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Abstract—Comprehensive privacy mechanisms are essential
in the pervasive internet-of-things systems of today, which are
comprised of multiple distributed devices and diverse software
stacks, while located in different legal or administrative domains.
In such systems, often consisting of resource-constrained devices,
guarantees of correctness and conformance to privacy policies is
required, while data need to be synchronized among different
software components. Motivated by the “data protection by de-
sign and by default” principle, we propose a technical framework
to support data synchronization among edge components tailored
for pervasive IoT applications. Our privacy-driven synchroniza-
tion approach is based on a generically applicable privacy model
and able to capture roles and permissions, actions on data,
conditions and obligations that arise in privacy requirements. For
automated and correct reflection of synchronized data among
components, we adopt bidirectional transformations, a mecha-
nism where synchronization between models, consistency, and
well-behavedness are formally guaranteed. Thus, automatically
generated privacy-aware data transformations are correct by
construction. We evaluate POET, our framework and accom-
panying tool with a case study on medical information privacy
and demonstrate its performance in resource-constrained edge
devices.

Index Terms—Bidirectional Transformations, Privacy Models,
Edge Computing, Requirements Assurance

I. INTRODUCTION

The recent evolution towards an increasingly integrated

world has at its basis novel types of pervasive systems

achieved through new technologies and paradigms such as

mobile and cloud computing and Internet of Things (IoT),

inducing systems composed of heterogeneous devices, com-

puting infrastructures and cloud services. The current state-

of-the-art in systematically engineering such pervasive systems

involves architecturally offloading data or control to the cloud.

However, novel functional and non-functional requirements,

including user requirements as well as new laws and reg-

ulations dictate data or computation to be situated locally

near devices. Such requirements may capture diverse system

concerns ranging from performance to security and privacy,

whose satisfaction suggests computing entities architecturally

located near the network edge, closer to the end-devices. Such

edge entities may offer computational, communication and

data resources to local devices [1].

Take privacy [2] as an example. Comprehensive privacy

mechanisms are essential for widespread uptake and accep-

tance of the pervasive systems of today, as the ever-increasing

number of devices collecting (possibly sensitive) data and

interacting with the physical environment, combined with

opaque data handling policies, contribute to a lack of trust.

Hence, privacy emerges as a first-class design goal throughout

the application development lifecycle. The challenge of data

privacy in particular, is to enable utilization of data while pro-

tecting an individual’s privacy preferences and their personally

identifiable information.

Rigorous modeling and precise formalization of privacy

requirements as defined by legislative acts, like the EU General

Data Protection Regulation (GDPR [3]), enables the enforce-

ment of privacy regulations in an information processing sys-

tem. The unambiguous definition of policies allows reasoning

upon them, ensuring compliance to information privacy laws,

generally guaranteeing individuals’ privacy. Recent develop-

ments in legal and regulatory frameworks have intensified

the need for privacy compliance. Legislative acts such as

GDPR [3] (about privacy, data handling and protection),

HIPAA [4] (about medical records privacy) or CCPA [5] (con-

sumer data protection), require enterprises to protect privacy

of their users, by rigorously specifying privacy policies and

ensuring their implementation in their activities.

In this paper, we propose a novel technical framework

to engineer data privacy tailored for the pervasive edge

computing systems of today – POET (Privacy On the Edge

with Transformations). In such systems, often consisting of

resource-constrained devices hosting software components i)

formal assurances of correctness as well as ii) development

support throughout the application lifecycle is required. We

focus on applications’ privacy needs, as they pertain to keeping

data synchronized among software components; data should

always flow between components in accordance to privacy

policies capturing privacy requirements of the system. In our
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proposal, we ensure that in software components, changes

applied to remote data are reflected back automatically while

respecting defined privacy policies in the source data, and from

there propagated to other remote data that may also be affected

by the change. Such automated reflection is achieved thanks

to the use of bidirectional transformations [6], a mechanism

where synchronization between models, consistency, and well-

behavedness are formally guaranteed. Model synchronization

entails propagating changes back, while ensuring that changes

made to models are always consistent. Well-behavedness

pertains round-trip laws capturing the properties mentioned

above. Essentially, given the support that POET concretely

provides, transformations reflecting changes to remote data are

generated automatically and correctly.

Our privacy reasoning approach is based on the generically

adopted privacy model of P-RBAC [7], thus able to capture

roles and permissions, actions on data, conditions and obli-

gations that arise in privacy requirements. Privacy-wise, the

cornerstone of our approach is that no data residing in a node

may leave it unless it satisfies the defined policies. In our

POET approach, automatically generated privacy-aware data

transformations are correct by construction. We essentially

implement “data protection by design and by default” (Art.

25 GDPR [3]), by providing facilities for assurances of correct

design – our technical framework ensures that data synchro-

nized always respect privacy policies defined.

The rest of the paper is structured as follows. Section II

gives an overview of our approach, which is situated on the

edge and providing data privacy and synchronization over

a running example used throughout the paper. Section III

describes the privacy model we have adopted to capture

privacy requirements, and Section IV illustrates our privacy-

aware data synchronization mechanism using bidirectional

transformations. Section V presents the runtime deployment of

our approach, while Section VI provides an assessment of the

applicability and realizability of the proposed approach over a

case study of medical data privacy. Related work is considered

in Section VII, and Section VIII concludes the paper.

II. PRIVACY ON THE EDGE

New challenges and opportunities arise as the rapidly grow-

ing cloud computing and pervasive mobile devices, sensors

and networks meet [8]. A pervasive system is generally made

up of different data-handling components, which may be

operated by different users, located in diverse administrative

domains and deployed in the cloud, on local devices or

intermediate computational nodes.

From the data perspective, novel system requirements in-

cluding timeliness, privacy or availability suggest that storage

and computation upon data should be performed at or close

to where sensory or raw data is generated, or where the end

users of the data are situated. Keeping data locally and close

to devices means that they can access it rapidly minimizing

network latency, access it even in case of network disruption

and very importantly, data is within the control of the device.

The latter has implications about privacy, as data ownership

is defined by the source of the data, and shared according to

privacy policies capturing system privacy requirements.

Data obviously need to be synchronized among different

data-handling components. In the modern pervasive environ-

ment data does not only flow from devices to the cloud – data

flows are bidirectional and among different data consumers

and producers [9]. As such, devices should handle privacy

themselves. Another factor in favor of this is trust; although

privacy requirements are known system-wide, a misconfigura-

tion or data breach may allow possibly untrusted devices to

access data that they should not. We advocate that since the

edge is closer to data sources and users, there is an opportunity

for stronger data privacy – something realized by empowering

the edge to actively manage the privacy of data located within

its scope, and automatically synchronize the right subset with

the rest of the system.

Privacy requirements of the system – which can be consid-

ered to be global, as they permeate the whole system – dictate

how and where data should be synchronized. For example,

a privacy policy encoding some requirement conditionally

restricts actions according to different data objects, data users,

or data use purposes. The target is to synchronize data with

other allowed software components, while synchronization

usually means some create, read, update or delete [10] action.
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Fig. 1. Privacy on the Edge with Bidirectional Transformations.

Figure 1 provides a birds-eye view of our approach to

privacy on the edge. At design time, two tasks are performed:

i) privacy requirements are encoded in privacy policies, using

the established privacy formalism of P-RBAC [7], and ii)

source data are interfaced in order to be compatible with our

privacy framework. Output artifacts of those two design time

tasks constitute the input to a transformation engine [11].

At runtime, bidirectional data transformations are then

automatically parameterized with the specified policies cor-

rectly by construction, and placed in edge components han-

dling data within the system. During system operation, the

generated privacy-aware transformations keep data on edge

nodes synchronized with others (as well as any other devices

configured, or the cloud). The essence of our approach is

that this synchronization is formally defined, correct and
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always respects privacy policies that govern data located in

the edge node. POET, a prototypical tool realizing our privacy-

aware bidirectional data transformation approach, along with

examples of use and privacy specifications is available [12].

Motivating Example. We consider the case of a distributed

social network, where mobile users through their devices share

privacy-sensitive data. Each user has a laptop computer as well

as mobile devices. Users’ laptop computers contain personal

information, such as their photo albums, which are meant to be

shared only among their friends. A list of friends is maintained

at each laptop. Since users may roam, their IP address may

change – a central cloud service actively maintains the list

of friends as well as their IP addresses. We assume that users

voluntarily share their IP address with the social network [13].

A mobile device may take a photo which is then uploaded on a

user’s laptop for storage – the photo may be explicitly allowed

by the user as to be shared with friends through the social

network the laptops are part of. For example purposes, we treat

users’ laptops as edge nodes – users’ mobile phones (as IoT

devices) may connect to them locally. Privacy requirements of

the overall system dictate the following:

PR1: A mobile device can synchronize photos for the

purposes of storage with a connecting laptop.

PR2: A friend’s laptop can access photos that have been

marked as to be shared by its owner.

PR3: A cloud service may update the IP addresses of

friends on a user’s laptop.

No other information should flow between the various con-

stituents of the system – in other words, PR1-PR3 represent the

only data operations that are allowed to occur in the system.

III. MODELING DATA PRIVACY REQUIREMENTS

As is common in information privacy, for all data collected

and processed, there should be a stated purpose [14]; usage

of data for another purpose than the one it was intended for

must be prevented. This is reflected also in the GDPR Art.

6 – Lawfulness of processing [3]. Moreover, as is typical

in data management, support of classifications identifying

various kinds of data is desired. Support of roles allows

access differentiation between different entities, in line with

security access models. This is because in the context of

an edge-intensive system, differentiation between architectural

entities is desired – privacy-wise, a mobile device is a different

architectural component than a cloud machine. Based on the

above privacy objectives, in the following section we adopt a

privacy model that can support them.

P-RBAC [7] is an extension to the well-known Role-Based

Access Control (RBAC) model [15]. In the classic RBAC

model, a user is assigned to one or multiple roles and each

role has one or multiple permissions. A permission specifies

what action can be performed on which data object. P-RBAC

extends this notion of a permission by adding privacy-related

attributes to it, such as purpose, condition and obligations. The

purpose binds a permission to a range of duties; for example,

sharing purposes may entail different permissions than storage.

A condition specifies under which circumstances a permission

can be granted, for instance, accessing a user’s photo may

require explicit consent from the user. Obligations denote a

set of operations which need to be performed whenever a

permission has been granted, such as adding a log entry.

Our instantiation of P-RBAC for the edge has the following

constituents.

• Privacy Role (R): A type identifier of the architectural

component where data will be contained in, e.g. Laptop

or MobileDev.

• Data Object (D): The data object which a privacy re-

quirement refers to, e.g. Photo.

• Access Purpose (PU): The purpose for which access to

an object is to be allowed, e.g. Storage.

• Access Action (A): The action with which data will be

operated upon, i.e. CRUD actions.

• Access Obligation (O): If permission is granted, opera-

tions that must be additionally performed.

• Access Condition (C): A constraint encoding when a

permission can be granted.

Assuming some architectural entities U, the entity assign-

ment UA ⊆ U× R links entities to one or multiple roles. Each

role r ∈ R has one or multiple permissions, denoted as the per-

mission assignment PA ⊆ R× P . A permission P extends the

action-object privacy permission (a, d) ∈ A× D of RBAC [15]

with an additional condition c ∈ C, purpose p ∈ PU and an

optional set of obligations ob ⊆ 2O . The set of all privacy

permissions is denoted as P ⊆ (A× D)× PU × C××2O. A

privacy permission is then written as (r, ((a, d), p, c, ob)).
Recall our example system, where photos may be shared

among friends for purposes of PU = {Sharing, Storage,
Management}. Roles R = {MobileDev, Laptop, CloudSrv}
operate upon data objects D = {Photo, FriendIPList}
with actions A = {Write, Read, Update}. Access condition
C = {photo shared} needs to be satisfied for a photo to
enable sharing, and an access obligation O = {notify()}1

must be performed whenever friend’s IP addresses are updated.
Privacy requirements PR1-PR3 of the motivating example can
then be formally encoded as the following tuples:

(PR1)
(

MobileDev, (Write, Photo), Storage, true, ∅)

(PR2)
(

Laptop, (Read, Photo), Sharing, photo shared ≡ ⊤, ∅)

(PR3)
(

CloudSrv, (Write, FriendIPList), Management, true, notify()
)

Note that the other side of the data flow interaction such as the

connecting laptop in the privacy requirements will be embeded

in the architectural deployment presented in Section V.

IV. PRIVACY-AWARE DATA TRANSFORMATION

We have seen how data privacy requirements can be

precisely expressed between system nodes according to the

policies in an P-RBAC model. However, a classic problem in

this methodology is how to reflect modifications of one system

component to the others connected to it. If an update is made

to data residing on an edge node, it must be reflected to other

connected edge nodes based on the semantics of the privacy

policies defined. The change must not take place if the policy

does not allow it.

1Obligation procedures operate upon data, are assumed to be application-
dependent and already defined along with privacy policies.
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Certainly, one could implement this by hand, by encoding

the transformation algorithms for certain particular data. How-

ever, formal assurances on correctness and well-behavedness

might not be guaranteed:

• Both directions, propagating data to and from the edge

node must be implemented, so that data is synchronized.

This is prone to errors, as the bidirectional transformation

must correctly reflect changed data back and forth.

• Synchronization should occur for every data pair accord-

ing to the privacy policy, while any data format should

be supported.

• Should the need for changing the implemented transfor-

mation arises, development support should aid (correctly)

updating the transformations.

In the following, we illustrate how the above challenges

may be tackled by designing and implementing a well-behaved

bidirectional transformation (BX) for data synchronization,

which correctly by design propagates changes between data

residing in edge nodes in accordance with policies defined in

an P-RBAC specification.

A. Bidirectional Transformation

Bidirectional transformation (BX) [6] is a useful mechanism

for data synchronization, which supports any format data pair

from many different areas including software engineering,

programming languages, databases, and document engineer-

ing. Asymmetric lenses, an influential framework in BX, are

designed for synchronizing two pieces of data where one

side, which is called the source, has more information than

the other, which is called the view. A lens consists of a

pair of transformations get and put [16], [17]. The forward

transformation get(s) is used to produce a target view v from

a source s, while the putback transformation put(s, v) is used

to reflect updates on the view v to the source s. These two

transformations should be well-behaved in the sense that they

satisfy the following round-tripping laws:

put(s, get(s)) = s GETPUT

get(put(s, v)) = v PUTGET

The GETPUT property requires that no change of the view

shall be reflected as no change of the source, while the

PUTGET property requires all changes in the view should be

completely reflected to the source so that the changed view can

be computed again by applying the forward transformation to

the updated source.
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Fig. 2. Privacy-Aware BX overview: After interfacing of source data, the BX
engine utilizes correspondences between items to synchronize structures.

B. Data Interfacing & Preparation

Since data in an edge-intensive application can be of various

types, our aim is providing a privacy-aware mechanism that

is generic – it is applicable to every underlying data that is

sought to be bidirectionally transformed. Thus, the initial step

required by our approach naturally consists of data preparation.

Data preparation, shown in the left part of Fig. 2, aims at

interfacing source data with the privacy-aware data transforma-

tion engine. Since data may be of arbitrary source format, what

is required by the developer is demonstrating a minimal set of

data attributes or fields, that uniquely specify a data item. In

the simplest case, this can be a single attribute. This is essential

for the BX engine to establish correspondences between data

items when performing privacy-aware transformations – es-

sentially, establishing that a certain data field or data attribute

is unique per data record. In practice, this entails showing

how source data items can be represented in (attribute, item)
pairs within the BX engine, where attribute is unique to the

application. For example, this can be a primary key for a record

in a table or a hash value for arbitrary data objects.

Recall our running example, where source data consist of

the users’ photos and the list of friend’s IP addresses. A unique

attribute for a photo –which is typically a binary data item–

can be some unique number (e.g. a UUID) or a bit string

fingerprint from a hash function (e.g. SHA). A list of friend’s

IP addresses would typically contain pairs of a user identifier

(i.e. a nickname or a public key) and an IP address, so the

identifier can be readily used.

C. Implementing Privacy-Aware BX using BiGUL

To realize the privacy-aware BX engine, a pair of trans-

formations between the source and view models need to be

developed. In our case, recall that the forward transformation

get is the data item extraction from the source data which

satisfy the privacy policy. Since get is essentially a projection

of the data based on the policy, its corresponding put is an

information embedding of the view data items into the source

data items which have the same data attributes. Though the

source update ways varies depending on actions denoted in a

policy, the put should always be paired with a get to form a

bidirectional transformation pair satisfying the GETPUT and

PUTGET properties defined previously.

To use BX for our transformations, we need to develop

a pair of transformations between the source and the view

models as shown in the right part of Fig. 2. From a high

level perspective, a transformation function producing a view

V from a source S satisfying a policy (r, ((a, d), p, c, ob))
operates in the following manner:

For every component role r:

For every purpose p:

For every data object o in S which matches d:

→ Yield o if c is satisfied for o.

Its corresponding put transformation should be an embedding

of data view into the source model according to the semantics

of this policy. Generally, privacy goals are achieved due to
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the following two points; first, the view always contains the

information allowed “to go out” of a node. Second, the BX

framework guarantees that one cannot get additional (i.e.

private) information from the source by modifying the view.

The transformations get and put could be manually im-

plemented. Although this solution provides the programmer

with full control in two directions and can be realized using

standard programming languages, we i) require formal assur-

ances of correctness of the get and put transformations and

ii) desire to minimize the maintenance effort required to keep

the consistency between them when one is changed. Even a

small modification to one of the transformations would require

redefinition of the other as well as a new well-behavedness

proof.

In this paper, we adopt BiGUL [18], a putback-based

bidirectional programming language, where one is only re-

quired to implement the put transformation instead of both

get and put, to implement the data synchronization above.

This is based on the fact that get is uniquely determined by

put based on well-behavedness [19]. In BiGUL, once a put

transformation is given, the corresponding get transformation

can be automatically derived for free. We will not dive into a

detailed explanation of the implementation of put in BiGUL,

but rather we give a flavor of it through the following fragment,

which describes how updating a data record with the privacy-

aware BX engine occurs.

datasyn :: BiGUL Record Record

datasyn = $(update

[p| Rcd attr item |]

[p| Rcd attr item |]

[d| attr = Skip; item = Replace |])

In the above functional program fragment, datasyn uses

a view of type Record to update a source of the same type,

where a simplified data record here is internally represented

by (Rcd attr item). The definition body of datasyn states

that the source and view should be of the same form of

(Rcd attr item), and that attribute in the source should

be unchanged (via Skip), the item in the source should be

replaced by that in the view (via Replace). For example,

given the source (Rcd ”photoName” ”family”) and the

view (Rcd ”photoname” ”parents”), the updated source

via get shall be (Rcd ”photoName” ”parents”) with an

unchanged attribute and an updated item value. Interestingly,

from this put, BiGUL can automatically derive the get, which

is exactly the semantics of generating view satisfying round-

trip properties. The interested reader is referred to [20] for

more details on the underlying mechanism of BiGUL.

The above mechanisms are encapsulated in two components

of POET: a Privacy Governor, responsible for implementing

P-RBAC, and a BX engine parameterized with the spec-

ified policies based on BiGUL responsible for generating

the appropriate view and updating the source. Our prototype

implementation is available in accompanying material [12].

D. Propagating Partial Changes

Naturally, for a pair of edge nodes it is not necessary

that one node contains all the data of the other one. For

our running example for instance, data in a user’s laptop

consists of photos and IP addresses, while her mobile device

may include additional personal information. Namely, data

sources are not self-contained between each other, thus the

BX asymmetric lenses framework is not suitable in this case.

Intuitively, the data fragment corresponding to the photos can

be treated as intermediate data for PR1, as the privacy policy

explicitly specifies which data object can be operated upon.

Such intermediate data with less information than the view

component, constitute two pairs of asymmetric lenses with

the data in the edge node.

E1

Source
View 

View’ 
E1

Source’ 

Get

Put

E2

Source’
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Source’’ 
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3

2

Edge Node 2

Fig. 3. Bidirectionally propagating partial changes between two edge nodes.

Concretely, the process of partial change propagation be-

tween two nodes consists of the following steps which are also

illustrated in Fig. 3. We demonstrate the change propagation

between two nodes, Edge Node 1 (E1) and Edge Node 2

(E2) with a privacy policy (r, ((a, d), p, c, ob)). To simplify

presentation, we assume that E2 has the role of r and needs

to comply with the policy. Nodes E1 and E2 are connected

in deployment and are able to synchronize data. For r, if E1

contains the data object d of the policy:

1) An intermediate data view is produced via the get

transformation from the source residing in E1 (Step 1

in Fig. 3).

2) The source in E2 is updated via the put transformation

based on the generated view in Step 1 and its previous

source (Step 2).

3) A change is made to the new source E2 (Step 3); it

should be reflected back to E1. Obligation o is executed.

4) The projection of a new view is triggered (Step 4) by

the change in Step 3.

5) The put transformation is executed to generate a new

source on E1 (Step 5) – the new source is consistent

with the new view while retaining other information of

the original source.

Note that these get and put transformations are complying

with action a and upon changes the privacy policies are always

respected – the put transformation will be not allowed to reflect

back changes if the action a has insufficient permissions, such
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as a read action having no permission to make changes in data

d on E2.

V. RUNTIME DEPLOYMENT ON THE EDGE

IoT systems are characterized by device and software stack

heterogeneity and deployment in possibly untrusted and differ-

ent administrative domains [21]. Our approach exploits exactly

the privacy preferences over data resources, facilitated by the

deployment of Privacy Governor components encapsulating

privacy policies and BX engine transformation mechanisms.

In edge computing architectures, IoT devices handling

(possibly sensitive) data and interacting with the physical

environment, the edge device is by definition located within

the administrative domain of its local IoT devices – one

can take that as the devices being in the same privacy

scope. Our approach treats the edge as a first-class entity.

Data flows between the edge and other external components

(i.e. other edge nodes, the cloud etc) must always respect

privacy policies. Architecturally, components (which may be

devices or the cloud) are deployed in different environments,

each containing local data. Edge and cloud components are

connected through the network, but they do not necessarily

trust each other. Each node sets its own data out- or in-

flow privacy policies that govern data synchronizations. Data

transformations mechanisms as well as privacy governors

control how data leaves or enters the node. In case of a change

in local data within some node, all others affected receive the

updated data (through the generated views, Section V). Thus,

nodes do not have to trust each other to exchange data, as this

occurs based on privacy policies that are in their own control.

The diagram of Figure 4, illustrates a runtime deployment

of our approach with respect to the motivating example of

Section II, as combined architectural deployment and data

flow diagrams. Edge nodes correspond to users’ laptops –

an additional device of User B is shown in the lower part,

connected to her laptop. Local data on each architectural node,

are managed by POET, consisting of a Privacy Governor,

responsible for checking privacy policies and the Data BX,

responsible for synchronizing data that are compliant to the

defined access policies. Upon a change, POET generates

views and synchronizes accordingly with other nodes. For our

motivating example, photo data labeled “P” are synchronized

between nodes of a user (User B in the lower part), and her

friends (in this case, User A). FriendIPLists (labeled “F”) are

always synchronized between edge nodes and the cloud node.

To use our approach and its accompanying prototype tool

in practice, a privacy engineer follows three distinct steps:

1) Privacy requirements of the system are encoded as

privacy policies in P-RBAC (Section III).

2) Data correspondences are demonstrated, depending on

the data formats used within the system (Section IV-B).

3) Automatically generated privacy-aware transformation

components parametrized with the system’s privacy poli-

cies are deployed in nodes (Section V).

Upon execution, POET produces data views which satisfy

the privacy policies specified, and those are synchronized
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among the appropriate architectural components depending

on the policies. If data are modified in one component, the

changes are propagated automatically to other components

affected by the change again based on privacy policies.

VI. EVALUATION

To provide concrete support for our data transformation

for privacy on the edge framework, we realized POET, a

prototypical tool based on BiGUL [11]. POET is freely

available [12], is implemented in Haskell on top of BiGUL

and contains a realization of a P-RBAC privacy governor.

Thereupon, we evaluate our approach over a medical record

privacy case study; experimental setup and results obtained are

subsequently presented; we conclude with a discussion. We are

interested in evaluation of both applicability and realizability

aspects of the proposed approach.

Applicability entails the appropriateness of our privacy-

aware bidirectional data transformation approach to capture

typical privacy requirements, execute transformations on het-

erogeneous software stacks with no modifications while allow-

ing vendor customization. As various data formats are used

in different domains, a vendor situated in a domain should

be easily able to customize data representations. This is also

important to avoid technological lock-in. Realizability entails

performance of the data transformations, especially regarding

the execution of transformations on resource-constrained de-

vices with different capabilities. We note that for our evalu-

ation, we ignore networking and communication effects and

we note that our available proof-of-concept implementation is

on a prototypical stage [12].

A. Case Study: Medical Information Privacy

We replicate a representative data deployment scenario

within the healthcare domain, where medical data reside in dif-

ferent logical and physical locations – medical record privacy

is a significant issue often driving privacy developments [4].

In our case study, we consider the following involved entities.

• Doctor’s Office (DO): a practitioner’s office, as the key

specialized treatment provider of a patient, makes use of

available data for a patient –such as medical tests from a

lab– for diagnostic reasons, as well as keeping patients’
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personal information. A doctor may issue diagnoses, and

all this information may be synchronized with another

doctor or hospital in case of a referral or joint treatment.

In our case study we assume a DO to be associated with

0.3k patient records, including their medical tests and

diagnoses.

• Medical Lab (ML): a clinical laboratory carries out diag-

nostic tests on visiting patients – in our case study we

assume 2k records of medical tests to be in an ML node.

• Hospital (HL): database facilities in a hospital contain all

data for 1k patients including their personal information

from doctor’s offices, 5k past admissions as well as 5k

diagnoses. Such data are often used for patient manage-

ment and hospital organization. Moreover, hospitals in

a region may synchronize data with each other due to

patient mobility and specialized care.

• University (UV): research in a university setting often

makes use of certain medical data sourced from hospital

databases (such as diagnoses of a disease) for scientific

reasons. We consider 5k such diagnoses to be associated

with a UV.

• Patient’s residence (PR): monitoring of vital medical

information may be performed on a patient’s home,

making use of recent IoT developments such as Body

Area Networks [22]. Medical sensor data produced by

small sensors are often used for live monitoring and live

diagnosis reasons by medical practitioners. We assume

100 records of medical tests from sensors to be associated

with a PR node.

We treat the above as different architectural entities, situated

both at various edge nodes and the cloud. Specifically, the

hospital’s, and university’s data stores are assumed to be on the

cloud, with no computational or resource constraints. Medical

labs, doctor’s offices and patient residences are instead as-

sumed to be edge nodes, in the scope of which IoT devices use

and operate upon local data (e.g. a doctor’s personal computer

accesses freely data on the local edge node). Note that data

used in each architectural entity often is of a different format

– hospital database management systems often adopt XML-

variant EHR records [23], tabular data or other proprietary

formats, while edge nodes may utilize open formats such

as JSON or XML. However, privacy requirements in such

a medical setting govern how data flows between different

architectural entities [4]. Privacy policies considered are the

following:

(P1)
(

DO, (Update, DiagnosisRecords), MedicalCare, true, log())

(P2)
(

ML, (Write, MedicalTest), MedicalCare, AdmEndDate 6= null, ∅)

(P3)
(

HL, (Read, PatientInfo), Statistics, true, ∅)

(P4)
(

UV, (Read, DiagnosisRecords), Research, DiagnosisCore ≡ Q21, ∅)

(P5)
(

PR, (Update, MedicalTest), Storage, true, notify())

P1 specifies that patient diagnoses maintained in a doctor’s

office can be updated for the purpose of medical care with the

obligation of logging the information access. P2 specifies that

a medical lab has the right to write medical test information

as long as the admission end-date is not empty, which repre-

sents the duration of the patient’s admission. The hospital,

as specified in P3, can read patients’ personal information

for the purpose of statistics. P4 specifies the permission of

reading diagnoses data for purposes scientific research by the

university on the disease diagnosed as “Q21”. In a patient’s

residence, sensors within a BAN can update lab readings else-

where kept for storage purposes, which later can be used e.g.

for diagnostic needs, while a notification to the doctor must

be sent. Privacy policies P1-P5 must be always satisfied. We

are not concerned with modeling here but with the technical

infrastructure needed to support privacy-aware synchronization

between resource-constrained edge devices. As such, P1-P5

may not be sufficient enough to assure privacy in a hospital

setting but they can be considered representative of the case

study. In essence, any P-RBAC policies that domain experts

may model, POET would be able to handle.

B. Experiments Setup

We adopt a realistic synthesized medical dataset [24], to

respect privacy of real patients – although the dataset is arti-

ficially generated [25] it contains similar characteristics with

EHR data used in practice. Since we are concerned with data

transformations, the semantic content of the EHR data is not

relevant for our evaluation purposes. The experiments’ setup,

privacy policy specifications and datasets used are available

in [12]. What we seek to evaluate in two experiments, are i)

the applicability of our approach to deal with different devices

and data formats that are used in the various entities in the

case study and ii) the performance in which the privacy-aware

data transformations are executed in each deployment type.

a) Applicability: In practical applications, data used in

each deployment is different; we assume doctor’s offices,

BAN edge nodes and cloud-deployed nodes use EHR/JSON,

while the university uses a tabular format. Moreover, we use

different data according to the description of Section VI-A,

along with the privacy policies defined (P1-P5). For executing

experiments, we deploy our prototypical tools on appropriate

settings – hospital and university nodes are virtual machines as

typically deployed in the cloud, while edge nodes are limited

devices physically deployed in their respective locations.

b) Performance: We measure performance of POET

given an exemplar service level agreement (SLA) of 5 seconds

in i) the cloud, ii) an edge node, and iii) a resource-constrained

edge node, for comparison. In this case, we use identical data

and identical privacy policies to ensure fairness. Our choice of

a 5 seconds SLA is arbitrary; such an SLA reflects expected

response time of this kind of applications that we target and

enables comparison between devices.

Both experiments utilize computational nodes with the

following specifications. Cloud nodes use a single-core In-

tel 2.70GHz processor with 4GB RAM. Edge nodes are

ARMv8-based R-Pi3 devices featuring single-core 1.2GHz

CPUs and 1GB RAM. Moreover, we consider a more resource-

constrained edge device featuring a single-core ARMv6 1GHz

processor with 512MB RAM, for the BAN within PR. The
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TABLE I
EXPERIMENT RESULTS FOR THE MEDICAL INFORMATION USE CASE.

Source size Source size View size BX

(datapoints) (bytes) (datapoints) Time

DO/Edge (ARMv8) 600 118k 300 0.26s
ML/Edge (ARMv8) 2000 413k 1900 2.33s

PR/Edge (ARMv6) 100 20k 100 0.19s

UV/Cloud (Intel2.7) 5000 954k 100 0.20s
HL/Cloud (Intel2.7) 11000 2180k 1000 0.38s

POET runtime is implemented in Haskell, applicable to a wide

range of environments and software stacks.
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Fig. 5. Performance of POET deployed on different devices upon identical
data and policies and across different data sizes, with a defined SLA of 5 sec.

C. Experiments Results

a) Medical Case Study: We consider two different data

formats in the medical case study, tabular format and JSON.

The prototypical data preparation stages for the two formats

are implemented as per Section IV-B, consisting essentially of

a parser and demonstration of unique data attributes. To give

an indication of data interfacing, we note that prototypical

implementations for the stages for the case study consist of

just 38 lines (tabular data) and 85 lines (EHR/JSON) of code

to transform other data formats into internal representation

compatible within our framework.

b) Performance Comparison: Firstly, results of the the

case study in Table I over data sizes that would realistically

reside on the various deployment nodes and according policies

(P1-P5) demonstrate that the computational overhead of the

privacy-aware BX component of our approach is minimal.

Figure 5 illustrates performance of the different computational

devices upon identical data and identical privacy policies along

different data sizes. A possible SLA of 5 seconds, which

could be defined by an end-user application, allows cross-

comparison and in line to expected response times of the

applications that we target, giving an indication of the data

sizes that can be adequately handled by deployments across

resource constrained devices.

D. Discussion

Based on the results of our experiments we believe to have

demonstrated that by using our privacy-aware transformation

framework realistic applications can be managed and that

performance on resource-constrained devices can be taken

into account during application design. Specifically, the case

study presented shows that for each data-device pair (Table I)

reasonable performance is achieved for realistic data sizes used

in practice. Moreover, from the perspective of practitioners

aiming to use our approach the flexibility demonstrated in

providing other source formats for input adds to the usability

of POET (i.e., a few tens of lines of code for data interfacing).

Performance results regarding the size of data (Fig. 5) provide

an indication of performance on resource-constrained devices,

which is in the range of about 5x (ARMv8) to 20x (ARMv6)

with respect to a typical cloud virtual machine. Another factor

that can affect performance is size and complexity of the

privacy policies, something that we identify as an avenue

for future investigation. Moreover, the feasibility of POET

to run on diverse architectures has been demonstrated. We

note that while our reference implementation is an unopti-

mized prototype, experimental results indicate feasibility for

relevant models.

Our approach produces privacy-compliant bidirectional

transformations of data. This consists the fundamental syn-

chronization primitive. To realize a complete end-to-end appli-

cation, operation and communication aspects must be treated,

such as concurrency of updates, conflicting changes and in-

crementality. Such issues have been tackled extensively in

scientific literature [26] [27] [28]. However, a basic assumption

has been on data structures that fit in memory, as edge

devices are resource-constrained and extensive data storage

facilities are usually not available. Our paper focuses on

privacy problems arising from data synchronization. Other

privacy violations because of message exchanges may require

a privacy model able to capture temporal sequences, such as

Contextual Integrity [29]. In addition, recent developments in

data within the IoT focus on streaming data. Our approach

is based on demonstrating a minimal set of data attributes or

fields on the source data preparation, that uniquely specify

a data item. To support streaming data, instead of unique

atttributes the position of a data item in the stream may be

used, something which we identify as future work.

VII. RELATED WORK

We presented a novel technical framework to engineering

data privacy tailored for the pervasive edge computing systems

of today, offering assurances on correct and well-behaved

transformations. Consequently, we classify related work into

three categories. First, we look into privacy models, position-

ing our work. Then, we review theoretical foundations on

consistency and transformation mechanisms. Finally, we dis-

cuss related engineering approaches that aim in synchronizing

structures applicable to the edge paradigm and thus to our

approach.
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Satisfaction of privacy requirements is highly relevant in

edge computing. Such requirements include data confiden-

tiality, access control within the IoT, trust among various

devices and edge nodes, and the enforcement of privacy poli-

cies [30]. Role-based access control (RBAC) has been adopted

as a pattern to goal-oriented models for detecting security

problems by using model-driven transformation [31]. Inspired

by this, our work focuses on privacy issues that the edge

paradigm brings by applying model transformation. Many

privacy models are available in existing research and industry;

a typical example is the Usage Control model from the digital

rights management domain, with some similarities with P-

RBAC such as conditions and obligations [32]. The Privacy

Preferences Project features a protocol allowing websites to

express their privacy practices when they collect information

about web browser users with the character of declaration, but

not enforcement [33]. Other two popular languages that have

been developed for expressing enforceable privacy policies are

the Enterprise Privacy Authorization Language and the OASIS

Standard eXtensible Access Control Markup Language [34].

The latter provides an independent policy language encoded in

XML and enables different types of policies, not limited to pri-

vacy policies [35]. EPAL emphasizes the user categories that

can access data but without data purposes and obligations [36].

Instead, our work utilizes the generically applicable P-RBAC

–the privacy extension of RBAC.

Bidirectional Model Transformations are a popular mech-

anism for maintaining consistency of at least two related

sources of information, and have been widely adopted. An

approach that defines a consistency relation between two

models is QVT Relations (QVT-R) language in the OMG QVT

standard [37], supported by a QVT-R tool complying to check-

ing semantics [38]. A Triple Graph Grammar [39] can also be

used to conclude consistency, particularly between graph-like

structures, as well as find a partial correspondence model com-

bined with linear optimization techniques to detect maximum

consistency portions [40]. However, it is time-consuming and

non-trivial to manually maintain round-tripping laws. Other

approaches such as the Atlas Transformation Language [41],

graph querying [42] or security lenses [43] consider a standard

forward-direction transformation with automatically derived

backward transformations. With security lenses for instance,

one would write a get (forward transformation) - the security

lenses framework would automatically provide a secure put.

However, the forward transformation may not be injective

and its ambiguity of various corresponding put-directions is

what makes bidirectional programming challenging and unpre-

dictable in practice. Recently, putback-based approaches [19]

have been proposed as an alternative, and allow to only write

putback transformations. By contrast, a put transformation

could uniquely determine get by well-behavedness, and the

putback-based program guarantees that the get behaviours are

unambiguously specified. BiYacc [44] and BiFlux [45] are

typical examples where this is the case. BiGUL is a formally

verified language which serves as a foundation for higher-level

putback-based languages [11], [18]. In our approach, we adopt

BiGUL to write a secure put and obtain a safe (privacy-aware)

get with full control over the consistency restoration behaviors.

Edge computing is often referred as redefining users’ in-

teractions with IT services and integration with data synchro-

nization services. Synchronization issues have already been

emphasized in literature to cope with different data in the

cloud [46]. A delta synchronization technique is available

for web browsers – the most pervasive and OS-independent

access – exhibiting fine granularity (i.e., only changed con-

tent need to be sent instead of the entire data item) [27].

A QoE-aware open synchronization framework using web

technologies and adaptive synchronization model has been

introduced to synchronize media streams and ensure the user

experience of collective and interactive media [47]. In another

approach, a file synchronization model presents a two-stage

protocol along with a conflict resolution mechanism to manage

file data which spans multiple devices [48]. Our approach

provides a general mechanism to synchronize in-memory data

in multiple formats through customized data interfacing. A

middleware structure is proposed in [28] to facilitate efficient

synchronization in unreliable mobile environments, involving

bidirectional exchange of Electronic Health Record (EHR)

data between patients and a care facility. However, it does not

address privacy nor ensure bidirectional well-behavedness.

VIII. CONCLUSIONS

In this paper, motivated by the “data protection by de-

sign and by default” discipline [3], we proposed a technical

framework to engineer data privacy tailored for the pervasive

edge computing systems of today; it is based on a formal

approach guaranteeing correct and well-behaved data trans-

formations that respect privacy policies. In our approach, data

leaving a component does so always in accordance to privacy

policies, while changes applied to remote data are reflected

back automatically. Such automated reflection is achieved

through bidirectional model transformations featuring correct-

by-construction guarantees. Our privacy reasoning approach

is based on P-RBAC [7], a generically adopted model able to

capture roles and permissions, actions on data, conditions and

obligations that arise in privacy requirements. Our evaluation

demonstrates the applicability of our approach on a medical

information privacy use case and enables cross-comparison of

its performance on resource-constrained devices.

Regarding future work, we aim to support streaming data,

by investigating appropriate bidirectional transformations and

privacy models based on communicating agents [29]. More-

over, to realize a complete end-to-end synchronization frame-

work, techniques such as delta synchronization, conflict reso-

lution and versioning must be integrated, besides our bidirec-

tional transformations. Regarding the general edge computing

setting, a basic assumption of our approach has been on

structures that fit in memory – we plan to further investigate

memory management within this resource-constrained envi-

ronment as well as data storage and how they relate to data

within a privacy scope.
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