typ-

cally run until convergence is reached. 

As explained above, when a vertex receives messages, it sums

heir values; this is an operation both associative and commuta-

ive, and so a combiner can be used as explained in Section 4.3.3 .

n Fig. 8 , the reader can see that implementing this combiner re-

uires very little work from the user: defining the combine function

nd writing a single line of code representing the sum to apply.

n addition, the communications performed during the PageRank

alculations consist exclusively of broadcasts, with a maximum of

ne broadcast per vertex per superstep. According to Section 4.3.2 ,

his characteristic makes PageRank compatible with the pull-based

ommunication model, which the iPregel design allows the user to

nable just by passing a compilation flag. However, since vertices

https://github.com/DataSys-IIT/FemtoGraph
https://github.com/jshun/ligra
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Fig. 9. Connected components implemented in iPregel. 
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Fig. 10. Unweighted SSSP implemented in iPregel. 
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alt only after a certain number of supersteps, in contrast to halt-

ng at every superstep, PageRank is not compatible with the iPregel

election bypass optimisation presented in Section 4.3.1 . 

.2. Connected components 

Computing the Connected Components of a graph consists in

nding all disjoint subsets of that graph such that each subset is

ade only of vertices that can all reach one another. There are sev-

ral possible vertex-centric algorithms to compute the Connected

omponents. The algorithm selected in iPregel is often referred to

s Hash-Min. It relies upon the propagation of vertex identifiers

o find, for each vertex, the minimum vertex identifier reachable.

his computation converges, and thus terminates, when vertices

nd the minimum vertex identifier they can reach. Finally, vertices

aving reached the same minimum vertex identifier belong to the

ame Connected Component. 

The iPregel implementation, illustrated Fig. 9 , begins with ver-

ices initialising their value to their own vertex identifier, be-

ore broadcasting it to out-neighbours. From then, vertices find

he minimum vertex identifier received from their in-neighbours.

hey then update their value if the minimum vertex identifier ob-

ained is smaller, in which case they broadcast it back to their out-

eighbours to continue the propagation. Since vertices may obtain

he minimum vertex identifier reachable at any superstep, they al-

ays halt at the end of a superstep. 

The broadcast characteristic makes this Connected Components

mplementation compatible with the pull-based communications

xplained in Section 4.3.2 . Also, the combination applied to mes-

ages received is once again an operation that is associative and

ommutative: the minimum. Therefore, the use of combiners can

e leveraged as discussed in Section 4.3.3 . Similarly to the PageR-

nk combiner implemented in Fig. 8 , the Connected Components

quivalent is once again a combine function made of a single line

f code. Furthermore, the fact that vertices halt at the end of every

uperstep makes the Connected Components also suitable for the

election bypass optimisation presented in Section 4.3.1 , which too

s enabled just by passing a compilation flag. 

.3. Single-source shortest paths 

Finding Shortest Paths in graphs has many applications, as ex-

lained in [1] . In this work, we consider the Single-Source version

f the Shortest Paths, where a vertex is selected as the source and
he algorithm finds the minimum distance between that source

ertex and every other vertex in the graph. In this benchmark we

ssume edge weights equal to 1. 

The iPregel implementation given in Fig. 10 is based on the orig-

nal Pregel version introduced in [1] , which is considered as a dis-

ributed version of the Bellman-Ford algorithm [6] , and is also the

mplementation used in Ligra for instance. During the first super-

tep, the source vertex initialises its value to 0 and begins the

ropagation by broadcasting its value incremented by 1 (repre-

enting the edge weight assumed). In the meantime, other vertices

nitialise their value to INF (a value greater than the longest dis-

ance possible in the graph). From the second superstep onwards,

ertices calculates the potential minimum distance obtained from

essages received. In the event this distance is smaller than the

urrent vertex value, the vertex updates its value and broadcasts it

ncremented by 1 (representing the edge weight assumed). Finally,

ertices halt at the end of every superstep since they may obtain

heir final minimum distance at any superstep. 

This SSSP algorithm exposes the same characteristics as the

onnected Components; vertices halt at the end of every super-

tep, communications are performed only via broadcasts, with a

aximum of one broadcast per vertex per superstep, and it con-

ains a combination operation that is associative and commuta-

ive (calculating the minimum). As a consequence, the SSSP im-

lementation can be optimised with the selection bypass tech-

ique presented in Section 4.3.1 , the pull-based communications

iscussed in Section 4.3.2 and the leverage of combiners intro-

uced in Section 4.3.3 respectively. 

Note that we amended, when needed, the benchmark imple-

entations in other frameworks to become algorithmically equiv-

lent such as homogenising the pre-defined iteration number in

ageRank for instance. 

. Experimental environment 

Experiments are run on Cirrus, an HPE/SGI Apollo 6800 system,

n which each compute node is equipped with two 18-core Intel

eon E5-2695 (Broadwell) series processors. Each compute node

lso has 256GB of RAM made of two Non-Uniform Memory Ac-
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Table 1 

Graphs selected (Abbreviations used: | V | = 

number of vertices, | E | = number of edges. 

Name | V | | E | 

DBLP 317,080 1,049,866 

Live Journal 4,036,538 34,681,189 

Orkut 3,072,441 117,185,083 

Friendster 65,608,366 1,806,067,135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Minimum, average and maximum speed- 

up of Ligra over iPregel when process- 

ing the Connected Components of each 

graph, across all numbers of threads 

tested. 

Graph Min Avg Max 

DBLP 5.47 8.07 10.44 

Live Journal 7.52 8.17 9.43 

Orkut 5.72 6.47 7.77 

Friendster 4.60 4.99 5.92 
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cess (NUMA) regions of 128GB. Instances are set-up with CentOS 7

Linux operating system. 

iPregel is compiled with gcc version 6.3.0, using C99 standard

(GNU99 extensions when using spinlocks) and is parallelised with

OpenMP. Ligra supports OpenMP and Cilk Plus parallelisation. In

order to make the comparison with iPregel as consistent as pos-

sible, the OpenMP version was selected. The frameworks Ligra ,

GraphChi and FemtoGraph , which are developed in C ++ , are com-

piled with g ++ version 6.3.0, using C ++ 14 standard. The optimi-

sation level is set to −O 3 for all frameworks. 

The timings reported include only the processing time, that is,

graph loading and dumping are not included. The second factor we

have measured during experiments is the resident set size , which

represents the peak memory usage of an application over its en-

tire runtime. Unlike the performance, which is assessed purely on

the runtime, the memory peak usage includes all phases of an ap-

plication: graph loading, processing and dumping. The motivation

is to assess whether a framework can process a graph given a cer-

tain amount of memory, which is conditional upon the success of

all phases, not only the processing. 

Table 1 lists the graphs processed in the experiments conducted

in this work, where | V | is the number of vertices, and | E | the num-

ber of edges. They are real-world graphs selected from the online

collection Stanford Network Analysis Project [12] (SNAP) and cover

all orders of magnitude from million-edge to billion-edge. These

graphs are undirected, thus the total number of directed edges

is twice the amount presented. The smallest graph, the Database

and Logic Programming Bibliography graph 

7 (DBLP), is a real-world

graph that represents the eponymous computer science bibliog-

raphy. LiveJournal 8 , Orkut 9 and Friendster 10 are network graphs;

about blogging, social and gaming respectively. 

8. Results 

8.1. Performance 

Fig. 9 illustrates the results of the three benchmarks across

the four different frameworks, with different graphs. For PageR-

ank, illustrated in the left column of Fig. 11 , we observe that the

iPregel version is 70 to 2300 times faster than its FemtoGraph coun-

terpart. 11 GraphChi and Ligra outperform FemtoGraph too, exhibit-

ing a maximum speedup of 700 and 17,0 0 0 respectively. The best

sequential performance, regardless of the graph, is achieved by

GraphChi 12 , due to its asynchronous execution that enables vertices

to read values updated by other vertices during this same super-

step. However, it offers no performance gain when the number of

threads increases and eventually falls behind both iPregel and Ligra
7 https://snap.stanford.edu/data/com-DBLP.html . 
8 https://snap.stanford.edu/data/com-LiveJournal.html . 
9 https://snap.stanford.edu/data/com-Orkut.html . 

10 https://snap.stanford.edu/data/com-Friendster.html . 
11 FemtoGraph ’s timings for Orkut and Friendster graphs could not be collected 

due to abnormal termination and out-of-memory failure respectively. 
12 GraphChi ’s timings for the Friendster graph could not be collected due to the 

number of file descriptors needed, approximately 21,0 0 0, being beyond our allowed 

limit. 

t  

b  

A  

i

c

ersions. The results reported for PageRank in Fig. 11 demonstrate

hat the thread scalability 13 of iPregel is similar to that of Ligra .

hey also point to better graph scalability 14 in iPregel . In addition,

ig. 11 shows that the bigger the graph, the better the thread scala-

ility of iPregel . Thenceforth, the performance differences observed

or PageRank between Ligra and iPregel can be explained using

hese three factors. On the smallest graph DBLP, Ligra begins with

 sequential runtime lower than iPregel and also provides a better

hread scalability. Moving to the Live Journal graph, the number

f vertices and edges are multiplied by 10 and 30 respectively. We

an see that iPregel now begins ahead of Ligra at 1 thread, and pro-

ides a thread scalability better than in DBLP. Despite this progress,

he strong thread scalability of Ligra eventually allows it to out-

erform iPregel above 8 threads. When moving to the hundred-

illion-edge graph Orkut, however, with PageRank, iPregel outper-

orms once again Ligra at 1 thread and manages to remain ahead

cross all numbers of threads thanks to its thread scalability im-

roving. When moving to the billion-edge graph Friendster, iPregel

ow provides a thread scalability as good as that of Ligra , which al-

ows its runtime remain to half that of Ligra across all numbers of

hreads. Overall, for PageRank, the best performance at 32 threads

s achieved by iPregel . 

For the Connected Components, whose results are shown in

he middle column of Fig. 11 , we find certain patterns already

bserved for PageRank. Namely, GraphChi offers no thread scal-

bility, which allows Ligra and iPregel to become competitive at

igh number of threads. However, the performance achieved by

raphChi thanks to its asynchronicity is almost never equalled by

Pregel , even at 32 threads. Nonetheless, iPregel continues to ex-

ibit a better graph scalability than Ligra as illustrated in Table 2 ,

n which we can see that the speed-up of Ligra over iPregel de-

reases as the graph grows, albeit always remaining greater than 1.

till, the vertex-centric iPregel remains up to 10 times slower than

he vertex-subset-centric Ligra which leverages atomic combiners.

verall, there are however two major differences between the re-

ults observed for Connected Components and PageRank. First, the

est sequential performance is now achieved by both GraphChi and

igra . Second, the thread scalability of iPregel is as good as Ligra ’s

n all graphs. 

Finally, the timings collected in SSSP, presented in the right col-

mn of Fig. 11 , show patterns found in the timings gathered for

he Connected Components. Indeed, although Ligra remains several

imes faster than iPregel , the performance difference diminishes as

he size of the graph increases. In-between stands GraphChi, faster

han iPregel on low numbers of threads but due to its poor scala-

ility it eventually falls behind as the number of threads increases.

lso, we observe that iPregel continues to exhibit a thread scalabil-

ty as good as that of Ligra . 
13 The capacity to provide performance gains when the number of threads in- 

reases. 
14 The capacity to provide performance gains when the size of the graph increases. 

https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/com-LiveJournal.html
https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/com-Friendster.html
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Fig. 11. Evolution of iPregel, Ligra, GraphChi and FemtoGraph runtimes against the number of nodes used, for each benchmark application, per graph. 
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15 65 million vertices storing 100 4-byte integers each. 
.2. Memory footprint 

The memory footprints collected are reported in Table 3 . We

bserve that FemtoGraph is up to 100 times less efficient than

Pregel , eventually resulting in an out-of-memory failure for Friend-

ter. The high memory overhead generated by FemtoGraph is partly

ue to the lack of message combination. Indeed, each vertex is

rovided with a mailbox that contains space for 100 messages

hile iPregel mailboxes only store the combined message, as in-

roduced in Section 4.3.3 . When processing the 65 million vertices
f the Friendster graph (see Table 1 ), the FemtoGraph mailbox de-

ign requires 26GB 

15 while that of iPregel uses 0.26GB. In addition

o causing message losses when a vertex receives more than 100

essages, the FemtoGraph design results in wasted memory for

ertices that receive fewer than 100 messages. Finally, we report

hat we were not able to process Orkut with FemtoGraph due to an
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Table 3 

Maximum resident set size of each framework tested across all graphs pro- 

cessed, for each application executed, in Gigabytes. (Abbreviations used: CC = 

Connected Components, ABT = Abnormal Termination, OOM = Out Of Mem- 

ory, FDO = File Descriptor Overflow). 

Graph iPregel FemtoGraph GraphChi Ligra 

PageRank DBLP 0.07 3.26 0.07 0.04 

Live Journal 0.48 51.95 1.41 0.51 

Orkut 1.08 ABT 3.91 1.10 

Friendster 20.45 OOM FDO 21.43 

CC DBLP 0.15 – 1.06 0.03 

Live Journal 0.42 – 2.49 0.48 

Orkut 1.03 – 7.58 1.07 

Friendster 20.94 – FDO 20.45 

SSSP DBLP 0.14 – 0.10 0.02 

Live Journal 0.47 – 2.49 0.42 

Orkut 1.07 – 7.57 1.04 

Friendster 19.91 – FDO 18.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Compute function for PageRank in Pregel. 

Table 4 

Evaluation of frameworks considered against the pro- 

grammability criteria defined from the Pregel imple- 

mentation of PageRank. (Abbreviations used: IP = 

iPregel, FG = FemtoGraph, GC = GraphChi, LI = Ligra). 

Framework IP FT GC LI 

Vertex-centric interface Yes Yes Yes No 

Encapsulated attributes Yes Yes No No 

Vertex halting Yes Yes No No 

Fig. 13. Compute function for PageRank in FemtoGraph. 
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abnormal termination that the debugging information provided by

FemtoGraph does not permit us to explain. 

According to Table 3 , GraphChi is approximately 40 times more

memory efficient than FemtoGraph . It produces a memory footprint

that is within the same order of magnitude than iPregel . Nonethe-

less, GraphChi remains between 3 and 6 times less memory effi-

cient on average. Despite providing an in-memory version of sev-

eral applications, GraphChi remains a framework tailored for out-

of-core computations, and it is therefore understandable that its

memory usage is not as optimised as that of a pure in-memory

framework like iPregel or Ligra . 

Finally, we observe in Table 3 that the memory footprint of

Ligra is similar to that of iPregel . In the majority of experiments,

the difference is smaller than 60MB. The maximum difference in

favour of Ligra is for SSSP on Friendster, where its memory foot-

print is 1.72GB (or 9%) smaller than that of iPregel . Conversely, run-

ning PageRank on the Friendster graph is where iPregel makes the

biggest difference in its favour with 20.45GB against 21.43GB for

Ligra ; saving 0.98GB (approximately 5%). Among the two frame-

works, the best in terms of memory efficiency depends entirely

on the benchmark and graph being processed, Ligra proves to be

more efficient than iPregel 7 times, while the contrary is observed

5 times. As a consequence, iPregel manages to provides a vertex-

centric interface with a memory footprint as competitive as its

non-vertex-centric counterpart. 

8.3. Programmability 

In this section, we evaluate the programmability of frameworks

tested by comparison against the vertex-centric interface exposed

in Pregel. Although Pregel is available within Google exclusively, its

implementations for multiple benchmarks used in this paper are

given in the original paper [1] . 

The PageRank application is the only one implemented by all

four frameworks considered in this paper, so it was selected as

the reference application. The PageRank implementation using the

original Pregel framework is illustrated in Fig. 12 , taken from [1] .

We observe 3 characteristics that we use as evaluation criteria: 

1. A vertex-centric interface; representing the fundamental advan-

tage of the Pregel API with regard to programmability. 

2. Encapsulated vertex data, that is, data specific to vertices are

stored in vertices themselves, such as the rank for PageRank.

This contrasts with another possible approach where vertices

would fetch their rank from a global structure shared across all

vertices. The latter however requires the user to be aware of

the underlying addressing algorithm between a vertex identi-

fier and the corresponding position in the global structure. As a
result, encapsulating vertex attributes improves programmabil-

ity by letting the framework handle the vertex addressing while

exposing a less error prone programming interface to the user. 

3. The completion of a vertex is expressed via a halting function.

This is the cornerstone of vertex selection and algorithm termi-

nation, yet it requires very little work from the user: calling the

halting function. 

In Table 4 , we observe that iPregel and FemtoGraph fulfil all

hree programmability criteria. As we can see in their implementa-

ions given in Figs. 8 and 13 , they clearly offer a highly abstracted

ertex-centric interface, vertex-specific information are encapsu-

ated in the vertices and the halting mechanism is invoked by ver-

ices using a simple function call. 

GraphChi too provides a vertex-centric interface. However, we

bserve in its implementation of PageRank in Fig. 14 that vertex

anks are contained in a single array pr . As a result, the user is in

harge of handling the vertex addressing, and they have to manip-

late this global structure from a centralised view and not vertex-

entric. In addition, GraphChi performs the vertex selection via a
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Fig. 14. Compute function for PageRank in GraphChi. 

Fig. 15. Compute function for PageRank in Ligra. 
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Fig. 16. Additional user-defined structures needed by the PageRank compute func- 

tion in Ligra. 
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ertex scheduler, which can be disabled for algorithms such as

ageRank, resulting in no halting mechanism available at vertex-

evel. Although the algorithm termination is “based on all vertices

oting to halt” according to Pregel [1] , in the GraphChi version of

ageRank it is determined in the main function, where a maximum

umber of iterations is defined. PageRank has a particularity; all

ertices run at every superstep. However, this is not the case for

ost algorithms, including the Connected Components and SSSP,

herefore requiring a vertex selection mechanism. In GraphChi , this

s achieved via a vertex scheduler that must be explicitly enabled

r disabled by the user, then called in user code when processing

ach vertex. Indeed, for an algorithm that requires vertex selec-

ion like SSSP, vertices that send a message must then explicitly

all the scheduler and schedule the recipient vertex for execution.

his approach exposes implementation-level details to the user. By

ontrast, iPregel abstracts the vertex selection behind the call to

he halting function. In addition, the selection bypass optimisation

resented in Section 4.3.1 is enabled via a compilation flag, with-

ut requiring a modification in the user application source code.
hat allows the user to rely on a consistent programming interface

cross all applications, unlike GraphChi where, for instance, vertices

o not halt in PageRank whereas they do in SSSP, and sending a

essage must be followed by an explicit schedule of the recipient

ertex in SSSP, while it does not in PageRank. 

Finally, Fig. 15 illustrates the Ligra implementation of PageR-

nk. For fairness, we removed the source code section that was

alculating the convergence of PageRank results since other frame-
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works (including iPregel ) do not do this. This deletion is also bene-

ficial to Ligra from a programmability perspective as it reduces the

amount of code written and hides the details about convergence

calculations from the code. Nonetheless, we observe none of the

criteria presented in Table 4 , although this is understandable for a

framework that is not vertex-centric but vertex-subset-centric. The

source code provided explicitly exposes parallelism to the user in

two aspects. First, syntactically, as we can see with the use of par-

allel for loops wrapped in curly brackets. Second, semantically, as

Ligra states in [5] , the function provided to edgeMap ”can run in

parallel, so the user must ensure parallel correctness ”. In other words,

the user is in partially responsible for the thread-safety of Ligra . In

addition, the iterative structure of the computation as well as dy-

namic memory allocations and deallocations are done directly by

the user, as shown in Fig. 15 . This a price the designers of Ligra

have accepted in order to obtain more performance, but we argue

that such concerns are too low-level for the user. Furthermore, we

observe that the compute function only outlines the general com-

putation flow. The edge map and vertex map functions must be

defined by the user as well, which are given in Fig. 16 for PageR-

ank. As we can see, the total amount of code that must be writ-

ten by the user greatly exceeds that for iPregel . As explained in

Section 4.3.2 , Ligra provides atomic combination as an additional

optimisation, which is enabled by writing a second version of the

update function. This requires the user to be aware of the atomic-

ity potential of its combination operation, as well as being able to

implement it atomically using the Ligra functions provided. 

9. Conclusions and future work 

Our initial observation that programmability suffers from opti-

misations made for memory efficiency and performance is illus-

trated in the results collected. Preserving the vertex-centric pro-

grammability leads FemtoGraph to be up to 17,0 0 0 times and 70 0

times slower than Ligra and GraphChi respectively, in addition to

resulting in a memory footprint up to orders of magnitude bigger. 

Experiments demonstrate that our framework, iPregel , provides

the best of both worlds. By developing optimisations that do not

hinder programmability, iPregel has been able to bridge the weak-

nesses of FemtoGraph with regard to memory efficiency and per-

formance, without sacrificing programmability. This statement can

not be said about any other vertex-centric framework including

FemtoGraph , GraphChi and Ligra . The memory efficiency of iPregel

equals that of Ligra which was the most memory efficient frame-

work tested. iPregel is also up to 100 times more memory effi-

cient than FemtoGraph , and up to 7 times more memory efficient

than GraphChi . This additional memory efficiency allows iPregel to

process graphs that FemtoGraph cannot because its memory foot-

print exceeds the available memory. Regarding performance, the

maximum speedup of GraphChi or Ligra over iPregel is at most 10,

which is up to 1700 times less than the speed-up they can achieve

over FemtoGraph . The performance observed on iPregel is up to

2300 times better than that of FemtoGraph . At worst, iPregel re-

mains 70 times faster than FemtoGraph . On PageRank, iPregel even

manages to provide the best performance overall, outperforming

its programmability-hindered counterparts as well. 

The multifaceted analysis of this paper demonstrates that

our framework iPregel overcomes the fundamental compromise
n vertex-centric frameworks by reaching a point where vertex-

entric programmability no longer impacts memory efficiency, and

an result in a limited performance loss, no loss at all or even

 performance gain. This makes iPregel the first shared mem-

ry vertex-centric framework able to scale to a multi-billion edge

raph without sacrificing vertex-centric programmability. 

Further improvements of iPregel could include the design and

mplementation of atomic combiners that do not hinder the pro-

rammability exposed to the user. Also, the multi-threaded perfor-

ance observed would certainly benefit from additional investiga-

ions in load-balancing strategies and work stealing techniques. Fi-

ally, porting iPregel to a distributed memory architecture is a third

otential direction, which may lead future effort s. 
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