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Abstract

This paper introduces accumulation into list homomor-
phisms for systematic development of both efficient and
correct parallel programs. New parallelizable recursive
pattern called H-homomorphism is given, and transfor-
mations from sequential patterns in the H-form and H′-
form into (H-)homomorphism are shown. We illustrate the
power of our formalization by developing a novel and gen-
eral parallel program for a class of interesting and chal-
lenging problems, known as maximum marking problems.

1. Introduction

Parallel computation is rapidly becoming a dominant
theme in all areas of computer science and its applica-
tion. It is likely that, within a decade, virtually all devel-
opments in computer architectures, systems programming,
computer application and the design of algorithms will be
taking place within the context of parallel computation.
This situation eagerly calls for models and methodologies
that can assist programming under parallel environments
efficiently and correctly.

List homomorphism (homomorphism for short in this
paper) is such a model that plays an important role in devel-
oping efficient parallel programs [9,13,16,17]. A function
h is a homomorphism if there exists an associative operator
⊕ such that

h(x ++y) = h x⊕ h y

where ++ denotes the list concatenation operation. This
function can be efficiently implemented in parallel since
it is ideally suited for the divide-and-conquer paradigm: a
list is divided into two parts x and y, and the computa-
tions of h x and h y can be carried out in parallel. For
instance, the function sum, which computes the sum of
all its elements, is a homomorphism because the equation
sum (x ++y) = sum x + sum y holds. This indicates

that we can reduce parallel programming into construction
of homomorphisms.

Cole [9] was the first who explained that this homomor-
phic approach is applicable for solving several interesting
and nontrivial examples like the maximum segment sum
problem and the bracket matching problem. Gorlatch [13]
proposed a more systematic way to construct homomor-
phisms by analyzing two inherently sequential representa-
tions of the functions traversing lists leftwards and right-
wards respectively. Hu et al. [17] showed that a bigger
homomorphism can be constructed from smaller ones via
two transformations, fusion and tupling.

Despite these advantages, there is a major limitation
with the existing homomorphism in parallel programming.
While homomorphism nicely captures the computation be-
ing performed in a bottom-up manner, it is not powerful
enough to describe computation including dependency or
top-down propagation of information concisely. Although
accumulation is an important optimization technique in
functional programming which inherits information from
the previous call, modifies it and propagates it to the suc-
cessive recursive call [1, 6], homomorphism cannot deal
with it.

In this paper we first propose a new parallel program-
ming model calledH-homomorphism, an extension of ho-
momorphism with an additional accumulation parameter
for sharing computation and for propagating information
in a top-down way.

h(x ++y) c = h x c⊕ h y (c⊗ g x)

The additional accumulating parameter c serves for infor-
mation propagation. When a list is divided into x and y,
computation on x receives the original c while h on y uses
accumulative information also related to x. Like homo-
morphism, the newly proposed H-homomorphism can be
executed efficiently in parallel.

Since specifying functions in the sequential manner is
more friendly to programmers in general, we then pro-
vide an accumulative sequential representation H-form
and show its transformation into H-homomorphism. This



makes it much easier for derivation of H-homomorphism
in parallel programming. Furthermore, we defineH′-form
as a variant of H-form. The domain of its accumulation is
limited to be finite; this restriction, on the other hand, elim-
inates the need of searching associativity, and we shown
that it can be translated to homomorphism.

To illustrate power of our formalization in parallel pro-
gramming, we present a case study of developing efficient
parallel programs for a class of interesting but challeng-
ing optimization problems, namely the maximum marking
problems (maximum ‘list’ marking problem). The maxi-
mum marking problem is the problem to put a mark on the
entries of some given data structure in such a way that a
given constraint is satisfied and the sum of the weights as-
sociated with marked entries is as large as possible. The
derivation of efficient sequential programs has been stud-
ied [3,24]; yet to the best of our knowledge we are the first
to provide the parallel solution in a uniform way. We will
give a theorem that maximum marking problems can be
defined in homomorphism through specifying predicates
inH′-form.

This paper is organized as follows. Section 2 explains
the basic notation and knowledge required in this paper.
Section 3 defines theH-homomorphism andH-form, then
analyzes their properties. Focusing on the finiteness of the
accumulation, Section 4 defines H′-form, and shows its
transformation into homomorphism. As a case study of
our formalization, Section 5 explains the maximum mark-
ing problems and connects them to H′-forms. We present
a theorem that maximum marking problems can be re-
duced into homomorphisms. Section 6 discusses the re-
lated works, and Section 7 concludes this paper with men-
tioning future works.

Note that, due to limitation of space, we omit proofs of
the lemmas and theorem in this paper.

2. Preliminaries

Throughout this paper, we shall use the notation of
BMF (Bird-Meertens Formalism) [2,25], which enables us
to concisely describe both programs and transformation of
programs. For readability we also borrow the notation of
Haskell [22].

2.1. Functions and lists

Function application is denoted by a space and the ar-
gument which may be written without brackets. Thus f a
means f (a). Functions are curried, and application as-
sociates to the left. Thus f a b means (f a) b. Func-
tion application binds stronger than any other operator,
so f a ⊕ b means (f a) ⊕ b, not f (a ⊕ b). A central-
ized circle ◦ denotes Function composition. By defini-

tion, we have (f ◦ g) a = f (g a). Function composi-
tion is an associative operator, with the identity function
id as its unit. Infix binary operators will often be denoted
by ⊕ or ⊗, and can be sectioned: an infix binary opera-
tor like ⊕ can be turned into unary or binary functions by
a⊕ b = (a⊕) b = (⊕ b) a = (⊕) a b .

Joined lists (or append lists) are finite sequences of val-
ues of the same type. A list is either the empty list, a single-
ton, or concatenation of two other lists. We write [ ] for the
empty list, [a] for the singleton list with element a (with [·]
for the function taking a to [a], [·]−1 for the inverse of [·]),
and x++y for the concatenation (join) of two lists x and y.
Concatenation is associative, having the unit [ ]. For exam-
ple, [1]++[2]++[3] denotes a list with three elements, often
abbreviated to [1, 2, 3]. We also write a : x for [a] ++x. If
a list is constructed only by the constructor of [ ] and : ,
we call it cons list.

2.2. Parallel skeletons: map, reduce, scan, zipWith

It has been shown in [25] that BMF [2] is a nice
architecture-independent parallel computation model, con-
sisting of a small fixed set of specific higher order functions
which can be regarded as skeletons suitable for parallel im-
plementation. Four important higher order functions are
map, reduce, scan and zipWith. They are therefore called
parallel skeletons.

Map is to apply a function to every element in a list. It
is written as an infix ∗. Informally, we have

k ∗ [a1, a2, . . . , an] = [k a1, k a2, . . . , k an] .

Reduce is the skeleton which collapses a list into a sin-
gle value by repeated application of some associative bi-
nary operator. It is written as an infix /. Informally, for an
associative binary operator ⊕, we have

⊕ / [a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an .

Scan accumulates all intermediate results for computa-
tion by reduce. Informally, for an associative binary oper-
ator ⊕, we have

⊕−//c [a1, a2, . . . , an]
= [c, c⊕ a1, c⊕ a1 ⊕ a2, . . . , a1 ⊕ a2 ⊕ · · · ⊕ an] .

ZipWith is the skeleton that takes two lists and returns
a new list through applying a specified operation to every
pair of corresponding elements from the two lists. The re-
sulting list has the same length as that of the shorter. Infor-
mally, suppose that n ≤ m, we have

[a1, a2, . . . , an] Υ⊕ [b1, b2, . . . , bm]
= [a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn] .

These four skeletons have nice massively parallel im-
plementations on many architectures [5, 25]. If k and ⊕



need O(1) parallel time, then both map k∗ and zipWith
Υ⊕ can be implemented using O(1) parallel time, and
both reduce ⊕ / and scan ⊕−// can be implemented us-
ing O(log n) parallel time toward an input list of length n.
For example, ⊕ / can be computed in parallel on a tree-
like structure with the combining operator⊕ applied in the
nodes, while k∗ is computed in parallel with k applied to
each of the leaves. The study on efficient parallel imple-
mentation of ⊕−// can be found in [5].

3.H-Homomorphism and H-Form

As a simple example, consider the function psum for
computing all prefix sums of a list:

psum [x1, x2, . . . , xn]
= [x1, x1 + x2, . . . , x1 + x2 + · · ·+ xn].

As is demonstrated in [13], it can be described by the fol-
lowing homomorphism.

psum [a] = [a]
psum (x ++y) = psum x⊕ psum y

where u⊕ v = u ++(((last u)+) ∗ v)

This homomorphic definition is not efficient, requiring
O(n2) computation of +. Making good use of accumu-
lation often avoids inefficiency by sharing computation.
Indeed the standard linear time sequential implementation
would be:

psum (x : xs) = psum ′ xs x
psum ′ [] s = [s]
psum ′ (a : x) s = s : psum ′ x (s + a) ,

but its efficient parallel implementation is not obvious.

3.1. H-homomorphism

We extend homomorphism with accumulation for de-
veloping more efficient parallel programs. We define H-
homomorphism that utilizes an accumulation for inheriting
computation from the previous call.

Definition 1 (H-Homomorphism) Function h is said to
be an H-homomorphism, if there exist associative opera-
tors ⊕ and ⊗, a binary operator 	, and a homomorphism
g, such that

h [a] c = c	 a
h (x ++y) c = h x c⊕ h y (c⊗ g x) .

Here, g is a homomorphism satisfying

g [a] = k a
g (x ++y) = g x⊗ g y .

H-homomorphism is a natural extension of homomor-
phism. The additional accumulating parameter c serves for
information propagation. When a list is divided into x and
y, computation on x receives the original c while h on y
uses accumulative information also related to x.

Cyclic dependency should be avoided, as the definition
indicates. We therefore do not allow the case where update
of the accumulation parameter for computation on x uses
information related to y. If the accumulation parameter is
not used at all (i.e., dead), H-homomorphism degenerates
to homomorphism.

3.2. Parallelizability of H-homomorphism

The following lemma shows that we can evaluate H-
homomorphisms in parallel.

Lemma 1 (H-Homomorphism in Skeletons) An H-
homomorphism h defined above can be decomposed into
the form using parallel skeletons.

h x c = ⊕ / ((⊗−//c (k ∗ x)) Υ	 x)

It is worth noting that our parallel implementation of
H-homomorphism uses the same order of number of the
basic operators, while the associativity of the operators en-
ables parallelism to be fully developed. In other words,H-
homomorphisms executed in linear time sequentially can
be implemented in logarithmic parallel time, which is in-
dicated by two parallel skeletons ⊕ / and⊗−//c.

3.3. H-Form: a more friendly interface

As seen in the example psum ′ at the beginning of this
section, it is often the case that a function definition is
given sequentially by induction on the cons list, rather than
by induction on the joined list. In order to enable smooth
transformation, we define the followingH-form.

Definition 2 (H-Form) Let p, q, r be given functions, ⊕
and ⊗ be associative operators. The function f is said to
be in H-form, if it is defined in the following (sequential)
recursive form.

f [ ] c = r c
f (a : x) c = p a c⊕ f x (c⊗ q a)

We write f = H[[r, (p,⊕), (q,⊗)]].

In terms of our example psum ′, it can be redefined by

psum ′ (a : x) s = [s] ++psum ′ x (s + a) ,

and thus can be written as

H[[[·], ((λ a c . [c]), ++), (id , +)]] .



Now that we have formalized the classH-form, the fol-
lowing lemma shows that any function in the class can be
transformed intoH-homomorphism.

Lemma 2 (H-Form intoH-Homomorphism) An H-
form function f = H[[r, (p,⊕), (q,⊗)]] can be redefined
in terms of a H-homomorphism h as follows.

f x c0 = fst (h x c0)

h [a] c = (p a c⊕ r (c⊗ q a), p a c)
h (x ++y) c = h x c⊕′ h y (c⊗ g x)

where (a1, b1)⊕
′ (a2, b2)

= (b1 ⊕ a2, b1 ⊕ b2)
g [a] = q a
g (x ++y) = g x⊗ g y

Here fst is a function which takes the first element in a pair.

This lemma states that H-form can be defined in terms
ofH-homomorphism. It enables us to derive the following
parallelizable equivalents of psum ′ .

psum ′ x s = fst (h x s)

h [a] c = ([c] ++[a + c], [c])
h (x ++y) c = h x c⊕′ h y (c + g x)

where (a1, b1)⊕
′ (a2, b2)

= (b1 ++a2, b1 ++b2)
g [a] = a
g (x ++y) = g x + g y

4. H′-Form: H-Form with Finite Accumula-
tion

In the course of the story, associativity of operators ⊗
and⊕ has played an important role for program derivation.
There are often the cases, however, that we may not be able
to find these suitable associative operators easily.

Consider an example of counting the number of ‘moun-
tains’ from a list of three tags, Up, Dn, Fl . As Fig-
ure 1 shows, these tags indicate the position is at a place
of climbing up, sloping down, or flat plane, respectively.
Mountain peaks are found where climbing up turns to slop-
ing down. With the help of accumulation we can write a
recursive program cmnt as follows.

cmnt x = cmnt ′ x (Up,False)

cmnt ′ [ ] (c1, c2)
= if (isUp c1 ∧ c2) then 1 else 0

cmnt ′ (a : x) (c1, c2)
= (if (isUp c1 ∧ isDn a) then 1 else 0)

+cmnt ′ x ( if isFl a then (c1, c2)
else (a,True) )

x =

|

|

| |

| |

| |

|

|

Dn

Dn
Fl

Up
Fl

Up
Fl

Dn Up

cmnt x (Up,False) = 3

Figure 1. Example of mount counting using
cmnt

The accumulation parameter is to inherit Up or Dn of the
preceding list element. When the current mark is Fl , the
new accumulation refers to the incoming accumulation not
to lose which direction the preceding element has. The
boolean value in the accumulating pair works to return the
correct value 0 when the input list is either empty or has
Fls only. Due to the dependency, we cannot easily find
an associative operator ⊗ when we try to fit cmnt ′ in the
H-form.

One idea for this is to use closures, where we can enjoy
associativity of composition. Representing them in a naive
way, however, just results in holding a big and enlarging
closure. Tackling such representation problems, there ex-
ists an analysis called context preservation [8]. It is a tech-
nique to keep closures in some fixed form after composi-
tion. Although it is a quite powerful technique and gives
us a solution here, we can enjoy another solution provided
that the domain of the accumulation parameter is finite.

4.1. Closures in a finite domain

Given a function f :: A → B → B with finite B =
{b1, . . . , bn}, a closure of this function can be represented
using case branching when the first parameter a1 is given:

f a1 = λ b . case x of b1 → b′1
. . .

bn→ b′n ,

where b′i = f a1 bi. Commonly closures keep their
function body as it is except for the parameters already
filled. When the domain of the unfilled parameter is fi-
nite, we can perform preemptive computation by specify-
ing the unfilled part exhaustively, which produces a table
between the unfilled parameter and the result. Naturally
{b′1, . . . , b

′
n} ⊆ B. Different a2 may construct different

case branching, yet they are composible since they share



B as their domain and range.

(f a2) ◦ (f a1)

=









λ b . case b of
b1 → b′′1

. . .
bn→ b′′n









◦









λ b . case b of
b1 → b′1

. . .
bn → b′n









= λ b . case b of b1 → b′′j1
. . .

bn → b′′jn

where b′i = bji
. Composition is obtained by the matching

of the results of the right closure to the case branching in
the left. Now we see the resulting closure keeps the shape,
which means composition of such closures stays in some
fixed size. This amount depends on the size of B. This
closure can be suitably implemented by an array whose
size depends on B’s size.

4.2. H′-form

Finiteness of the domain and the range settles the prob-
lems of associativity through reducing to exhaustive case
branching. Now we give a variant ofH-form.

Definition 3 (H′-Form) The function f ′ is said to have
H′-form H′[[r, (p,⊕), q′]], if it is defined in the following
(sequential) recursive form with an associative operator ⊕
and a function q′ which has the finite range C.

f ′ [ ] c = r c
f ′ (a : x) c = p a c⊕ (f ′ x (q′ a c))

It should be noticed that we do not need struggling to
find an associative operator on the computation of the ac-
cumulation q′ a c any more. The following lemma shows
thatH′-form can be redefined using homomorphism.

Lemma 3 (H′-Form into Homomorphism) An H′-form
function f ′ = H′[[r, (p,⊕), q′]] can be redefined with a ho-
momorphism. The finite domain C is assumed to take the
form of a list.

f ′ x c0 = accept (h′ x) c0

h′ [a] = [ tup a c | c← C ]
h′ (x ++y) = h′ x⊕′ h′ y

where

accept x c0 = [·]−1 [ b⊕ r c′ | (b, (c, c′))← x,
c == c0 ]

tup a c = ( p a c , (c, q′ a c) )

x⊕′ y = [ (bx ⊕ by, (cx, c′y)) | (bx, (cx, c′x))← x,
(by, (cy, c′y))← y,
c′x == cy ]

We here explain how the defined functions calculates
the desired result. The derived homomorphism h′ returns
a list of pairs (b, ĉ), where ĉ is again a pair (c, c′). The
variable c denotes the presumed incoming accumulation.
The new accumulation c′ passed to the next recursive call
and b, namely the result of f ′, are computed depending on
c. The closure, or say table, is now represented by a list of
pairs, whose key is c and values are c′ and b.

Given a singleton list [a], h′ creates a list of pairs by
tup′h for all c ∈ C. In case a list concatenation x ++y is
given, the recursive results h′ x and h′ y are merged by
⊕′. This operation picks up the pairs where the outgoing
accumulation of the left sublist c′x is equal to the incoming
accumulation of the right cy, and creates a new pair whose
incoming accumulation is the one of the left cx and the
outgoing is the right c′y. Since each bx and by is computed
by reflecting their presumed accumulation, the value bx++y

is computed using the associative operator ⊕ as bx ⊕ by.

At last, we have the list of pairs. The final accept func-
tion chooses the desired value through two parts: (1) The
resulting pairs have been computed on the assumption of
the incoming accumulation c. First we pick out the one
whose incoming accumulation is the initial accumulation
c0. (2) b has not yet reflected the the computation by the fi-
nally outgoing accumulation c′. The computation ⊕ (r c′)
to b is applied. Taking out this value by [·]−1, and we are
done.

It is easy to verify ⊕′ is associative, from associativity
of ⊕ and of closure compositions. With restricting the ac-
cumulation finite, we have not only eliminated the need to
find out the associative operator ⊗, but also derived a ho-
momorphism which requires a single traversal, instead of
H-homomorphism requiring plural traversals.

Coming back to cmnt at the beginning of this section,
we see that cmnt ′ = H′[[r, (p,⊕), q′]] where

r (c1, c2) = if (isUp c1 ∧ c2) then 1 else 0
p = if (isUp c ∧ isDn a) then 1 else 0
⊕ = +
q′ Up c = (Up,True)
q′ Dn c = (Dn,True)
q′ Fl c = case c of

(Up,True)→ (Up,True)
(Up,False)→ (Up,False)
(Dn,True)→ (Dn,True)
(Dn,False)→ (Dn,False) .

Note that the domain of the accumulation is {Up,Dn} ×
Bool . While the list may have Fl , the value in the accumu-
lation does not have Fl provided that the initial accumula-
tion is either Up or Dn. Lemma 3 gives us its correspond-
ing homomorphism without any troubles.



[3,−4, 2,−1, 6,−3] (k = 1)
[3,−4, 2,−1, 6,−3] (k = 2)
[3,−4, 2,−1, 6,−3] (k ≥ 3)

Figure 2. Example of maximum markings
(underlined) for k-mss problem

5. Case Study: Maximum Marking Problems

To see how our approach works in practice, we demon-
strate how one can systematically obtain an efficient paral-
lel program for solving an important class of optimization
problems, the maximum marking problems. The previous
results [23, 24] tell us that we can automatically obtain
an efficient sequential program for a maximum marking
problem whose characterizing function is a finite homo-
morphism (i.e., both of the range B of the function and
the domain C of the accumulation are finite); paralleliz-
able solutions have not yet been reported to the best of our
knowledge.

One of our contributions is the theorem in this section
that states a maximum marking problem is solved in paral-
lel once its marking characteristics is specified inH′-form.
Additionally, H′-form makes the analysis of the problem
easier. For example, one more challenging problem, called
maximum k-segment sum problem (k-mss for short), is
to find a marking on the elements of a list such that the
marked elements constitute at most k segments. It plays
an important role in knowledge discovery, and an efficient
sequential algorithm has been given, for example [7]; it
is yet unknown, as far as we are aware, how to systemati-
cally obtain its efficient parallel program. The troublesome
problem of k-mss can be easily specified withH′-form, and
transformed into a homomorphism at once, namely into a
parallelizable form.

5.1. Specification

The maximum marking problems can be naively speci-
fied using the Haskell notation as follows.

mmp :: (MList → Bool )→ [Int]→ Int
mmp P x = maximum (map sumM

(filter P (marking x)))

Given a list of values, we use marking to enumerate all the
ways of marking; through filtering out lists which do not
satisfy P , namely the constraints on how lists are marked,
we finally choose the maximum value among the sums of
the marked elements of those marked lists.

The maximum marking problems are parameterized by
the predicate P for the marking constraint. On the same
list, different predicates define different problems, and cal-
culate different maximum weights. One example is adj ,
which describes whether the marked elements are adjacent
or not. If we are given a list [3,−4, 2,−1, 6,−3], the mark-
ing (as underlined)

[3,−4, 2,−1, 6,−3]

has the maximum weight, but the marked elements are not
adjacent. The correct maximum weight under this con-
straint is 7 by

[3,−4, 2,−1, 6,−3] .

Here, a predicate P takes a marked integer list MList =
[(Bool , Int)] and returns a boolean value Bool .

P :: MList → Bool

The function isM extracts out the mark: isM (m, a) = m .

5.2. Describing predicates P in H- or H′-form

We first see whether predicates P can be written in H-
or H′-form. In Sections 3 and 4, we have obtained H-
homomorphism from H-form and homomorphism from
H′-form, wrapped with a single function. Similarly, con-
sider defining predicates in the following form:

P x = judge (f x c0)

After computing a H- or H′-form function f as defined
in Definition 2 with a suitable initial accumulation c0, the
function judge maps the result of f to a boolean value.
This relaxation enables us to find a definition of the gener-
alized k-adjacentness adj k, which is required for k-mss to
examine whether the number of marked segments in a list
is at most k, as follows.

adj k x = judgek (adj ′k x False)

adj ′k [ ] m = 0
adj ′k (a : x) m = (if ¬m ∧ isM a then 1 else 0)

+′
kadj

′

k x (isM a)

judgek v = v ≤ k
a +′

k b = if a + b > k then k + 1
else a + b

Given the initial accumulation False, adj ′k counts the
number of the position where the current mark is True

and the previous mark is False , as Figure 3 indicates.
If the number of such occurrences are not more than k,
judgek returns True; otherwise False . Once the number
of such positions exceeds k it is obvious that the sequence



x = (◦ : True, × : False)

◦ × ◦ ◦ ◦ × × ◦ ◦ ×

+1 +1 +1

adj ′∞ x False = 3

Figure 3. Counting the number of segments
by adj k

is judged False . The modified addition +′

k therefore treats
numbers more than k as k +1, which yet keeps its associa-
tivity. Dividing predicates P into judgek and adj ′k makes
its analysis quite intuitive.

We find not only associativity in the accumulation, but
also its finiteness. We can therefore easily have both ofH-
andH′-form for adj ′k, namely:

adj ′k = H[[r, (p,⊕), (q,⊗)]] = H′[[r, (p,⊕), q′]]

where

r c = 0
p a c = if ¬c ∧ isM a then 1 else 0
⊕ = +′

k

q a = isM

⊗ = Rt

q′ a c = isM a ;

Rt is an associative operator which returns its right argu-
ment, i.e., l Rt r = r.

As adj ′k exemplifies, introduction of an additional func-
tion judge makes it easier to find definitions of H- or H′-
forms. Once defined, we are to have (H-)homomorphisms
for such predicates.

5.3. Maximum list marking problems in homomor-
phism

Now that predicates are known to be transformed into
(H-)homomorphism, we tackle the main problem to re-
duce maximum list marking problems in some homomor-
phisms. The concern here is that the marking function
marking creates a power set of lists depending on how
they are marked. Although we have predicates P in the
form of (H-)homomorphism, it is not yet obvious how the
desired solution is obtained. How do we treat every possi-
ble marking?

The same technique as in Lemma 3 can be used, which
gives us the following theorem. Since finiteness of the ac-
cumulation domain plays a key role, specification of the
predicate in H′-form is chosen. Note that given a list of
pairs [(x1, y1), . . . , (xn, yn)], the function G is to group
the pairs of the same first component x in a pair (x, y) such
that y is the maximum of the second components. For in-
stance,

G[(2, 1), (1, 5), (2, 10), (3, 2), (1, 1)]
= [(2, 10), (1, 5), (3, 2)] .

Theorem 1 (Maximum Marking Problems in Ho-
momorphism) Assume the constraint is P x =
judge (f x c0), where f = H′[[r, (⊕, p), q′]] and C is the
list which holds all elements in the domain of the f ’s ac-
cumulation.

mmp P x = accept (mmpp x) c0

mmpp [a] = G [ tup
mmpp

m a c
| c← C,

m← [True,False ] ]
mmpp (x ++y) = G ( mmpp x⊕′ mmpp y)

The definition of auxiliary functions are as follows.

accept x c0

= maximum [ w | ((b, (c, c′)), w) ← x ,
c == c0 ,
judge (b⊕ r c′) ]

tup
mmpp

m a c
= ( (p (m, a) c , (c, q (m, a) c)) ,

if m then a else 0 )
x⊕′ y = [ ((bx ⊕ by, (cx, c′y)), wx + wy)

| ((bx, (cx, c′x)), wx)← x,
((by, (cy, c′y)), wy)← y,
c′x == cy ]

The reader soon sees the equivalence of this theorem
and Lemma 3. This time, the function mmpp returns a list
of pairs, in which the weight w is added to form ((b, ĉ), w).
Since the input of a predicate P is MList a = [(Bool , a)],
also the marking m needs to be passed to tup

mmpp
. The

function mmpp produces pairs by generating possible
combinations of the incoming accumulation c and the mark
m on a. If the element a is to be marked, m = True and
the pair has its weight a; otherwise, m = False and the
weight is 0. When a joined list x ++y is given, the re-
cursive results mmpp x and mmpp y are merged by ⊕′.
We have an additional weight in a pair, whose associated
operator is associative summation + .

A behavior different from Lemma 3 exists. Even if
some single value is specified in the accumulation c, which
works as the key of the table in the parallel form of H′-
form, the value b can have variety depending on how the



list is marked. Regarding as the resulting list of pairs
((b, ĉ), w) as a table, the key part is (b, ĉ), and the value
is w. It is possible that there are multiple pairs with the
same (b, ĉ) with variety of weights, especially during com-
puting⊕′ on a joined list x++y. The purpose of maximum
marking problems are to find the maximum weight w, and
it is done by sifting through G.

At last, we have a list of pairs ((b, (c, c′)), w), and the fi-
nal accept function chooses the desired weight as follows:
(1) To fulfill the assumption, we first filter out those whose
incoming accumulation is not equal to the initial accumu-
lation c0. (2) With reflecting the final accumulation c′ to b
by b⊕ r c′, the legitimate pairs satisfying the constraint P
are sifted out by judge to form a list of weights. (3) Finally,
maximum finds out the desired result from the list.

5.4. Properties of the obtained homomorphism

While the accumulation domain C is finite, the resulting
list of mmpp can grow infinitely if there is no limitation
on the range of f . When the range of the function f is
finite, meaning f is a finite homomorphism, the possible
combination of b, c and c′ stays finite and explosion of the
list size is avoided. In the example of adj k, the modified
summation +′ returns finite results, and we successfully
have finite homomorphism.

The obtained mmpp, however, does not stay textually in
the form of homomorphism; it is called almost homomor-
phism [9, 15]. When we denote the size of a set A as |A|,
mmpp for a finite homomorphism returns a list of length
at most |B| × |C|2. Merging two results can return a list
of length |B|2 × |C|3 in the worst case, which G reduces
to be again at most |B| × |C|2. Neglecting these compu-
tation as constant, the obtained result can be executed in
logarithmic time in parallel.

In the case of the example of this section k-mss, its aux-
iliary functions are:

accept x c0

= maximum [ w | ((b, (c, c′)), w)← x ,
c == False ,
judge (b +′

k r c′) ]
tup

mmpp
m a c

= ( if ¬c ∧m then 1 else 0, (c, m)),
if m then a else 0 )

x⊕′ y = [ ((bx +′

k by, (cx, c′y)), wx + wy)
| ((bx, (cx, c′x)), wx)← x,

((by, (cy, c′y)), wy)← y,
c′x == cy ] .

The domain and the range are C = {True,False} and
B = {0, 1, . . . , k + 1}, and their size |C| = 2 and |B| =
k +2, respectively. If we want to solve the 2-mss problem,
each recursive function mmpp returns a list of the length

at most 16 = 4 × 22. Such a small constant is acceptable
for solving the complicated marking problems, especially
executed in parallel.

6. Related Works

This paper focuses on the existence of accumulation in
homomorphism. Despite its usefulness for problem de-
scription, explicit treatments of accumulation in homo-
morphism seems rare, except for the authors’ preceding
works [18–20]. In order to derive homomorphisms, left-
wards and rightwards analysis based on the third homo-
morphism theorem [12] is used as in [15]. The scan skele-
ton plays an important role for accumulation in the case
of H-homomorphism. Distributable homomorphism, an-
other kind of extension to homomorphism, and its relation
to scan is argued in [4, 14]. Accumulation in tree struc-
tures, namely upwards and downwards accumulation is re-
searched in [10, 11].

The example of maximum segment sum is often dealt
with as an example of derivation of its parallel form [9,
15, 28]. In [15], for example, the parallel solution is ob-
tained through defining four functions on cons and snoc
lists, based on the idea of distributable homomorphisms.
Comparing with these techniques, our specification allows
us simple description of problems which range over the
wide and practical class of maximum marking problems.

7. Conclusion and Future Works

In this paper we have formalized three concepts, H-
homomorphism, H-form and H′-form, where accumu-
lation is involved in computation. We have provided
lemmas for each formalization: parallelizability of H-
homomorphism, transformations from H-form into H-
homomorphism and from H′-form into homomorphism.
Since developing functions often is easier in a sequential
manner and more efficient with existence of accumulation,
these formalizations and lemmas enable us to obtain paral-
lelizable functions conveniently and intuitively.

The benefit of our methodology has been exemplified
by the challenging maximum marking problems. Regard-
less of the fact that we find it hard to code their efficient im-
plementation even in sequential manner, we have provided
a theorem that maximum marking problems are at once
reduced into homomorphism by specifying the parameter-
ized predicates in H′-form. Additionally, specification of
these predicates are quite simple usingH′-form.

There are some interesting further developments in our
sight. It would be a natural and simple extension to apply
the idea of finite closures to the function’s result. When
the range of the function B is known to be finite, as is the



case of finite homomorphisms in maximum marking prob-
lems, we can also eliminate the need to search for an as-
sociative ⊕. Application of the idea to trees would be also
fruitful, where the skeletal approach is applied and now
developing [21, 26, 27] but it often requires considerable
efforts to obtain suitable associative operators.
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