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ABSTRACT
This paper presents a novel editor supporting interactive re-
finement in the development of structured documents. The
user performs a sequence of editing operations on the docu-
ment view, and the editor automatically derives an efficient
and reliable document source and a transformation that pro-
duces the document view. The editor is unique in its pro-
grammability, in the sense that the transformation can be
obtained through editing operations. The main tricks be-
hind are the utilization of the view-updating technique de-
veloped in the database community, and a new bidirectional
transformation language that cannot only describe the re-
lationship between the document source and its view, but
also data dependency in the view.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.1.2 [Programming Techniques]:
Automatic Programming—program transformation, program
synthesis; H.4.1 [Information Systems Applications]:
Office Automation—spreadsheets, word processing

General Terms
Documentation, Languages

Keywords
View updating, Bidirectional transformation, Functional pro-
gramming, Document Engineering, Editor

1. INTRODUCTION
XML [5] has been attracting a tremendous surge of inter-

est as a universal, queryable representation for structured
documents. Everyday, a countless number of structured
documents in XML are constructed, and so many editors
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<!ELEMENT addrbook (person*)>
<!ELEMENT person (name, email*, tel)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>

Figure 1: A DTD for the Address Book

<addrbook>
<person>

<name> Masato Takeichi </name>
<email> takeichi@acm.org </email>
<tel> +81-3-5841-7430 </tel>

</person>
<person>

<name> Zhenjiang Hu </name>
<email> hu@mist.i.u-tokyo.ac.jp </email>
<email> hu@ipl.t.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>

<name> Shin-Cheng Mu </name>
<email> scm@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
</addrbook>

Figure 2: An XML Document of the Address Book

[23] are designed and implemented to support the construc-
tion of XML documents. This has in part been stimulated
by the growth of the Web and e-commerce, where XML
has emerged as the de facto standard for representation of
structured documents and information interchange. While
the existing XML editors are helpful for the creation of the
documents, they are rather weak to support development of
structured documents in the sense they hardly provide pow-
erful mechanism for dynamic refinement of the structured
documents.

Let us take a close look at the process of using exist-
ing editors with an example of construction of an address
book. It basically includes three steps: designing a suit-
able document type, constructing an XML document with
the designed type for storing information, and defining a
transformation for viewing the document. We may start by
defining an address book type (Figure 1), which allows an
arbitrary number of people’s addresses including a name,
some email addresses if there are, and a telephone number.



<xsl:template match="/addrbook">
<addrbook>

<index>
<xsl:for-each select="person">

<xsl:sort select="name"/>
<xsl:value-of select="name"/>

</xsl:for-each>
</index>
<xsl:for-each select="person">

<xsl:sort select="name"/>
<xsl:value-of select="person"/>

</xsl:for-each>
</addrbook>

</xsl:template>

Figure 3: A Transformation in XSLT

Then, we construct an XML document (Figure 2) of this
type to store address information. And finally, we define a
transformation (Figure 3) to display1 the address book in a
friendly way (Figure 4), say by sorting persons according to
the last names and adding an index of names. Notice the dif-
ference between the two XML documents, the original XML
document in Figure 2 and the view in Figure 4. Besides
difference in their structures, the former has no redundant
information, while the later does; e.g., the same names ap-
pear twice in the view. The result of this development is a
structured document with three components: a data type
definition, an XML document representing the source data,
and a transformation for viewing the data.

During the development of a structured document, none
of the three components is always fixed. Instead, they all
keep evolving. It has been observed that document devel-
opment follows a life-cycle similar to the development of
computer programs, in which the document is repeatedly
refined. However, the existing editors do not support inter-
active refinement very well:

• First, they treat the three components of structured
documents independently, which makes it hard to keep
them consistent with each other. Take the address
book example, if we want to make a change on the
data type by splitting the telephone number (tel) into
two parts, country code (ccode) and local code (tel),
to share the country code, we may refine the document
type definition in Figure 1 to that in Figure 5. This re-
finement requires corresponding changes on the XML
document and the transformation, which is difficult.

• Second, they expect the users to be XML experts know-
ing DTD, XML, and XSLT for the construction of the
three components of structured documents. This may
be rather disappointing to those who know very lit-
tle about XML (for example, those possessing merely
some basic knowledge of HTML), but still want to cre-
ate structured documents in their daily work. In fact,
more and more people nowadays want to be able to
create their structured documents in a user-friendly
manner, pretty much like how spreadsheets are cre-
ated. The intuitive interface of the latter contributes
a lot to its popularity.

1To simplify our presentation, we consider the view as an-
other XML data. It should be very straightforward to
present this XML data in another format with a suitable
style-sheet description.

<addrbook>
<index>

<name> Zhenjiang Hu </name>
<name> Shin-Cheng Mu </name>
<name> Masato Takeichi </name>

</index>
<person>

<name> Zhenjiang Hu </name>
<email> hu@mist.i.u-tokyo.ac.jp </email>
<email> hu@ipl.t.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>

<name> Shin-Cheng Mu </name>
<email> scm@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>

</person>
<person>

<name> Masato Takeichi </name>
<email> takeichi@acm.org </email>
<tel> +81-3-5841-7430 </tel>

</person>
</addrbook>

Figure 4: A View of the Address Book in XML

<!ELEMENT addrbook (ccode, person*)>
<!ELEMENT ccode (#PCDATA)>
<!ELEMENT person (name, email*, tel)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT tel (#PCDATA)>

Figure 5: Another DTD for the Address Book

In this paper, we propose a novel editor that supports
interactive refinement during the development of structured
documents. Given a sequence of editing operations on the
view together with a data type definition for the final view,
an efficient and reliable structured document with the three
basic components can be obtained automatically.

One challenge in design and implementation of such edit-
ing system is to find an efficient way for maintaining consis-
tency of the source document and its view even when there
is local data dependency in the view. Consider the view in
Figure 4, we would wish that when the user, for example,
adds or deletes a person, the original document in Figure
2 be updated correspondingly. Further more, the changes
should also trigger an update of the index of names in Fig-
ure 4. We may even wish that when an additional name
is added to the index, a fresh, empty person will be added
to the person bodies in both the source document and the
view.

The main trick behind our editor is a new bidirectional
transformation language describing the relationship among
the source data, the view, and the transformation between
the source data and the view.

Our main contributions can be summarized as follows.

• We, as far as we are aware, are the first to recognize
the importance of the view-updating technique for in-
teractive development of structured documents. The
view-updating technique [2, 7, 11, 19, 1] has been in-
tensively studied in the database community, where
modification on the view can be reflected back to the
original database. We borrow this technique and use it



in the design of our editor with a significant extension
not exploited before: editing operations can modify
not only the view but also the transformation (from
the database to the view).

• We have designed a powerful language for the specifica-
tion of the relationship between the original data and
the view. Our language is similar to that in [16, 12],
extended with a special construct to duplicate data.
Lots of efforts were put into handling data dependency
within the view. The language is powerful enough to
describe the editing operations (insert, delete, move,
and copy) as well as other important transformations.

• We have successfully implemented our idea in a proto-
type editor. The editor is particularly interesting in its
programmability and an unified, presentation-oriented
interface for developing the three components through
editing operations on the view.

– Presentation-oriented: we provide a uniform view-
based editing interface for users to construct and
refine their documents.

– Programmable: transformations can be constructed
through interactive editing operations. In fact,
thanks to the bidirectional language, the three
basic components of structured documents can be
automatically derived, after editing the view.

The rest of the paper is organized as follows. We start by
giving a simple definition of structured documents in func-
tional notations in Section 2. After defining the bidirectional
transformation language that plays an important role in our
editor in Section 3, we propose the design principle and im-
plementation technique in Section 4, and demonstrate how
our system can assist development of structured documents
in Section 5. Related work and conclusions are given in
Sections 6 and 7 respectively.

2. STRUCTURED DOCUMENTS
In this section, we introduce the notations in which we

will describe structured documents in this paper. As in the
introduction, we may formulate a structured document as a
triple (T, D, X):

• T : the type of the source document;

• D: the source document;

• X: the transformation mapping the source document
to another document for display. The document dis-
played to the user is called the view.

For instance, the structured document in the introduction
specifies T using DTD, D using XML, and X using XSLT.

For conciseness, we choose a Haskell-like[4] notation to
represent structured documents. Other alternatives include
HaXML [26], XDuce [13] or CDuce [3], languages or libraries
designed for specification of XML documents in a functional
style.

For the sake of conciseness and simplicity, we talk about
only a subset of XML. We omitted attributes, which should
not be too difficult to cope with by some simple extension.
We do not have node sharing, not allowing, for example,
IDRef in XML for referring to other nodes through a unique
identifier. These will be among our future work to do.

2.1 Document Types
We may use Haskell types to represent the types of docu-

ments. For instance, we may define the type of the address
book in Figure 2 as follows.

data Addrbook = Addrbook [Person]

data Person = Person (Name, [Email], Tel)

data Name = Name String

data Email = Email String

data Tel = Tel String

Any tree so constructed is type-checked by the Haskell type
system, which is a good thing for the final document. How-
ever, for the interactive refinement of the documents, we
should allow inconsistency during document development.
To this end, we make use of the following generic tree

data Tree = N String [Tree]

to represent contents of any XML document, independent
of all DTDs.

2.2 Source Documents
The following gives an example of this representation of

the the document source in Figure 2.

addrbook = N "Addrbook"

[N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]],

N "Person"

[N "Name" [N "Zhenjiang Hu" []],

N "Email" [N "hu@mist.i.u-tokyo.ac.jp" [],

N "hu@ipl.t.u-tokyo.ac.jp" []],

N "Tel" [N "+81-3-5841-7411" []]],

N "Person"

[N "Name" [N "Shin-Cheng Mu" []],

N "Email" [N "scm@mist.i.u-tokyo.ac.jp" []],

N "Tel" [N "+81-3-5841-7430" []]]]

The generic representation does not distinguish tag names
from texts, since both of them are represented by strings.
As a matter of fact, we can think of labels attached to inner
nodes as tag names, and labels to leaves as text.

2.3 Transformation and Views
We will use the language in Section 3 to specify transfor-

mations mapping source documents to views. It is worth
noting again that views allow local data dependency while
source documents do not allow.

To give the whole expression of our formulation, we show
an example of the transformation description below, which
implement the same transformation in Figure 3.

sortX ;
applyX [ ] Dup ;
applyX [1] (modifyRootX “Index” ; Map keepX) ;
copyX [1] [2, 1] ;
deleteX ;
hoistX “Dup”

We will return to explain this transformation after ex-
plaining our transformation language.



3. A BIDIRECTIONAL TRANSFORMATION
LANGUAGE

Our editor is view-oriented in that it allows users to de-
velop their structured documents by editing the view. The
editor then produces the three components of a structured
document automatically. This view-oriented environment
requires a mechanism to relate the three components with
the view. We borrow the view-updating technique [2, 7, 11,
19, 1], which has been intensively studied in the database
community. Given a database and a query which produces
a view from the database, the view-updating technique is
to reflect view modification upon the database. Though the
idea is very similar, there are two major difficulties in using
this technique in our view-oriented editor.

• Our view may contain local data dependency as seen
in Figure 4 where the same name appears twice in the
view. This requires synchronization both between the
view and the source document and between data and
its dependence inside the view.

• Our view modification should be reflected not only on
the source document, but also on the transformation.
In other words, the transformation (query) part, which
is assumed to be fixed in the existing view-updating
technique, should be modifiable in our framework.

In this section, we present a language in which the docu-
ment designer specifies the relationship between the source
data and the view. The language is an extension to simi-
lar languages in [16, 12]. It plays an important role in the
design of our editor (see Section 4).

3.1 Bidirectionality
Before explaining our language, we clarify what we mean

by being bidirectional. Following the convention in [12], we
call the type of source documents C (concrete view) and
that of target documents A (abstract view). They are both
embedded in Tree but we nevertheless distinguish them for
clarity. A transformation x defined in X is associated with
two functions. The function φx :: C → A maps the concrete
view to an abstract view, which is displayed and edited by
the user. The function �x:: C × A → C takes the original
concrete view and the edited abstract view, and returns an
updated concrete view. In [12] they are called get and put
respectively.

We call a transformation x bidirectional if the following
two properties hold:

GET-PUT-GET : φx (c �x a) = a where a = φx c
PUT-GET-PUT : c′ �x (φx c′) = c′ where c′ = c �x a

The PUT-GET-PUT property says that if c′ is a recently up-
dated concrete view, mapping it to its abstract view and im-
mediately performing the backward update does not change
its value. Note that this property only needs to hold for
those c′ in the range of �x. For an arbitrary c we impose
the GET-PUT-GET requirement instead. Let a be the ab-
stract view of c. Updating c with a and taking the abstract
view, we get a again.

In [16, 12], on the other hand, the GET-PUT and PUT-
GET properties are required to hold for arbitrary a and c′:

φx (c �x a) = a for any abstract view a
c′ �x (φx c′) = c′ for any concrete view c′

X ::= B { primitives }
| X ; X { sequencing }
| X ⊗ X { product }
| If P X X { conditional branches }
| Map X { apply to all children }
| Fold X X { fold }

B ::= GFun (f, g) { Galoi function pairs }
| NFun f { a simple function }
| Dup { duplication }

Figure 6: The Language X for Specifying Bidirec-
tional Transformations

However, as shown in [12], this would imply that φ is injec-
tive, which in turn imply that we would have difficulty deal-
ing with duplication. A reasonable definition of φx where
x duplicates data would not be injective, since modifying
either of the duplicated data should yield the same source.

Once we introduce duplication into our language, how-
ever, an editing action at one location of the abstract view
may cause corresponding changes at other locations. There-
fore we need an extra φx to perform the change in the ab-
stract view. The two bidirectional properties above guaran-
tees that no further updating is necessary.

3.2 The Language X

The syntax of the language X for specifying bidirectional
transformation is given in Figure 6. Primitive transforma-
tions are denoted by non-terminal B. They can be com-
posed to form more complicated transformations by one of
the combinators defined in X. The language looks very sim-
ilar to the bidirectional languages proposed in [16, 12]. The
most important difference lies in the new language construct
Dup, which enables description of data dependency inside
the view.

In this section, we will focus on how to use the language
to describe transformation of our interest. An important
property of the language X is the following theorem, whose
proof is omitted due to space limitation.

Theorem 1 (Bidirectionality of X).
Any transformation described in X is bidirectional. �

We omit the proof of the theorem, but we can see its
correctness from the explanation of the language below.

3.2.1 Primitive Transformations
Rather than giving a fixed set of primitive transforma-

tions as in [12], we adopt a general way to define two classes
of primitive transformations — the bidirectional primitives
(GFun) and the unidirectional ones (NFun). Together with
the special primitive Dup, they are described below.

Duplication
In the forward direction, the function φDup generates two

copies of its input.

φDup c = N “Dup” [c, c]

In the backward direction, �Dup checks which of the two

copies was touched by the user by comparing them with the



original view c, and keeps only the changed one.

c �Dup (N “Dup” [a1, a2]) = a2 if a1 = c

= a1 if a2 = c
= a1 otherwise

Here we assume that the user performs only one editing
action before an updating event is triggered. Therefore, if
none of a1 and a2 equals c, it must be the case that a1 = a2,
because they result from the same editing action.

The Dup operator is the only means in X to specify value
dependency among different parts of the view — when one
of the copies is edited by the user, the other should change as
well. This is achieved by a backward update �Dup followed

by a forward transform φDup. The backward phase updates

the touched value. The forward phase then overwrites the
copies in the abstract view with new values.

The presence of Dup makes φx, where x uses Dup, a non-
total and non-injective transformation. The function �Dup
does not satisfy the PUT-GET rule for views not in the
range of φDup, and is therefore not a well-behaved transform

in [12].

Bidirectional Primitive Transformations
A bidirectional primitive GFun (f, g) consists of two func-
tions f and g satisfying:

INV1 : f ◦ g ◦ f = f
INV2 : g ◦ f ◦ g = g

That is, g is the inverse of f in the range of f . The property
is satisfied by all Galois-connected pairs of functions, thus
the name GFun. The bidirectional semantics of GFun (f, g)
is given by

φGFun (f,g)
c = f c

c �GFun (f,g)
a = g a

In words, the abstract view is obtained by applying f to
the concrete view, while the concrete view can be obtained
by applying g to the abstract view, ignoring the original
concrete view. That φGFun (f,g)

and �GFun (f,g)
satisfy the

bidirectional property is a direct consequence of INV1 and
INV2.

Let us see some useful primitive transformations defined
in this way. The simplest transformation is the identity
transformation:

idX = GFun (id, id)

which relates two identical data, and is defined by a pair of
two identity functions. In this example, the pair of functions
are inverse of each other.

Another interesting transformation is defined by

sortX = GFun (sortT, sortT)

which relates the concrete data with the abstract data such
that the children of the root in the abstract view are sorted.
The function sortT sorts the subtrees of the root, accord-
ing to the first child value of each subtree. It is clear that
sortT is not invertible, but sortT and sortT do satisfy the
properties of INV1 and INV2.

Similarly, we may define other primitive transformations
that are useful for manipulating tree locally.

• swapX i j swaps the ith and jth subtrees of the root.

swapX i j = GFun (f, f)
where

f (N n ts) = N n (take (i − 1) ts ++ ts!!j
++ take (j − i − 1) (drop i ts)
++ ts!!i ++ drop j ts)

• hoistX n: If the root has label n and a single child t,
then the result is t.

hoistX n = GFun (f, g)
where

f (N m [t]) = t, if m = n
g t = N n [t]

Note that f is a partial function. If the input is not in
its domain, an error message appears.

• newRoot n makes the current tree the single child of a
new root with label n.

newRootX n = GFun (f, g)
where

f t = N n [t]
g (N m [t]) = t, if m = n

• exchangeX exchanges the root with the node of the
leftmost child tree that has no child.

exchangeX = GFun (f, f)
where

f (N n (N m [ ] : ts)) = N m (N n [ ] : ts)

• insertHoleX inserts Ω, a special tree denoting a hole, as
the leftmost child of the root.

insertHoleX = GFun (f, g)
where

f (N n ts) = N n (Ω : ts)
g (N n (Ω : ts)) = N n ts

• deleteHoleX deletes the hole appearing as the leftmost
child of the root.

deleteHoleX = GFun (f, g)
where

f (N n (Ω : ts)) = N n ts
g (N n ts) = N n (Ω : ts)

• replaceHoleX t replaces the hole with tree t.

replaceHoleX t = GFun (f, g)
where

f Ω = t
g t′ = Ω, if t = t′

Restrictive Primitive Transformations
Not all primitive transformations we wish to have satisfy
the properties INV1 and INV2. One example is the constX
transformation that does not care about the concrete view
but only requires the abstract view to be a constant tree.
Another example is the numberX transformation that relates
the concrete view with the abstract view such that the ab-
stract view shows the number of the children of the root in
the concrete view.

We specify these transformations using a single function

NFun f



only showing how to map the concrete view to the abstract
view. The bidirectional semantics of this kind of transfor-
mation can be defined as follows.

φNFun f
c = f c

c �NFun f
a = c

Notice that c �NFun f
always returns the original concrete

view c, and ignores any change on the abstract view a. No-
tice also that NFun f does satisfy both the GET-PUT-GET
and the PUT-GET-PUT properties, as seen in the following
calculations.

φNFun f
(c �NFun f

a)

= { Def. of �NFun f }
φNFun f

c

= { by the condition of a }
a

c′ �x (φx c′)
= { Def. of �NFun f }

c′

Below are the definitions of the two transformations men-
tioned above.

constX t = NFun (λx. t)
numberX = NFun (length ◦ children)

One can turn any function f to be a transformation NFun f ,
though its ability to update the source by editing the view
will be hindered. In a sense, transformations defined by
NFun f are not really “bidirectional”, since all changes on
the abstract view are simply ignored. However, it is still
very helpful when used together with Dup, which we will
see in Section 3.3.2.

3.3 Transformation Combinators
The set of transformation combinators is useful to con-

struct bigger transformations. An informal explanation of
these combinators is given in Figure 7. Most of the combi-
nators are essentially the same as those in [12]. There are
three new combinators, namely duplication, condition, and
fold. The duplication combinator is to introduce data de-
pendency inside a document. Different from the reference
structure for sharing data, the duplication transformation
treats duplicated data and the original in the same way.
The condition combinator is used to apply different trans-
formations according to the context or information of the
local tree, and the fold combinator is useful for specifying
interactive processing of documents.

3.3.1 Sequencing
Given two bidirectional transformations x1 and x2, the

transformation x1; x2 informally means “do x1, then do x2”.
Its bidirectional semantics is given by

φx1;x2 = φx2 ◦ φx1

c �x1;x2 a = c �x1 ((φx1 c) �x2 a)

The forward transform φx1;x2 is simply the sequential com-
position of φx1 and φx2 . To update the concrete view c with
a modified abstract view a, we need to know what the inter-
mediate concrete view was. It is computed by φx1 c. The
expression (φx1 c) �x2 a then computes an intermediate
abstract view, which is used to update c with �x1 .

3.3.2 Product
The product construct x1 ⊗ x2 behaves similar to prod-

ucts in ordinary functional languages, apart from that we
are working on trees rather than pairs. The forward trans-
formation is defined by

φx1⊗x2 (N c (c1 : cs)) = N a (a1 : as)

where

a1 = φx1 c1

N a as = φx2 (N c cs).

The input tree is sliced into two parts: the left-most child,
and the root plus the other children. The transform x1 is
applied to the left-most child, while x2 is applied to the
rest. The result is then combined together. The backward
updating is defined by updating the two slices separately.

(N c (c1 : cs)) �x1⊗x2 (N a (a1 : as)) = N c′ (c′1 : cs′)

where

c′1 = c1 �x1 a1

N c′ cs′ = (N c cs) �x2 (N a as).

As an example, consider the following transformation.

Dup ; (numberX ⊗ idX)

It maps a tree to another such that the new tree consists of
not only the original tree but also the number of children of
the root in the original tree. Notice the use of Dup together
with the primitive transformation numberX. Although the
number shown in the new tree is not editable because the
transformation numberX is defined in terms of Nfun before,
its value can be automatically changed if we remove or add
a child to the root of the original tree.

3.3.3 Conditional Branches
In the forward direction, the combinator If p x1 x2 ap-

plies the transform x1 to the input if the input satisfies the
predicate p. Otherwise x2 is applied.

φIf p x1 x2
c = φx1 c if p c

= φx2 c otherwise

In the backward direction, we check the root label to deter-
mine whether to apply �x1 or �x2 to the modified view.

c �If p x1 x2
a = c �x1 a if p c

= c �x2 a otherwise

For instance, we may write

If (λc. sumtree c > 10) Dup idX

to duplicate the source tree if the sum of the all the node
values is greater than 10, and keep it unchanged otherwise.

3.3.4 Map
We define two (higher order) transformation combinators,

Map and Fold to recursively transform trees.
The well-known function map on lists is defined by

map f [ ] = [ ]
map f (a : x) = f a : map f x

The forward transform of Map x simply applies the trans-
formation x to all subtrees of the given tree, leaving the root
label unchanged.

φMap x
(N c cs) = N c (map φx cs)



GFun(f,g)

NFun f

Dup

f

g
f

dup Dup

x1; x2 x1 x2

x1 x x2

x2

x1

x

Map x

Fold x1 x2

x1Fold x1 x2

If p x1 x2
xi

i=1   if p src
i=2   if not (p src)

Figure 7: Intuitive Explanation of Transformation Combinators

The backward updating is defined by updating the subtrees
separately,

(N c cs) �Map x
(N c as) = N c (zip�x cs as)

where the abstract and the concrete trees should have the
same label, and function zip is defined as follows.

zip⊕ [ ] [ ] = [ ]
zip⊕ (a : x) (b : y) = a ⊕ b : zip⊕ x y

3.3.5 Fold
The transform Fold x1 x2 is defined like a fold on rose

trees. The transform x2 is applied to leaves, x1 to internal
nodes. Its forward transform is defined by

φFold x1 x2
(N c [ ]) = φx2 (N c [ ])

φFold x1 x2
(N c cs) = φ

(Map (Fold x1 x2));x1
(N c cs)

In the base case, we simply apply x2 to the leaf. In the
recursive case, Fold x1 x2 is applied to all subtrees of the
input tree, before x1 is applied to the result, thus the use of
sequencing.

In the backward direction, we use the cached copy of the
concrete view to determine the depth of recursion to go into.
Being able to reuse Map and sequencing significantly sim-
plifies the definition.

(N c [ ]) �Fold x1 x2
a = (N c [ ]) �x2 a

c �Fold x1 x2
a = c �

(Map (Fold x1 x2));x1
a

If we expand the second clause of the definition, we get

(N c cs) �Fold x1 x2
a = N c′ cs′

where

(N c′ as′) = (N c as) �x1 a
as = map φFold x1 x2

cs

cs′ = zip�Fold x1 x2
cs as′.

Like in sequencing, we need an application of map φFold x1 x2
to create an intermediate value in order to perform �x1 . The
subtrees are then updated using zip�Fold x1 x2

.

3.4 Programming in X

3.4.1 Editing as Bidirectional Transformation
With the language X, we are able to define the important

editing operations as bidirectional transformations.

insertX v = insertHoleX ;
(replaceHoleX v) ⊗ idX

deleteX = (constX Ω) ⊗ idX ;
deleteHoleX

modifyRootX n = insertX (N n []) ;
exchangeX ;
deleteX

We may insert some document v as the leftmost child of
the root using insertX v, or delete the leftmost child using
deleteX, or modify the root node information with a new
name n using modifyRootX n.

Other editing operations like moveX and copyX can be
defined via a combination of insertX and deleteX.

3.4.2 Efficiency
Our formulation of the most important editing operations

is very efficient. By efficiency we mean two things. First, we
are able to define efficient editing operations. For example,
another useful editing operation, keepX, which returns the
leftmost subtree, could be naively realized by a sequence
of deletion operations. Our language, however, allows the
following more efficient definition:

keepX = idX ⊗ (constX Ω) ;
hoistX (RootΩ)



where RootΩ denotes the root node of the Ω tree. Note that
the Ω tree is tree with just a single node acting as a hole to
be filled.

Second, and more important in implementation of our
presentation-oriented editors, we can produce as much ed-
itable data as possible in the view. There are many ways
to define a source-to-view transformation; one may go ex-
tremely to define them just as basic transformations in terms
of NFun with a non-invertible function. Consider the editing
operation insertX defined in Section 3.4.1. One could have
defined it as

insertX’ v = NFun f
where f (N n ts) = N n (v : ts)

which forbids any modification on the view. The definition
of insertX in in Section 3.4.1, on the other hand, imposes no
restriction at all on editing of the view.

3.4.3 An Example
We consider the specification of the transformation map-

ping the source document in Figure 2 to the view in Figure
4. The major difference between the view and the source
document is that the entries in the view are sorted, and the
view has an additional index of names. The transformation
in XSLT has been given in Figure 3.

First, we consider specification of the transformation which
applies transformation x to the subtree at path p but leave
other parts of the tree unchanged. A path is a sequence
of positive integers [a1, a2, . . . , an], denoting the subtree ob-
tained by going into the a1-th child of the root, then into
the a2-th child, and so on. For example, [ ] denotes the root
node (or the entire tree), and [1] denotes the first child of
the root.

applyX [ ] x = x
applyX (i : p) x = swapX 1 i ;

applyX p x ⊗ idX ;
swapX 1 i

Note that the applyX behaves as a higher order transforma-
tion; it accepts a transformation and returns a new trans-
formation as the result.

Now we can code our transformation in X as follows.

sortX ;
applyX [ ] Dup ;
applyX [1] (modifyRootX “Index” ; Map keepX) ;
copyX [1] [2, 1] ;
deleteX ;
hoistX “Dup”

We sort the address book according to person’s names, du-
plicate the address book, keep only the name (first child)
for each person in the duplicated address book and change
the root name to be “Index”, copy the list of names to the
sorted address book and then delete it, and remove the label
of “Dup” due to the duplication operation.

4. THE PROGRAMMABLE EDITOR
Our editor serves as a presentation-oriented (view-oriented)

environment supporting interactive development of struc-
tured documents. It allows users to develop structured doc-
uments in a WYSIWYG (what you see is what you get)
manner, and automatically produces the three components
of a structured document.

4.1 Editing Operations
We consider the following editing operations.

E ::= InsertE p v
| DeleteE p
| CopyE p1 p2

| MoveE p1 p2

| FieldEditE p l
| DuplicateE p
| TransformE p x

They are standard except for the last two operators. For
instance, InsertE p v inserts a tree v as the first child of the
node at path p, and FieldEditE p l modifies the label of the
node at path p to l. The last two new editing operators,
DuplicateE p and TransformE p x, are the special features in
our editor: DuplicateE p duplicates the tree at path p and
the two trees should be kept identical, and TransformE p x
applies a bidirectional transformation x to the tree at path
p.

The state of the editor is a triple

S = (c, x, a)

where c and a denote the internal data and the view respec-
tively, and x denotes a bidirectional transformation. Each
state S = (c, x, a) holds the following SYNC property.

a = φx c
c = c �x a

This SYNC property expresses the relationship among the
three elements in a state, and the bidirectionality of x en-
sures an automatic adjustment among the three elements in
case some of them is modified. To be precise, let (c, x, a) be
a given state.

• If c changes to c′, the new state is (c′, x, φx c);

• If x changes to x′, the new state is (c, x′, φx′ c);

• If a changes to a′, the new state is (c �x a′, x, φx (c �x

a′)).

We define the following functions for the above adjustments.

Acx (c, x, a) = (c, x, φx c)
Aa (c, x, a) = Acx (c �x a, x, a)

Acx adjust the editor state when c or x changes, while Aa

adjust the editor state when a changes.
The operational semantics of the editing operations is

given in Figure 8. Each editing operation is a state trans-
former with two steps; transforming some components of the
editor state and then adjusting the state to meet the SYNC
property. Given the state (c, x, a), the operator InsertE p v is
(1) to insert a tree v to the view a by a general tree insertion
function insert and accordingly to change the path expres-
sions in the transformation x so that the nodes at these paths
refer to the same ones, and then (2) to adjust the state by
Aa. Here, insP x p is a function to “increase” some node
number in some paths in x. Let p = p1 ++ [a], and p′ be a
path expression in x satisfying p′ = p1++ [b]++ p2 and b > a,
then p′ will be changed to p1 ++ [b + 1] ++ p2. Other editing
operations like deleteE, copyE, moveE, and fieldEditE are de-
fined similarly. The duplicateE and transformE are two edit-
ing operations that change the transformation x. Thanks



(InsertE p v) (c, x, a) → Aa (c, incP x p, insert p v a)
(DeleteE p) (c, x, a) → Aa (c, decP x p, delete p a)
(CopyE p1 p2) (c, x, a) → Aa (c, incP x p2, copy p1 p2 a)
(MoveE p1 p2) (c, x, a) → Aa (c, incP (decP x p1) p2, move p1 p2 a)
(FieldEditE p l) (c, x, a) → Aa (c, x, fieldEdit p l a)
(DuplicateE p) (c, x, a) → Acx (c, (x; applyX p Dup), a)
(TransformE p x′) (c, x, a) → Acx (c, (x; applyX p x′)), a)

Figure 8: The Operational Semantics of the Editing Operations

to the SYNC property of the editor state, their semantics is
very clear.

Note the difference between the two forms of editing oper-
ations in our editor: editing operations directly manipulat-
ing views and editing operations formalized as bidirectional
transformations between views. Considering the insertion
operator, we have two forms:

InsertE p v
TransformE p (insertX v)

The former inserts a tree to the view and propagates this
change to other places of the view, while the latter performs
an independent insertion on the view, causing no changes
elsewhere. Note also that not any editing sequence is valid
in our system. For example, the view produced by a re-
strictive primitive transformation is not editable by InsertE.
However, it can be modified by an independent editing op-
eration.

4.2 Deriving Structured Documents
This section explains how to produce the three compo-

nents for a structured document after a sequence of editing
operations. Recall that in Section 2 the three components
of a structured document are the document type, the docu-
ment source, and the transformation.

The first two elements of the editor state (c, x, a) almost
give the source document and the transformation we want to
have. What is remained to do is to find a suitable document
type to structure c and to make x a transformation accept-
ing typed document sources. The difficult lies in finding the
document type. One possible solution is to use the auto-
matic extraction techniques [6, 9] to extract the document
type information from c, however this approach is effective
only when there is large amount of sample documents, which
is not really suitable in our situation.

We adopt another approach. We ask the users to provide
a type for the view (see our example in Section 5), and we
infer types for the document source and the transformation.
To do so, we borrow the idea from [20], where given a DTD
for the XML source data and a query, an inference system
derives a tight DTD for the view. Since our transforma-
tions are built up upon primitive transformations in terms
of GFun (f, g) and NFun f , we can utilize the inference algo-
rithms in [20], provided the types for functions used in the
primitive transformations are given. We hope to design a
language to define the functions used in primitive transfor-
mations and derive their types automatically in the future.

4.3 Infinite Undo
Another advantage of bidirectional transformations in our

editor is the ability to implement infinite numbers of oper-

ations of undo. The following set of equations indicate that
for any editing operations, there always exists another edit-
ing operation to recover the state.

(DeleteE p) ((Insert p v) s) = s
(InsertE p (s|p)) ((DeleteE p) s) = s
(DeleteE p2) ((CopyE p1 p2) s = s
(InsertE p1 (s|p1)) ((DeleteE p2) ((MoveE p1 p2) s)) = s
(FieldEditE p (root(s|p))) ((FieldEditE p n) s) = s
(undoX) ((DuplicateE p) s) = s
(undoX) ((TransformE p) s) = s

Here s|p denotes the subtree in the view s at the path p,
and root v returns the label of the root node of the tree
v. undoX is a new editing operation for undoing the last
transformation. Its semantics can be defined by

(undoX) (c, x, a) = Acx(c, deleLast x, a)

where deleLast is to delete the last added transformation.
These equations enable us to implement a sequence of

undo operations by remembering a sequence of editing op-
erations (for recovering the editor states) rather than a se-
quence of editor states. This saves much space, making it
possible to implement infinite numbers of undo operations.

5. EDITING = DEVELOPING
We view the development of structured documents as the

process of constructing a triple (T, D, X) meeting the re-
quirements the designer had in mind. We have implemented
in Haskell a prototype editing system for supporting this de-
velopment. The main purpose of this prototype system is for
testing the idea, and the editor has a simple user interface:
the system waits for the user to input an editing command,
and updates the view upon accepting a command.

We demonstrate how our editor works by going through
the development of the address book in the introduction.
From scratch, we start with an empty view with only one
node labeled "Root":

N "Root" []

In the demonstration to follow, we will construct, via inter-
action with the editor, the triple (T, D, X) like those (but
in different notations) in Figures 1, 2, and 3, such that the
resulting view looks like that in Figure 4.

The node or subtree in focus, on which the user performs
editing operations, is selected by a cursor. Here, for simplic-
ity, we use a path to denote the subtree we select.

The complete list of operations the user can perform on
the focused subtrees has been given in Section 4. We will
show how all these editing operations are used for developing
our address book.



We first change the label "Root" to "Addrbook" by the
FieldEditE operation,

N "Addrbook" []

and, by the InsertE operation, we insert a name and some
contacts information as a subtree of the root (the node at
position [ ]), which could be done by inserting nodes one by
one.

N "Addrbook"

[N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]]]

We may continue to add another person’s contacts by copy-
ing the subtree rooted at the path [1] using the CopyE op-
eration. The copied tree becomes a sibling of the original:

N "Addrbook"

[N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]],

N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]]]

We then change values at the nodes to the second person’s
name and contacts:

N "Addrbook"

[N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]],

N "Person"

[N "Name" [N "Zhenjiang Hu" []],

N "Email" [N "hu@mist.i.u-tokyo.ac.jp" []],

N "Tel" [N "+81-3-5841-7430" []]]]

It should be noted that we are editing both the source
document and the view, though we are not quite aware of
this fact so far. The transformation X, is currently simply
the identity transformation idX. Now suppose we want to
sort persons according to their names, by selecting all the
persons and apply the sortX transformation on it via the
editing operation TransformE. The result looks like

N "Addrbook"

[N "Person"

[N "Name" [N "Zhenjiang Hu" []],

N "Email" [N "hu@mist.i.u-tokyo.ac.jp" []],

N "Tel" [N "+81-3-5841-7430" []]],

N "Person"

[N "Name" [N "Masato Takeichi" []],

N "Email" [N "takeichi@acm.org" []],

N "Tel" [N "+81-3-5841-7430" []]]]

What is sorted is the view. The source remains the same,
while the transformation sortX now looks like the function
that performs the sorting.

Next, we want to make an index of names of people in the
address book. To do so, we first make a copy of the address
book by the DuplicateE operation:

N "Dup"

[N "Addrbook"

[N "Person"

[N "Name" [N "Zhenjiang Hu" []],

... ],

N "Person"

[N "Name" [N "Masato Takeichi" []],

...]],

N "Addrbook"

[N "Person"

[N "Name" [N "Zhenjiang Hu" []],

... ],

N "Person"

[N "Name" [N "Masato Takeichi" []],

...]]]

and then apply the transformation keepX via TransformE to
keep only the names from the duplicated address book (and
change the tag "Addrbook" to "Index"):

N "Dup"

[N "Index"

[N "Name" [N "Zhenjiang Hu" []],

N "Name" [N "Masato Takeichi" []]]

N "Addrbook"

[N "Person"

[N "Name" [N "Zhenjiang Hu" []],

... ],

N "Person"

[N "Name" [N "Masato Takeichi" []],

...]]]

It should be remarked again that the duplication is one
of the most important features of our system. It is differ-
ent from the copy operation, which we performed just now
to add a new person in the address book. Copied data are
independent from each other. On the other hand, the dupli-
cate operation indicates that the subtree and its duplicate
should be synchronized. In this example, deletion, inser-
tion, or modification of a person’s information at one side
causes corresponding change on the other side, unless we ex-
plicitly inform the editor to perform the editing operations
independently.

The keepX transformation used in the TransformE oper-
ation in the above, for example, is such an independent
transformation. When it was applied to the subtree at [1]
to extract the names, the main address book at [2] remains
unchanged. On the other hand, if we insert the following
entry (by the InsertE operation)

N "Person"

[N "Name" [N "Shin-Cheng Mu" []],

N "Email" [N "scm@mist.i.u-tokyo.ac.jp" []],

N "Tel" [N "+81-3-5841-7411" []]]

to the "Addrbook" subtree at the path [2] as its last child,
the name “Shin-Cheng Mu” will automatically appear in the
index of names, resulting in:

N "Dup"

[N "Index"

[N "Name" [N "Zhenjiang Hu" []],

N "Name" [N "Shin-Cheng Mu" []]],

N "Name" [N "Masato Takeichi" []]

N "Addrbook"

[N "Person"



[N "Name" [N "Zhenjiang Hu" []],

... ],

N "Person"

[N "Name" [N "Shin-Cheng Mu" []],

...]],

N "Person"

[N "Name" [N "Masato Takeichi" []],

...]]]

Note also that although the entry is inserted (by the user)
as the last child of the "Addrbook" in the view, the resulting
view has both the entries under the "Addrbook" and the
names under the "Index" sorted.

Finally, we tell the system that the type of the view should
be the following

data Addrbook = Addrbook (Index, [Person])

data Index = Index [Name]

data Person = Person (Name, [Email], Tel)

data Name = Name String

data Email = Email String

data Tel = Tel String

and our system automatically returns the triple (T, D, X)
(written in our notation) similar to those in Figures 1, 2
and 3.

We summarize the important features of our programmable
editor as follows.

• Our editor is presentation-oriented (view-oriented), with
which the developer can directly edit the view, the ex-
act display of the document. This WYSIWYG style is
more friendly than existing editors. Those with little
knowledge about XML will feel easy to use this system
to develop their structured documents.

• Our editor allows simple description of data depen-
dency in the view by the DuplicateE operation, and
provides an efficient solution to keep consistency of
the data in the view. As far as we are aware, this is
the first structured document editor with local data
synchronization.

• Our editor integrates the three components of a struc-
tured document in the view displayed to the user. The
source data and the transformation are gradually built
while the user edits the view, before the user finally
imposes a type on the view.

6. RELATED WORK
There are plenty of XML editors [23], which have been

designed and implemented for supporting development of
structured documents in XML. Most of them, such as XML-
Spy [15], develop structured documents in the order of DTD,
document content, and presentation. These kinds of tools
cannot effectively support interactive document development,
as strongly argued by researchers [8, 25] in the field of docu-
ment engineering. Moreover, these tools require developers
to have much knowledge about DTD, XML and XSLT. In
contrary, our editor provides a single integrated WYSIWYG
interface, and requires less knowledge about XML.

The most related system to ours is Proxima [22, 14], a sin-
gle presentation-oriented generic editor designed for all kinds
of XML-documents and presentations. It is very similar to

our system; it is also presentation orient and allows descrip-
tion of transformation and computation over view through
editing operations. However, for each transformation and
computation, users must prepare two functions to explicitly
express the two-way transformation. In contrast, we provide
a bidirectional language with the view-updating technique,
facilitating bidirectional transformation. Another similar
system is the TreeCalc system [24], a simple tree version
of the spreadsheet system, but it does not support structure
modification on the view.

Our representation of the editor state by a triple (the doc-
ument source, and transformation, and the view) is inspired
by the work on view-updating [2, 7, 11, 19, 1] in the database
community, where modification on the view can be reflected
back to the original database. We borrow this technique
with a significant extension that editing operations can mod-
ify not only the view but also the query, which is not ex-
ploited before. Since our transformation language does not
have the JOIN operator, the problem of the costive prop-
agation of deletion and annotation through views [21] does
not happen in our case.

During the design of the bidirectional transformation lan-
guage X, much was learnt from the lenses combinators in
[12], where a semantic foundation and a core programming
language for bidirectional transformations on tree-structured
data are given. The current lens combinators can clearly
specify dependency between a source data and a view, but
cannot describe dependency inside a view. This is not the
problem in the context of data synchronization, but has to
be remedied in our view-oriented editor. It would be inter-
esting to see whether the lens combinators can be enriched
with duplication by relaxing the requirement in the “PUT-
GET” and “GET-PUT” properties. In contrast, our lan-
guage with duplication makes dependency clearly described.
Another very much related language is that given by Meertens
[16], which is designed for specification of constraints in the
design of user-interfaces. Again the language cannot deal
with dependency inside a view.

Our idea of duplication in X is greatly influenced by the
invertible language in [10], where duplication is considered
as the inverse of equality check and vice versa. In inverse
computation, an inverse function computes an input merely
from an output, but in bidirectional transformation, a back-
ward updating can use both the output and the old input
to compute a new input. Therefore adding duplication to a
bidirectional language needs a more involved equality check
mechanism. It should be interesting to see if inverse trans-
formation with duplication can implement the view updat-
ing, and to compare these two approaches. Some attempt
has been made in [18, 17].

7. CONCLUSIONS
In this paper, we proposed a presentation-oriented edi-

tor suitable for interactive development of structured docu-
ments. A novel use of the view updating technique in the ed-
itor, the duplication construct in our bidirectional language,
and the mechanism of changing the transformation through
editing operations, play a key role in the design of our edi-
tor. The prototyped system with automatic view updating
and infinite undos shows the promise of this approach.

This work is still in an early stage, and there is much
work to do. Particularly, rather than designing a new bidi-
rectional language, we are interested to look into the possi-



bility of making the existing transformation languages like
XSLT to be efficiently bidirectional.
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