
Controlling and Sharing Distributed Data for
Implementing Service Alliance

Yasuhito Asano∗, Zhenjiang Hu†, Yasunori Ishihara‡, Hiroyuki Kato†, Makoto Onizuka§ and Masatoshi Yoshikawa∗
∗Kyoto University, Kyoto, Japan †National Institute of Informatics, Tokyo, Japan

‡Nanzan University, Nagoya, Japan §Osaka University, Suita, Japan

Abstract—According to the increase of venture companies
providing similar services, alliances of them have become popular
in recent years. Alliances might open a new business chance as
explained above, although implementing an alliance has several
problems in the aspect of distributed data management. One of
the possible solutions is Dejima architecture proposed by Ishihara
et al. based on the bidirectional transformation techniques. In
this paper, focusing on a ridesharing alliance, we first clarify
properties desired for controlling and sharing distributed data
to implement a service alliance. We then propose an idea
for implementing a ridesharing alliance utilizing the Dejima
architecture, and discuss which properties can be satisfied by
the implementation.

Index Terms—data integration, distributed data management,
bidirectional transformation, ridesharing, service alliance

I. INTRODUCTION

Alliances have been observed in any era. For example, a
marketplace platform, such as e-bay and Amazon marketplace,
can be considered as an alliance of companies providing
shopping services. Companies that participate in the alliance
can display their products on the marketplace. A customer
can choose a preferable product among those provided by the
participant companies. A crowdsourcing platform can also be
regarded as a kind of an alliance, while its flow of money
is opposite to that in a marketplace platform. According to
the increasing of startup companies providing similar services,
alliances of them have also become popular in recent years.
For example, Licorish [1] reported there are many ridesharing
companies in Canada, and Tom [2] reported partnerships
between ridesharing companies. Let us call such an alliance of
similar service providers a service alliance, which implements
a unified place to match customers to their services. In
an service alliance, service data published by providers and
customer data are shared in the place so that customers choose
services or providers choose customers among them.

The advantage of an alliance is to increase the chance
of matching providers to consumers. From the viewpoint of
customers, too many similar services to choose cause a waste
of time for them. If an alliance enables customers to search
preferable ones for them, it would be a great help. On the
other hand, because an alliance would obtain more customers

This work is partially supported by the Japan Society for the Promotion of
Science (JSPS) Grant-in-Aid for Scientific Research (S) No. 17H06099, (A)
No. 18H04093, and (C) No. 18K11314.

than a single company within it, it would enables providers to
increase the chance to be known by customers.

Alliances might open a new business chance as explained
above, although implementing an alliance has several problems
in the aspect of data management. One of the easiest ways of
implementing an alliance is an approach that a single repre-
sentative company manages global data of all the participant
provider companies and each provider manages local data by
itself. An example is Amazon marketplace; Amazon has a
database managing all the products, and each provider sends
Amazon the information about a product which it selects to
sell; if the product is sold on Amazon marketplace, then the
customer information is sent to the provider and it updates its
local database.

Methods for controlling and sharing data in this approach
tend to be fairly primitive; actually, each provider in the
example above has to write a program to manage its local
database to select products and update it according to the infor-
mation sent from Amazon. If a provider takes part in multiple
alliances, then such a program could be more complicated.
On the other hand, it is difficult for an alliance to prepare
a program for sharing data between its global database and
the local database of every participant provider, because the
local schema of each provider would be completely different
from each other. Therefore, more sophisticated data sharing
methods are desired.

The another problem of the approach above is that the
representative, such as e-bay and Amazon, managing the
global database has much power than the other participants.
Several providers, e.g. startup companies competing with each
other, do not prefer such a situation.

Establishing an alliance between companies might cause
an information leak that never occurs in a company alone.
For example, a careless program in an alliance might allow
a secret of a company to propagate to another company,
or allow customer information to propagate to companies
which should not obtain it. This can be a serious problem for
alliances of companies providing sharing economy services;
because people who are not professional are engaged in
service (e.g. drivers in ridesharing services), such people and
customers tend to be sensitive to their privacy with each
other. Therefore, an architecture is desired which can prevent
unintentional information leak due to an alliance.

One of the possible solutions is Dejima architecture [3],

978-1-5386-7789-6/19/$31.00 ©2019 IEEE

[4] based on the bidirectional transformation (BX, for short)
techniques. The Dejima architecture enables peers to write a
BX for sharing and controlling data according to the own pub-
lishing and update policy of each peer. Thus, it presents a more
flexible way for establishing a group of peers than previously
proposed data sharing architectures including Piazza [5], [6]
and ORCHESTRA (CDSS) [7], [8]. It also supports the global
consistency among peers, whereas the previous ones handle
the local consistency only inside of each peer.

In this paper, focusing on a ridesharing alliance, we first
clarify properties desired for controlling and sharing dis-
tributed data to implement a service alliance. We then pro-
pose a fundamental idea for implementing the core part of
a ridesharing alliance on top of the Dejima architecture.
We finally discuss which properties can be satisfied by the
implementation, and which ones remain unsatisfied.

II. DESIRED PROPERTIES FOR RIDESHARING ALLIANCE

In this section, we first explain the stakeholders and their
roles in a ridesharing alliance system. The stakeholders are
passengers, the alliance, provider companies, and vehicles.
Note that we regard a vehicle and its driver as the same stake-
holder. We then clarify desired properties for a ridesharing
alliance system, especially in the reservation process.

We describe the outline of the roles of stakeholders below.

Passengers. Each passenger first sends a request to the alliance
to select and reserve a vehicle. Each request includes infor-
mation required for a reservation, such as source/destination
locations, the constraints of departure and arrival time, the
number of people. Then, the passenger rides on and off the
vehicle, or cancels the reservation. Finally, the passenger might
evaluate the vehicle.

Alliances. The Alliance integrates the vehicle data received
from the companies. It also responds to the request of a
passenger, and tells the passenger’s choice for reserving a
vehicle to the corresponding company. Each response includes
information required for selecting a vehicle, such as estimated
arrival time and fee. It also sends the passenger the decision
of the company about the reservation (see below).

Companies. Each company manages the data of vehicles
which belong to it, and sends the data of vehicles satisfying
the conditions it sets. For example, a company might disclose
the data of vehicles in a specific area only to the alliance.
Each company has a distinct business logic for determining
fee and wage. It also receives the passenger’s choice from the
alliance, decides whether it accepts or denies the reservation
according to its business logic, and sends the decision to the
alliance.

Vehicles. Each vehicle sends its data, e.g. its location and the
number of empty seats, to the company to which it belongs. It
also picks up and drops off passengers. After a ride, it might
evaluate the passenger.

The most complicated process is the reservation of a vehicle
by a passenger. If this process can be implemented, then the

(1) request

(0) vehicle information

from all companies

(2) top-k candidates

Alliance

Company 1

Company 2 Company 3

(some family)

passenger

(3) choose one

for reservation

(4) user’s

choice

(6) Reservation or

repeat from (3)

Company 1

Company 2 Company 3

(some family)

(5) Accept or denial

according to company’s strategy

Alliance
passenger

Fig. 1. The flow of a reservation in a ridesharing alliance. Note that the
alliance is not required to be a trusted third party or a representative company.

remaining processes could be implemented also. Therefore, we
below focus on this process. Figure 1 illustrates the flow of
this process. Note that multiple alliances may exist, although
we draw a single alliance here for simplicity,

We below enumerate desired properties for the reservation
process.
(a) Sharing and controlling data between alliances and com-

panies can be done automatically by writing a program
according to simple and unified rules.

(b) The operation sequences for a reservation process must be
consistent. For example, Any double-booking (i.e. reser-
vations whose total number of passengers exceeds the
number of seats in the same vehicle) should be avoided.

(c) It should be guaranteed that the stakeholders follow the
specified protocol.

(d) A passenger can avoid a leak of his/her location as
possible.

(e) A company can participate in multiple alliances.
(f) A company can have a local database having a different

schema from that of the global database of the alliance,
as long as its schema contains sufficient information for
the reservation process.

(g) Similarly, a company can have a local database having a
different schema from that of another company.

(h) A company can describe its policy for determining which
vehicle’s information should be published to the alliance.

(i) A company can describe its strategy for accepting and
denying a request assigned by the alliance.

(j) A company can avoid a leak of its vehicle information as
possible.

all_vehicles

(cid, vid, area, rid)

prov1_public
vehicles(vid, loc, rid)

area_map(loc, area)
prov1_public

(vid, area, rid)

Mediator
Provider1

prov2_public Base tablesprov2_public

Provider2

Fig. 2. An implementation of a ridesharing alliance on the Dejima architec-
ture. Yellow rounded rectangles represent sets of tables, while blue ones are
views. The combination of two arrows and a curve represents a BX between
the base tables and this Dejima (get from a base table to its corresponding
view and put of the opposite direction).

(k) A vehicle can belong to multiple companies.
(l) A vehicle can pick up a passenger outside the system.

III. IMPLEMENTATION OF ALLIANCE ON DEJIMA

The Dejima architecture [3], [4] presents a flexible way to
a group of peers for sharing a part of their data through views
and controlling updates of the shared data, by writing a BX
between each peer’s view and local database. In this section,
we propose an implementation of the reservation process of
a ridesharing alliance using a trusted third party, abbreviated
to TTP, and the Dejima architecture. Although we might be
able to implement an alliance without a TTP, we leave such
an implementation as a future work.

Figure 2 illustrates an implementation of the core part
of a ridesharing alliance, i.e. the relationship between the
alliance and companies, on the Dejima architecture. In this
implementation, the alliance is represented by a mediator peer
corresponding to a TTP, and each company is represented by
a provider peer, because the alliance mediates the vehicle data
provided by companies.

Each provider peer has base tables for managing local data:
• vehicles(vid, loc, rid), which contains for

each vehicle its identifier, current location, and the request
identifier assigned to the vehicle, and

• area_map(loc, area), which is used to obfuscate
the precise locations of the vehicles by associating each
location with a less precise area.

For simplicity, we regard a vehicle as available if rid is
NULL. We omit vehicle peers in this figure. Instead, we assume
that if its location is changed or its request is done, the
corresponding data is updated on the base tables.

In this figure, Provider 1 publishes the information of
available vehicles to the mediator through a view (called
Dejima), prov1_public(vid, area, rid). Note that,
for privacy protection, only the area information (instead of
the precise location information) of a vehicle is disclosed.

We assume here that Provider 2 has the same schema as
Provider 1, although the Dejima architecture allows Provider
2 to have a different schema and business logic.

These Dejimas are synchronized with Dejimas in the media-
tor in order to have the same content, as represented by double
lines in Figure 2. The mediator can integrate the information
of all vehicles published by the providers into a single table

all_vehicles(cid, vid, area, rid), using a BX
adding company identifiers (cid) to the simple union of the
Dejimas in the mediator.

The explanation above corresponds to (0) in Figure 1, the
integration of vehicle information. We below explain how the
reservation process works in the implementation. The indices
in the following list corresponds to those in Figure 1.

Reservation process.
(1) A passenger sends a request to the mediator. The mediator

assigns an identifier rid to the request.
(2) The mediator calculates the estimated arrival time and fee

by querying all_vehicles, and returns the passenger
top-k candidates according to some ranking function
which can be specified by the passenger or mediator.

(3) The passenger chooses a candidate to reserve it.
(4) The mediator updates all_vehicles to assign the

rid to the chosen candidate. The update is reflected to
the corresponding Dejima in the mediator by the BX.
For example, if the candidate is a vehicle of Provider 1,
then the Dejima prov1_public is updated. Then, the
update of the Dejima in the mediator is propagated to the
Dejima of Provider 1.

(5) The provider decides whether it accepts or denies the
update on the Dejima (i.e. the assigned request by the
mediator) according to its update strategy. For example,
a provider might not accept a request whose profit is too
small. Several kinds of update strategy can be written
in the BX between the base tables and the Dejima in
a provider. An accepted update is reflected on the base
tables, while a denied update is not reflected.

(6) The decision is propagated to the mediator through the
Dejimas. That is, while an accepted update becomes valid
on all_vehicles, a denied update is canceled on
all_vehicles. The mediator then tells the result to
the passenger. If the update is valid, then the reservation
is established. The passenger sends information including
the source and destination location to only the assigned
vehicle. Otherwise, the passenger should choose another
candidate. Therefore, the steps (3) to (6) are repeated until
a reservation is established.

IV. PROPERTIES SATISFIED BY DEJIMA

In this section, we discuss which properties are satisfied
by the implementation on Dejima among those enumerated in
Section II. Note that because the Property (c) could not be
satisfied, it will be discussed in the next section.

The Property (a) is achieved by writing a BX between each
pair of a Dejima and the set of corresponding base tables.
Although we omit the details, the BX can be written according
to simple rules which determine how an update in Dejima or
base tables propagates to each other [3].

The Property (b) is achieved by the distributed transaction
mechanism of the Dejima architecture [4].

It is difficult to satisfy the Properties (d) and (j) completely
because the state-of-the-art privacy protection methods and

access control methods are not perfect. However, addition
of the alliance itself does not cause more information leak
than a single company does. For (d), the location data of a
passenger is known to the mediator, which is not regarded as
an information leak if the mediator is a TTP. The reserved
vehicle also knows the location, although this happens in the
case of a ridesharing using a single company. We also note that
this is not considered as an information leak in several studies
about privacy-preserving ridesharing [9], [10]. For (j), Only
the area information of vehicles is disclosed to the mediator,
and the vehicle information of a company is not propagated
to the other companies.

Furthermore, a passenger and a vehicle can obfuscate their
locations by applying other location obfuscation techniques,
e.g. the geo-indistinguishablity [11], to the implementation.
This approach prevents the mediator from knowing the precise
location of them.

The Property (e) should be satisfied without violating the
Property (b). Companies participating multiple alliances may
form a cycle that causes infinite cyclic propagation. For
example, we assume that company c1 and c2 participate
in alliances A1 and A2. Then, these peers form a cycle
c1 → A1 → c2 → A2 → c1. Even in such a case, the
data independence check and cyclic propagation detection
mechanisms of the Dejima architecture [3], [4] allows us to
achieve these properties.

The Properties (f) and (g) are achieved by the BX, similarly
to the Property (a). Each provider can define the relationship
between its local schema and the global schema of the alliance.

The Properties (h) and (i) are also achieved by the BX,
similarly to the Property (a), because each provider can specify
its policy for publishing information in its base tables and
its strategy for updating base tables when the corresponding
Dejima is updated.

Although we omitted vehicle stakeholders in the imple-
mentation above, the Properties (k) and (l) can be achieved
by adding peers representing vehicles to the implementation.
Then, a pair of Dejima is created between a company and a
vehicle. Writing the BX for the Dejimas properly, the Property
(k) can be achieved in the same way as the Property (e),
and the Property (l) can be achieved in a similar way to the
Properties (h) and (i).

V. DISCUSSION ABOUT UNSATISFIED PROPERTIES

In this section, we discuss the properties that cannot be
satisfied by utilizing the Dejima architecture. Unfortunately,
for the Property (c), the current Dejima architecture does not
have a mechanism to guarantee that no peer can “cheat” the
protocol specified for implementing the alliance. For example,
a malicious company might tell its customers’ information to
others; the mediator might not be a trusted one. Other kinds
of mechanisms including smart contract [12], [13] might be
employed for achieving the property.

The implementation in Section III provides a limited pro-
tection against possible information leaks for the Properties
(d) and (j). On the other hand, there are a few studies [9],

[10], [14] about privacy-preserving ridesharing. Aı̈vodji et
al. [14] proposed a privacy preservation method for computing
meeting points of a passenger and a vehicle, utilizing a
homomorphic encryption. This method enables a passenger
and his/her “reserved” vehicle to hide their locations from each
other. Tong et al. [10] proposed a method for keeping jointly
differential privacy in ridesharing. It is not clear whether
the current Dejima architecture is able to employ techniques
proposed in these studies.

VI. CONCLUSION

We have clarified properties desired for controlling and
sharing data in a service alliance. We have also discussed
how the Dejima architecture is useful for achieving several
important properties. While we have focused on a ridesharing
alliance in this paper, we believe that our discussion would
be useful for implementing other kinds of service alliances
because several essences are common in them.

REFERENCES

[1] D. Licorish, “Ride-sharing in Canada: It’s Complicated,”
https://www.lowestrates.ca/blog/ride-sharing-canada-its-complicated,
2016.

[2] M. Tom, “A visual guide to the twisted web created by the
Uber/Didi merger,” https://pitchbook.com/news/articles/a-visual-guide-
to-the-twisted-web-created-by-the-uberdidi-merger, 2016.

[3] Y. Ishihara, H. Kato, K. Nakano, M. Onizuka, and Y. Sasaki, “Toward
bx-based architecture for controlling and sharing distributed data,” in
Second Workshop on Software Foundations for Data Interoperability (to
appear), 2019.

[4] Y. Asano, D.-F. Herr, Y. Ishihara, H. Kato, K. Nakano, M. Onizuka, and
Y. Sasaki, “Flexible framework for data integration and update propaga-
tion: system aspect,” in Second Workshop on Software Foundations for
Data Interoperability (to appear), 2019.

[5] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, “Piazza: Data
management infrastructure for Semantic Web applications,” in WWW,
2003, pp. 556–567.

[6] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatari-
nov, “The Piazza peer data management system,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 7, pp. 787–798, 2004.

[7] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “ORCHESTRA: Rapid,
collaborative sharing of dynamic data,” in CIDR, 2005, pp. 107–118.

[8] G. Karvounarakis, T. J. Green, Z. G. Ives, and V. l Tannen, “Col-
laborative data sharing via update exchange and provenance,” ACM
Transactions on Database Systems, vol. 38, no. 3, pp. 19:1–19:42, 2013.

[9] P. Goel, L. Kulik, and K. Ramamohanarao, “Privacy-aware dynamic
ride sharing,” ACM Trans. Spatial Algorithms Syst., vol. 2, no. 1, pp.
4:1–4:41, Mar. 2016.

[10] W. Tong, J. Hua, and S. Zhong, “A jointly differentially private schedul-
ing protocol for ridesharing services,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 10, pp. 2444–2456, Oct 2017.

[11] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: differential privacy for location-based sys-
tems,” in 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, 2013, pp. 901–914.

[12] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997. [Online]. Available:
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

[13] J. Ray, “A Next-Generation Smart Contract and Decentralized Ap-
plication Platform,” https://github.com/ethereum/wiki/wiki/White-Paper,
2019.

[14] U. M. Aı̈vodji, S. Gambs, M.-J. Huguet, and M.-O. Killijian, “Meeting
points in ridesharing: A privacy-preserving approach,” Transportation
Research Part C: Emerging Technologies, vol. 72, pp. 239–253, Nov.
2016.

