
Int J Softw Tools Technol Transfer (2009) 11:453–468
DOI 10.1007/s10009-009-0124-3

SPECIAL SECTION ON WEB SYTEMS EVOLUTION

Consistent Web site updating based on bidirectional
transformation

Keisuke Nakano · Zhenjiang Hu · Masato Takeichi

Published online: 3 November 2009
© Springer-Verlag 2009

Abstract A transformation-based Web site can keep the
contents of a Web site consistent by furnishing a single
database and a set of transformation programs, each gener-
ating a Web page from the database. However, when some-
one notices an error or stale content on a Web page in this
style of Web site construction, the Web site maintainer must
access a possibly huge database to update the corresponding
content. In this paper, we propose a new approach to Web
site construction based on bidirectional transformation, and
report our design and implementation of a practical updat-
ing system called Vu-X. We bring the idea of bidirectional
transformation to Web site construction, describing not only
a forward transformation for generating Web pages from the
database but also a backward transformation for reflecting
modifications on the Web pages to the database. By use of the
bidirectional transformation language Bi-X, we can obtain
both transformations only by specifying a forward transfor-
mation. Our Vu-X system is implemented as a Web server
built upon the Bi-X transformation engine, which can keep
the content of Web sites consistent by updating Web pages
in WYSIWYG style on Web browsers.

K. Nakano (B)
The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
e-mail: ksk@cs.uec.ac.jp

Z. Hu
GRACE Center, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: hu@nii.ac.jp

M. Takeichi
Department of Mathematical Informatics, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: takeichi@mist.i.u-tokyo.ac.jp

Keywords Web site maintenance · XML transformation ·
Bidirectional transformation · Web site generation ·
HTML editor

1 Introduction

Maintaining a Web site is costly and time-consuming [18],
which requires consistent and frequent updating of the con-
tents to maintain their freshness and quality. The mainte-
nance problem generally covers any type of update to a Web
site, including recognizing its structure and modifying its
contents. A more specific problem has to do with replicated
information: it is onerous for Web site administrators to avoid
inconsistency between all Web pages provided on their own
Web site because some of the pages may contain the same
information, which should be synchronized.

A natural solution to this problem is to prepare a single
database that stores the information for all Web pages on the
Web site, and to consider a Web site as a set of views that are
generated from some existing raw data (database) [4,11,12]
through transformation programs. We call this transforma-
tion-based Web site construction. This helps to easily keep
all Web pages consistent since all pages are generated from
the same database.

Figure 1 shows a simple instance of such transformation-
based Web site construction. The database is usually con-
structed in XML format, which is convenient for describing
structured information. Transformation programs p1, . . . , pn

are used to generate an HTML source corresponding to a
Web page from the XML data. Typically, these programs are
written in XSLT [26].

Transformation-based Web site construction, however, is
not as good at frequently updating its contents as simple Web

123

454 K. Nakano et al.

Fig. 1 Transformation-based Web site construction

site construction that consists of a set of independent HTML
files.

When someone points out an error or stale content on a
page at the Web site, it is not easy to find which part of the
database should be updated, particularly when the database
is very huge or when the maintainer is not the person who
designed the database. It would be nice if we could correct
errors, update content, or change the layout just by editing
the HTML view of the Web page, which results from the
transformation, instead of accessing the database to update
it. Furthermore, it would be ideal if we could edit Web pages
on Web browsers in WYSIWYG style.

This paper proposes a new approach to solving the Web
maintenance problem based on bidirectional transformation,
together with a practical updating system called Vu-X (pro-
nounce as “view X”). We divide the problem into two parts,
i.e., how to edit Web pages on Web browsers in WYSIWYG
style and how to reflect modifications of the HTML source
to the original database. The former is attained by adding
JavaScript to the HTML source.

The latter, which is more difficult, is accomplished by a
novel use of bidirectional transformation [13,16,20], which
is a new technique for synchronizing data.

Bidirectional transformation involves a pair of transfor-
mations: forward transformation maps one data structure
called a source onto another called a view, and backward
transformation reflects changes in the view to the source.
Bidirectional transformation has many practical applications
including the synchronization of replicated data in differ-
ent formats [13], presentation-oriented structured documents
development [16], interactive user interface design [21],
coupled software transformation [17], and the well-known
mechanism for view updating, which has been intensively
studied in the database community [5,9,14,15,19].

In our approach shown in Fig. 2, forward transformation
pi transforms XML data into an HTML source, while back-
ward transformation p̃i reflects a modification of the HTML
source to the database. Since the HTML source generated
by forward transformation generally does not have suffi-
cient information to construct the corresponding XML data,
backward transformation takes not only an updated HTML
source but also the original XML data to generate the updated
XML data. These two transformations, pi and p̃i , should be
consistent with each other. We chose a bidirectional XML

Fig. 2 Bidirectional transformation between XML data and HTML
sources

transformation language Bi-X [20] to specify the bidirec-
tional transformation. One advantage of using Bi-X is that a
program written in the Bi-X language only describes forward
transformation and the corresponding backward transforma-
tion is automatically derived.

We have implemented the Vu-X system1, which facili-
tates the maintenance of a Web site based on bidirectional
transformation. The Vu-X system has five main features:

1. It enables us to easily maintain consistency between mul-
tiple Web pages by means of transformation-based Web
site construction.

2. It enables us to edit a generated HTML source itself by
means of bidirectional transformation.

3. It does not force us to specify two transformations to
attain a bidirectional transformation using the Bi-X lan-
guage.

4. It enables us to edit both HTML sources and Bi-X pro-
grams in WYSIWYG style.

5. It does not force to install any special software to use the
Vu-X system because it is provided as a Web application.

The remainder of this paper is organized as follows.
We start by giving an overview of the Vu-X system with
some examples of practical situations in Sect. 2. After sum-
marizing the basic ideas of bidirectional transformation and
the bidirectional transformation language Bi-X in Sect. 3, we
explain the architecture and the implementation of our Vu-X
Web site updating system in Sect. 4. In Sect. 5, some experi-
ments on Web site construction using our system are shown.
We discuss several issues on the current implementation in
Sect. 6. We summarize related work in Sect. 7, and conclude
the paper in Sect. 8.

The result of this paper, but only with informal explana-
tion for bidirectional transformation and the Vu-X system,

1 The Vu-X system can be played with Web browsers such as Micro-
soft Internet Explorer and Firefox and its URL is http://www.psdlab.
org/vux/start.html. You may login with your email address for ID and
no password is required to try our system while possible operations are
limited for security.

123

http://www.psdlab.org/vux/start.html
http://www.psdlab.org/vux/start.html

Consistent Web site updating based on bidirectional transformation 455

was presented at the 10th IEEE international symposium on
web site evolution [23]. In addition to the result, this paper
discusses experimental result, possibility and limitation on
our implementation.

2 Overview of Vu-X system

This section explains how users maintain a Web site with the
Vu-X system, giving some examples of practical situations.
We summarize features of the Vu-X system after that.

2.1 Web site updating through the Vu-X system

The Vu-X system is implemented as a Web application that
runs on Internet Explorer or Firefox. Users are not required
to install special software to employ the Vu-X system. Users
start the Vu-X system for updating their own Web sites by
logging in with a correct password. Only allowed persons can
update the Web sites. The XML data and Bi-X programs for
the Web site are registered through the Vu-X system. After
logging in, they open a small window to select the name of
the XML data and Bi-X program that corresponds to the Web
page they want to edit. Here, users have to choose either of
two modes, content updating or code editing. In the former,
they can update information in the XML data through edit-
ing the corresponding HTML source. In the latter mode, they
can edit the Bi-X program or create a new Bi-X program from
scratch. Both modes provides a WYSIWYG editor that runs
on Web browsers.

We generally employ the content updating mode to edit
the content of the Web site and the code editing mode to
change or define the layout of Web pages.

When users select the name of the XML data and Bi-X
program, the corresponding Web page is loaded on their Web
browser as seen in Fig. 3 no matter which mode is chosen.
The Web page to be updated is displayed in the lower right
portion of the browser’s window, shown with plain white
background in the figure.

The HTML source of the Web page is generated from the
designated XML data and Bi-X program. It contains a Java-
Script code so that users can edit it on the Web browser and
reflect the change to the XML data or Bi-X program. Let
us look at some scenarios involving updating Web pages in
content updating or code editing mode.

2.1.1 Scenario: changing the name of laboratory

Assume that users want to change the name of laboratory that
occurs many times on a single Web page as seen in Fig. 4
which is zoomed from Fig. 3. The name may occur at the
footer of all Web pages on the Web site. If all occurrences
are generated from the same part of the XML data, it suffices

Fig. 3 Screenshot of Vu-X system

Fig. 4 Three occurrences of name of laboratory

for users to click and edit just one of the occurrences on the
Web browser. Then, the other occurrences of the string are
automatically updated because the corresponding part of the
XML data is updated through backward transformation and
forward transformation modifies all occurrences of the string.
This editing is done in the content updating mode because it
involves updates of the XML data.

2.1.2 Scenario: updating publication list

Assume that users want to update a list of publications sorted
by year in descending order. The XML data contain the
information on all publications including the title, author(s),
and year of publication for all entries. The Bi-X program
describes a (forward) transformation from the XML data
to an HTML source for the Web page for the publication
list. The list is represented as a ul component in the HTML

123

456 K. Nakano et al.

source. When users click it, a small window pops up for them
to edit the items in the list (Fig. 5). The window contains a list
of items in the ul component and several buttons for edit-
ing functions and reflecting the updates. The Vu-X system
supplies several editing functions for a ul component, i.e.,
modification to an item, deletion of an item, and insertion of
a new item. Users can also copy and paste an existing item.
When they want to modify the year of a publication, they
click the publication item to open another editing window.

Since the item consists of multiple HTML components as

K. Nakano
Consistent Web Page Updating
CCC Workshop
2006

 ,

the small editing window that has opened graphically shows
these components, each of which opens another editing win-
dow for the HTML component by clicking it.

Users click the component 2006, which
represents the year of publication, to modify the text 2006
into 2005. After the modification, they click the “OK” button
to close each window and reflect the modification in the pre-
vious small window. When all small windows are closed, the
Web page on the Web browser is reloaded. Interestingly, the
occurrence of the publication in the list will be automatically
moved because the year of publication is changed. This is, as
far as we are aware, one of the unique functions that cannot
be found in other Web site maintenance systems. This edit-
ing is done in the content updating mode because it involves
update of the XML data.

2.1.3 Scenario: changing layout of web page

Assume that users want to change the layout of a Web page
from a table-based style into a div-based one. In a transfor-
mation-based Web site construction, this kind of information
about layout styles is specified by the transformation pro-
gram but not the XML data. Therefore, what users should do
in this situation is to modify the transformation program. The
Vu-X system provides a function to edit Bi-X programs with
a graphical user interface. Users click the table component
then the system invokes the Bi-X code builder, which is pro-
vided as a Java applet, so that they can modify a fragment of
the Bi-X program that generates the table component from
the XML data. The detail will be explained in Sect. 4.

Since the Vu-X system shows how the Web page is gener-
ated from the actual XML data when editing a Bi-X program,
users can easily update the layout of the Web page. This
editing is done in the code editing mode because it involves
update of the Bi-X program.

2.2 Features of the Vu-X system

The Vu-X system supports a Web site construction based on
bidirectional transformation. We summarize several advan-
tages of the Vu-X system in updating Web sites.

As the first advantage of the Vu-X system, users can eas-
ily maintain consistency between multiple Web pages on the
Web site. The Vu-X system employs an extension of trans-
formation-based Web site construction furnished with XML
data and Bi-X programs, each of which generates a Web page
from the XML data. Since every piece of information shared
by multiple Web pages occurs once in the XML data, all
occurrences of this information in Web pages are definitely
synchronized.

Fig. 5 Editing a ul component on the Web browser

123

Consistent Web site updating based on bidirectional transformation 457

Second, users can edit the generated HTML source itself
based on bidirectional transformation. Modifications to the
HTML source are consequently reflected in the XML data
by the backward transformation. Since visitors to the Web
site see the result of the forward transformation, the updated
information is consequently reflected in all Web pages. The
generated HTML source is modified with a WYSIWYG edi-
tor provided by the Vu-X system as the content updating
mode.

Third, users do not have to specify both forward and back-
ward transformations to attain a bidirectional transformation
thanks to the bidirectional transformation language Bi-X.
It suffices to only specify forward transformation. The corre-
sponding backward transformation is automatically derived.
All transformation programs in the Vu-X system that gener-
ate Web pages are written in Bi-X.

Fourth, users can easily generate and edit a Bi-X program
with a WYSIWYG editor provided by the Vu-X system as
the code editing mode. They construct a Bi-X program step
by step by discerning the transformation result. For program-
mers who are familiar with the XQuery language, the trans-
lation tool from an XQuery program to a Bi-X program [20]
is useful. As another option, users may reuse Bi-X programs
which we wrote for Web sites of several kinds of organization
as shown in Sect. 5.

Finally, users do not have to install any special software
to work with the Vu-X system because it is implemented as
a Web application with JavaScript and Apache Tomcat. The
WYSIWYG editor in both content updating and code editing
modes runs on standard Web browsers. We have tested the
performance with Firefox and Microsoft Internet Explorer.

3 Bidirectional transformation and Bi-X language

Bidirectional transformation is a basis for our Vu-X Web
site updating system. This section summarizes the general
concept of bidirectional transformation and gives a brief
introduction to a bidirectional XML transformation language,
Bi-X, which is employed in the current Vu-X system.

3.1 Bidirectional transformation

Bidirectional transformation [13], originating from the view-
updating technique in the database community [5,9,14,15,
19], involves a pair of transformations between a source and
its view: the first transformation, called forward transforma-
tion, maps sources to views and is used to reflect changes in
a source in its view. The second transformation, called back-
ward transformation, maps views to sources and is used to
reflect changes in a view in its source. Since a view generally
has less information than its source, backward transformation

takes not only a changed view but also the original source to
generate a source corresponding to the new view.

Forward and backward transformation should be consis-
tent in order to make a bidirectional transformation well-
behaved in the following sense. Let fwd : S → V and
bwd : V × S → S be forward and backward transfor-
mation, respectively, where S is a set of sources and V is
a set of views. The well-behaved bidirectional transforma-
tion must satisfy two properties, acceptability and consis-
tency [13,16,20]. Acceptability indicates that no update on
the view implies no update on the source, i.e., bwd
(fwd(s), s) = s for any source s ∈ S. When a view gener-
ated from a source by forward transformation is not changed,
backward transformation must generate the same source for
the view and the source. Consistency indicates that permit-
ted updates on the view should be reflected to the source,
i.e., fwd(bwd(v, s)) = v for any source s ∈ S and any view
v ∈ V . Forward transformation generates the same updated
view from the reflected source.

It is difficult to describe forward and backward transfor-
mation programs for a well-behaved bidirectional transfor-
mation because they must be consistent. In general we need to
simultaneously maintain forward and backward transforma-
tion so that they are consistent. Few bidirectional transforma-
tion languages, such as Boomerang [13,7], X/Inv [16], and
Bi-X [20], have been proposed to support easy bidirectional
programming. Although our framework does not depend on
choice of bidirectional language, we chose Bi-X (as will be
discussed later in the next subsection).

The main reason of our choice is that the Bi-X language
allows us to write a transformation program that deals with
duplication of a part of source, which makes a well-behaved
bidirectional transformation difficult. The reader may imag-
ine the difficulty by considering a situation where one of
duplicated parts is updated on a view.

3.2 Bi-X: Bidirectional transformation language

The Bi-X bidirectional transformation language has been pre-
sented by Liu et al. [20]. A program written in Bi-X specifies a
bidirectional transformation between two XML documents
(or XML fragments). The main feature of Bi-X is that all
programs have two semantics corresponding to forward and
backward transformation. It suffices to write a Bi-X program
only for forward transformation. Programmers do not need
to consider the consistency between forward and backward
transformation to specify bidirectional transformation. In this
paper, we give just a brief introduction of the Bi-X language
and two examples of Bi-X programs. See [20] for details on
the Bi-X language and its theoretical background.

123

458 K. Nakano et al.

A Bi-X program is written in XML format. The syntax of
the Bi-X language is given by the following grammar:

P := <xid/>

| <xchild/>

| <xconst>X</xconst>

| <xseq>P . . . P</xseq>
| <xmap>P</xmap>
| <xpar>P . . . P</xpar>
| <xchcont>P . . . P</xchcont>
| <xmakeatt>P P</xmakeatt>
| <xrename>P</xrename>
| <xif>P P P</xif>
| <xwithtag>s</xwithtag>
| <xlet><var>v</var>P</xlet>
| <xvar>v</xvar>

where v is a name of variable, X is an arbitrary XML frag-
ment (including a string), and s is a name of element. A
Bi-X program sequentially processes a (current) input XML
document to get (a list of) output XML documents step by
step. Thus every construct in the Bi-X language represents a
transformation from the current input (which may be the pre-
vious output) to an output (which may be the next input). The
construct <xid/>means identity transformation. <xchild/>
extracts a list of all children of the current input. <xconst>X
</xconst> outputs X for any input. <xseq>P1 . . .

Pn</xseq> sequentially applies P1, . . . , Pn to the current
input. <xmap>P</xmap> can take a list of XML elements
as its input. This construct applies P to each element in
the input and returns a list of the outputs. <xpar>P1 . . . Pn

</xpar> concatenates all outputs of P1, . . . , Pn as sibling
nodes. <xchcont>P1 . . . Pn</xchcont> replaces the child
of the current input with a list of all outputs of P1, . . . , Pn .
<xmakeatt>P1 P2</xmakeatt> adds an attribute whose key
and value are the output of P1 and P2, respectively, both
of which should be text strings. <xrename>P</xrename>
changes the name of the element into the output of P , which
should be a text string. <xif>P1 P2 P3</xif> applies P2 to
the current input if the output by P1 is not empty, otherwise
it applies P3. Typically, we use <xwithtag>s</xwithtag>
for P1, which returns the input itself if the name of the ele-
ment is s, otherwise returns an empty output. <xlet><var>v
</var>P</xlet> binds the current input to variable v and
the variable can be referred in following process P by the con-
struct <xvar>v</xvar>. Binding variable is useful mainly
in two cases where the bound content is used more than once
and where the following construct loses the input information
such as the <xconst> construct.

The basic idea of the design of the Bi-X language is to give
forward and backward semantics for each construct in struc-
tural way similar to an inversion algorithm in [16]. Let fwd P
and bwd P denote forward and backward transformation for

a Bi-X program P , respectively. For example, for a Bi-X
program P = <xseq>Q R</xseq>, fwd P and bwd P are
defined by

fwd P (s) = fwd R(fwd Q(s))

bwd P (v, s) = bwd Q(bwd R(v, fwd Q(s)), s)

using fwd Q , fwd R , bwd Q , and bwd R . See [20] for the detailed
updating algorithm on the Bi-X language. The important
point is that the backward transformation is always auto-
matically obtained as long as the (forward) transformation is
given as the Bi-X program.

Figure 6 shows an example of a Bi-X program. The for-
ward transformation by this program takes an XML docu-
ment which includes content of a paper and returns body

element of an HTML document with a table of contents. The
input XML data is assumed to form as shown in Fig. 7.

The program can informally be read as follows: sequen-
tially transform (<xseq>. . .) the input data by first obtaining
a list of all their children (<xchild/>). Bind the list to a
variable children (<xlet>. . .) to refer it later. Next create
a body element (<xconst>. . .) and add all outputs of the
following processes as its children (<xchcont>. . .). As the
first child, put an h1 element which is obtained by loading
the content of variable children (<xvar>. . .), extracting an
element whose tag name is title from the list (<xmap>. . .),
and changing the tag name into h1 (<xrename>. . .). As the
second child, put a ul element which is obtained by creat-
ing a ul (<xconst>. . .) and adding a list of li elements.
Each li element is obtained by loading the content of var-
iable children (<xvar>. . .) and extracting all author ele-
ments as li elements (<xmap>. . .). As the third child, put
an h2 element with a child text Abstract (<xconst>. . .).
As the fourth child, put a p element obtained by extracting
an abstract element as p element (<xmap>. . .) from the
list in the variable children (<xvar>. . .). As the fifth child,
put an h2 element with a child text Table of Contents

(<xconst>. . .). As the sixth child, put a ul element which
contains a list of li elements each of which is obtained by
extracting a title element under section as li element
(<xchcont>. . .). As the last child (children), put an h2 ele-
ment with a title and a p element with a paragraph by loading
the content of variable children (<xvar>. . .), changing the
tag name title and para into h2 and p, respectively, and
removing the other elements.

For example, when an XML document S shown in Fig. 7
is offered as an input of the forward transformation of the
program, output V is an HTML fragment in Fig. 8.

Assume that a new author is inserted into the first ul ele-
ment of V as

123

Consistent Web site updating based on bidirectional transformation 459

<xseq>
<xchild/>
<xlet><var>children</var><xseq>
<xconst><body/></xconst>
<xchcont>
<xseq>
<xvar>children</xvar>
<xmap><xwithtag>title</xwithtag></xmap>
<xrename><xconst>h1</xconst></xrename>
</xseq>
<xseq>
<xconst></xconst>
<xchcont><xseq>
<xvar>children</xvar>
<xmap><xseq><xwithtag>author</xwithtag>
<xrename><xconst>li</xconst></xrename>
</xseq></xmap>
</xseq></xchcont>
</xseq>
<xconst><h2>Abstract</h2></xconst>
<xseq>
<xvar>children</xvar>
<xmap><xwithtag>abstract</xwithtag></xmap>
<xrename><xconst>p</xconst></xrename>
</xseq>
<xconst><h2>Table of Contents</h2></xconst>
<xseq>
<xconst></xconst>
<xchcont><xseq>
<xvar>children</xvar>
<xmap><xseq><xwithtag>section</xwithtag>
<xchild/>
<xmap><xseq><xwithtag>title</xwithtag>
<xrename><xconst>li</xconst></xrename>
</xseq></xmap>
</xseq></xmap>
</xseq></xchcont>
</xseq>
<xseq>
<xvar>children</xvar>
<xmap><xseq>
<xwithtag>section</xwithtag>
<xchild/>
<xmap><xseq>
<xif><xwithtag>title</xwithtag>
<xrename><xconst>h2</xconst></xrename>
<xseq><xwithtag>para</xwithtag>
<xrename><xconst>p</xconst></xrename>
</xseq>
</xif>
</xseq></xmap>
</xseq></xmap>
</xseq>
</xchcont>
</xseq></xlet>
</xseq>

Fig. 6 A Bi-X program

Keisuke Nakano
Zhenjiang Hu
Masato Takeichi

.

The backward transformation will return an XML document
in which the new author element is added to the source S
as follows.

<author>Keisuke Nakano</author>
<author>Zhenjiang Hu</author>
<author>Masato Takeichi</author>

<paper>
<title>Vu-X system</title>
<author>Keisuke Nakano</author>
<author>Zhenjiang Hu</author>
<abstract>
Vu-X supports a Web site construction
based on bidirectional transformation.

</abstract>
<section>
<title>Introduction</title>
<para>Transformation-based Web site

should be bidirectional.</para>
</section>
<section>
<title>Vu-X architecture</title>
<para>Vu-X is based on bidirectional

transformation.</para>
</section>
<section>
<title>Conclusion</title>
<para>Vu-X supports consistent Web site

construction.</para>
</section>

</paper>

Fig. 7 An XML fragment S for a paper

According to the backward semantics of the Bi-X language
[20], the position of a new element to be inserted depends
on the position of the new element on the view and the Bi-X
program. If they specify the transformation by the <xmap>

construct, the order of items should be the same for the source
and view. If they specify a kind of sorting transformation by
year, the order of items in the source can be arbitrary. In the
backward semantics of the Bi-X language, the new item is
added to the end of the item list.

Consider another example of updating which involves
duplication of the source data. This example illustrates that
a Bi-X program can deal with duplication. It is generally
difficult to attain bidirectional transformation for a program
including duplication because a duplicated view should be
synchronized for every update.

In the view V of Fig. 8, a text Vu-X architecture

appears twice in li and h2 element. If either text of them is
changed into Vu-X system, the backward transformation of
the program will return S in which the corresponding text data
in a title element is replaced with Vu-X system. Apply-
ing forward transformation to the XML source again, we will
have XML view V in which both texts Vu-X architecture

are synchronized to be text Vu-X system. When multiple
updating for duplicated elements conflicts (e.g., two occur-
rences are independently changed into Vu-X system and
Vu-X), the backward transformation fails according to the
backward semantics of the Bi-X language [20].

We show an example involving an insertion which requires
an intricate updating. Consider an insertion of a new li

element (e.g., Acknowledgment) to the end of

123

460 K. Nakano et al.

<body>
<h1>Vu-X system</h1>

Keisuke Nakano
Zhenjiang Hu

<h2>Abstract</h2>
<p>
Vu-X supports a Web site construction
based on bidirectional transformation.

</p>
<h2>Table of Contents</h2>

Introduction
Vu-X architecture
Conclusion

<h2>Introduction</h2>
<p>Transformation-based Web site

should be bidirectional.</p>
<h2>Vu-X architecture</h2>
<p>Vu-X is based on bidirectional

transformation.</p>
<h2>Conclusion</h2>
<p>Vu-X supports consistent Web site

construction.</p>
</body>

Fig. 8 An HTML fragment V generated by Bi-X program

children of the first ul element of V . The backward seman-
tics of Bi-X language tells us that such insertion is possible
if the schema of the source (input XML data) is specified.
Since the schema indicates that every section element has
two elements title and para as its children, the insertion
will be reflected as

<section>
<title>Acknowledgment</title>
<para></para>

</section>

in the source. See [20] for the detail. In the Vu-X system,
users can store an XML data together with its schema to
attain this kind of insertion updating.

Even though Bi-X language helps us to describe a con-
sistent bidirectional transformation, it may be still difficult
to write a large Bi-X program for practical use. To facilitate
Bi-X programming, the Vu-X system provides a graphical
user interface to generate a Bi-X program. As the other way
to write Bi-X programs, users may employ a translation tool
from an XQuery program to a Bi-X program [20].

One may think that a bidirectional transformation can be
attained just by relating every element or text in the view
to the corresponding part in the source without relying on
bidirectionality of the Bi-X language. The relation is useful
for reflecting updates on the view in the source. However, it
does not suffice to apply to our Web site updating system.

For instance, it is difficult to reflect insertion of a new entry
to a list on the view where the list is generated by collecting
entries from many different places in the source. Users must
specify where and how the new entry is inserted to the source.
In contrast, the Bi-X language easily copes with this situa-
tion using type information of sources that is similar to XML
schema. Users do not have to specify additional instructions
for the case. The updating mechanism of the Bi-X language
is found in [20].

4 Vu-X: web site updating system

The Vu-X system provides an integrated environment to
maintain a Web site based on bidirectional transformation.
It is an extension of transform-based Web site in Fig. 1, where
transformations p1, . . . , pn are bidirectional. This section
presents the architecture of the Vu-X system and explains
how the two updating modes introduced in Sect. 2 are imple-
mented in the Vu-X system.

4.1 Architecture of Vu-X system

The Vu-X system is implemented as a Web server based on
Apache Tomcat so that users can update their own Web site
through standard Web browsers, e.g., Firefox and Microsoft
Internet Explorer, and thus no special software is required to
install it.

Figure 9 outlines the architecture of the Vu-X system.
The system consists of five parts: the database of XML data
and Bi-X programs, Bi-X processor, editable HTML gener-
ator, HTML-embedded Bi-X editor, and Bi-X code builder.
We will explain these one by one.

Database of XML data and Bi-X programs It stores the
XML data and Bi-X programs registered by users. Each XML
data or Bi-X program is accessed by authorized users with

Fig. 9 Architecture of Vu-X system

123

Consistent Web site updating based on bidirectional transformation 461

its identifier and read/write instruction. Note that we do not
have to store any HTML sources for Web pages on the Web
site. They are generated by the forward transformation of
the Bi-X programs from the XML data. This part also stores
HTML-embedded Bi-X programs, which will be explained
later.

Bi-X processor It executes the forward/backward trans-
formation for a given Bi-X program. The forward transfor-
mation takes the identifier of the XML data and returns an
HTML source. The backward transformation takes the iden-
tifiers of the XML data and an updated HTML source and
returns updated XML data. This part can be easily replaced by
another processor if one wants to specify bidirectional trans-
formation in a bidirectional transformation language other
than Bi-X.

Editable HTML generator It adds a JavaScript code to
a given HTML source and creates an editable HTML, which
allows us to edit it on Web browsers. The obtained editable
HTML and the original HTML source have the same view
on Web browsers, except that users can click a component
of the view of the editable HTML on the Web browser to
edit the component in a small popped-up window. This part
is employed in the content updating mode.

HTML-embedded Bi-X editor It provides a WYSIWYG
HTML editor that runs on Web browsers. Users can also
insert multiple Bi-X programs together with HTML compo-
nents. This editor can generally create an HTML source that
contains Bi-X programs, called an HTML-embedded Bi-X
program, which will be discussed in detail in Sect. 4.3. This
part is employed in the code editing mode.

Bi-X code builder It provides a graphical user interface
to enable Bi-X programs to be easily constructed. Users can
write a Bi-X program using actual XML data that is an input
of forward transformation. The Bi-X code builder shows a
partial result of the transformation for each fragment of the
Bi-X program. It is provided as a Java applet and is invoked
by clicking an HTML component related to a Bi-X program
in the HTML-embedded Bi-X editor. This part is employed
in the code editing mode.

4.2 Content updating

Figure 10 outlines an initial action in the content updating
mode. Content updating starts with a user’s request to the
Vu-X system with the identifiers of the XML data and a Bi-X
program. The Vu-X system executes forward transformation
of the Bi-X program for the designated XML data through
the Bi-X processor to obtain a transformation result that is
an HTML source. Next, the editable HTML generator of the

Fig. 10 Initial action in content updating mode

Vu-X system adds a JavaScript code to the HTML source so
that users can edit it on their Web browsers. The JavaScript
code does not change the layout on the Web browsers.

The JavaScript code plays two roles.
The first is to allow us to edit in WYSIWYG style for sev-

eral kinds of HTML components. Possible editing depends
on the kind of clicked component. For example, a text com-
ponent allows us to edit its text data and a ul component
allows us to modify an item on the list, delete an item, or
insert a new item as explained in Sect. 2.

The second role of the JavaScript code is to transmit an
updated HTML source to the Vu-X system by clicking the
“OK” button to finish editing. The transmitted HTML source
does not include the added JavaScript code.

Figure 11 shows how the Vu-X system treats the updated
HTML transmitted from the Web browser. The updated
HTML is passed to the Bi-X processor to execute backward
transformation of the Bi-X program with the original XML
data to update the XML data in the database. Then, the Vu-X
system again calls the Bi-X processor for forward transfor-
mation of the Bi-X program with the updated XML data.
It generates a new HTML source corresponding to the
updated XML data. Note that the HTML source is not always
the same as the HTML source updated by users because
the edited part may influence the other part in the HTML
source where the Bi-X program contains duplication. After
forward transformation, the Vu-X system generates the edit-
able HTML source by again adding a JavaScript code to the
obtained HTML source. Then, users can edit another compo-
nent on the Web page to update the content of the XML data.

4.3 Code editing

Like content updating, code editing starts with a user’s request
to the Vu-X system with the identifiers of the XML data and
a Bi-X program (Fig. 12).

In the code editing mode, users edit or create an HTML-
embedded Bi-X program through a graphical user interface
using the HTML-embedded Bi-X editor of the Vu-X system.

123

462 K. Nakano et al.

Fig. 11 Update reflection in content updating mode

Fig. 12 Code editing mode

An HTML-embedded Bi-X program has a form analogous to
PHP or JSP as shown in Fig. 13 where two bixpro elements
contains Bi-X programs.

An HTML-embedded Bi-X program represents a bidirec-
tional transformation whose forward transformation gener-
ates an HTML source obtained by replacing each bixpro

component in the HTML-embedded Bi-X program with the
result of the forward transformation of the Bi-X program in
the component. For example, assume that an XML data in
Fig. 7 is offered as an input for the HTML-embedded Bi-X
program in Fig. 13. The program contains two Bi-X programs
which generate HTML fragments

<p>
Vu-X supports a Web site construction
based on bidirectional transformation.

</p>

and

Keisuke Nakano
Zhenjiang Hu

,

respectively. Therefore, this HTML-embedded Bi-X program
specifies a transformation which generates an HTML source
obtained by replacing two bixpro elements with these
HTML fragments as shown in Fig. 14.

The Vu-X system provides a transformation tool from an
HTML-embedded Bi-X program to a single Bi-X program in
order to use it in the content updating mode. Both the Bi-X
program and the HTML-embedded Bi-X program are stored
as a pair in the database of the Vu-X system.

The code editing mode supplies WYSIWYG HTML edi-
tors such as Adobe Dreamweaver [1] and Microsoft Expres-
sion Web [10]. There are two differences from the existing
WYSIWYG HTML editors. The first is that users can add
bixpro components to create an HTML-embedded Bi-X pro-
gram. The Bi-X program in the bixpro component is edited
by the Bi-X code builder, which will be explained later. The
second difference is that the editor is implemented as a Web
application using JavaScript. Users do not have to install any
special applications to edit it.

When a new bixpro component is created or the existing
bixpro component is clicked, the Bi-X code builder shown in
Fig. 15 is invoked to edit a Bi-X program to be inserted. The
Bi-X code builder is implemented as a Java applet that com-
municates with a JavaScript code in the HTML-embedded
Bi-X editor. The Bi-X code builder receives a Bi-X program
in the clicked bixpro component from the HTML-embed-
ded Bi-X editor and sends back an edited Bi-X program to
the HTML-embedded Bi-X editor.

The Bi-X code builder helps users to write a Bi-X pro-
gram using an actual input XML. It is difficult to write a
Bi-X program without an actual input because the Bi-X lan-
guage requires a point-free style programming where inter-
mediate data is implicitly passed from one instruction to the
next instruction. Hence, the Bi-X code builder provides an
programming environment which requires an actual input
XML.

The Bi-X code builder has several buttons and three tree
views. Each button corresponds to a construct in the Bi-X
language. When the construct requires arguments, the Bi-X
code builder opens a prompt window to provide these.
The tree view at the left shows an abstract syntax tree of
the Bi-X program that users want to edit. There are two curs-
ors colored green and red in the view. The green cursor stands
for the current editing position. They can easily place a new
Bi-X construct immediately behind the green cursor by click-
ing the corresponding button. The red cursor represents the
previous editing position. The middle tree view shows an
XML tree, which is a transformation result at the position
designated by the red cursor in the Bi-X program. The tree
view at the right shows an XML tree, which is a transfor-
mation result at the position designated by the green cursor
in the Bi-X program. In Fig. 15, a part of the Bi-X program
from the red cursor to the green cursor at the left tree view

123

Consistent Web site updating based on bidirectional transformation 463

Fig. 13 An HTML-embedded
Bi-X program with two
bixpro elements

<html>
<head><title>Vu-X</title></head>
<body>
<h1>Vu-X system</h1>
<h2>Summary of Vu-X</h2>
<bixpro>
<xseq>
<xchild/>
<xmap><xseq>
<xif><xseq><xwithtag>abstract</xwithtag></xseq>
<xseq><xrename><xseq><xconst>p</xconst></xseq></xrename></xseq>
<xseq><xconst/></xseq></xif>

</xseq></xmap>
</xseq>

</bixpro>
<h2>Authors</h2>
<bixpro>
<xseq>
<xchild/>

<xmap><xseq>
<xif><xseq><xwithtag>author</xwithtag></xseq>
<xseq><xrename><xseq><xconst>li</xconst></xseq></xrename></xseq>
<xseq><xconst/></xseq></xif>

</xseq></xmap>
<xlet><var>authors</var><xseq>
<xconst></xconst>
<xchcont><xseq><xvar>authors</xvar></xseq></xchcont>

</xseq></xlet>
</xseq>

</bixpro>
</body>

</html>

Fig. 14 HTML-embedded
Bi-X editor

contains the xchild construct which extracts all children of
the root of the current input. Hence we can see this change
comparing the right view and the middle view.

After editing a Bi-X program on the Bi-X code builder,
the editing stage returns back to that of the HTML-
embedded Bi-X editor. The bixpro component occurs as
an HTML component, which is the transformation result of
the inserted Bi-X program with the XML data, by sending
a request for forward transformation to the Bi-X processor
in the Vu-X system. Users can continue to edit the HTML-
embedded Bi-X program in WYSIWYG style.

When users click the “Save” button on the HTML-
embedded Bi-X editor, the HTML-embedded Bi-X program
is converted into a single Bi-X program so that it can be used
in the content updating mode of the Vu-X system. Both the
generated Bi-X program and its original HTML-embedded

Bi-X program are stored as a pair in the database of the
Vu-X system. The former is employed in the content updating
mode and the latter in the code editing mode.

5 Experiment on web site construction

We constructed several Web sites through the Vu-X system
for experiments. Each Web site is intended for a research
laboratory, researcher, small-sized enterprise, or family.
Figure 16 shows a (front) page in the Web site of the research
laboratory.

Visitors to the page will see the only lower right portion
(with white background) of the image. The image is a screen-
shot when the Web maintainer updates the page through the
Vu-X system. This Web page (an HTML source of 9.9 kB) is

123

464 K. Nakano et al.

Fig. 15 Bi-X code builder

Fig. 16 A Web page constructed by the Vu-X system

generated by a Bi-X program (of 23.9 kB). We measured the
size of all generated HTML documents for each Web site to
show the size of the Web site. Though the considered Web
sites are not so large, it suffices to demonstrate advantages
of the Vu-X system. Larger Web sites can similarly be con-
structed by writing more Bi-X programs since each Web page
corresponds to a Bi-X program.

We first asked a Web designer company to construct these
Web sites in HTML and reconstructed all HTML sources as
XML database and Bi-X programs for at most one week for
each Web site. We employed the XQuery-to-BiX translation
tool [20] to get most of these Bi-X programs.

Table 1 shows the size of an XML data and the size of
Bi-X programs for each Web site construction. For every Bi-X
program (counterpart of a Web page), we measured the size
of generated HTML source and how much the Web page
contains information which is shared with the other pages
through the XML data. When we edit a Web page of the high
percentage of shared contents, the edited part may affect the
other pages with a strong possibility.

The same XML data is employed for two Web sites, ‘lab-
oratory A’ and ‘laboratory B’, since they are intended for
the same laboratory. Their difference is mainly the layout of
their Web pages. Users can reuse not only XML data but also
Bi-X programs.

By employing the same Bi-X programs and replacing a
XML data, we can construct a Web site for another orga-
nization in the same layout. In this case, the Vu-X system
can also be used as a content management system (CMS) by
preparing many kinds of Bi-X programs as templates, where
users do not have to understand the Bi-X language. We will
discuss more about the relationship between our system and
CMS in Sect. 7.

6 Discussion

The current Vu-X system still requires more improvement
for practical use though it provides many functions to attain
consistent Web site updating. In this section, we discuss on
possible extension of the Vu-X system and several issues on
the current implementation.

6.1 Possible extension of the Vu-X system

The framework of the Vu-X system can be considered as
a combination of a WYSIWYG HTML editor and bidirec-
tional transformation. We discuss the possibility of replacing
them using the existing technology.

First, consider replacing the WYSIWYG HTML editor.
We have independently developed the WYSIWYG HTML
editor for the Vu-X system so that updates on the editor can
be reflected back to the database. If the existing WYSIWYG
HTML editor can be extended with a function for commu-
nicating with the database, the editor will be able to be used
as a front-end of the Vu-X system. In order to do so, the
WYSIWYG HTML editor should be extensible using a kind
of plug-ins. For instance, it is better to have a way to cap-
ture and hook events of operations in the editor. Otherwise,
users have to maintain communication by hand between the
HTML editor and the Bi-X processor in Vu-X.

Next, consider replacing bidirectional transformation lan-
guage. We employed the Bi-X language for the Vu-X system.
There exist few languages for bidirectional transformation.
A possible choice is Boomerang [7,13]. It suffices to write

123

Consistent Web site updating based on bidirectional transformation 465

Table 1 Size of files required
for Web site construction Web site (size of Bi-X programs Size of generated Percentage of shared

XML data, kB) (size, kB) HTML (kB) information (%)

Laboratory A access.bix (16.2) 3.1 40.4

(17.8) entrance.bix (16.8) 4.8 59.2

index.bix (14.2) 3.7 43.8

lecture.bix (15.2) 3.5 39.5

lecture_01.bix (14.5) 3.4 59.0

lecture_02.bix (14.5) 3.0 53.5

member.bix (13.8) 3.2 42.0

member_01.bix (19.2) 5.8 74.4

member_02.bix (19.2) 6.9 78.6

project.bix (13.9) 3.8 53.9

techrep.bix (14.9) 4.3 55.3

techrep_2007.bix (15.8) 3.8 58.0

techrep_2008.bix (15.8) 3.1 47.9

thesis.bix (15.4) 4.8 58.9

Laboratory B access.bix (14.5) 2.7 42.8

(17.8) entrance.bix (15.2) 4.4 62.2

index.bix (12.3) 3.1 48.9

lecture.bix (13.6) 3.1 41.3

lecture_01.bix (12.8) 3.0 59.3

lecture_02.bix (12.8) 2.6 53.0

member.bix (12.4) 2.9 43.8

member_01.bix (17.6) 5.4 78.8

member_02.bix (17.6) 6.6 82.4

project.bix (12.2) 3.4 57.1

techrep.bix (13.4) 3.9 58.1

techrep_2007.bix (14.2) 3.4 61.6

techrep_2008.bix (14.2) 2.7 51.0

thesis.bix (13.7) 4.4 61.6

Laboratory C access.bix (19.2) 2.5 27.6

(19.3) index-e.bix (23.9) 9.9 15.9

index.bix (18.6) 4.3 38.7

links.bix (15.1) 2.3 30.2

members.bix (15.6) 2.6 34.7

papers.bix (16.7) 5.2 71.6

research.bix (14.6) 4.5 72.6

seminars.bix (15.4) 3.3 58.0

Researcher a_career.bix (13.6) 2.0 42.3

(11.7) activities.bix (13.5) 3.2 65.2

awards.bix (13.6) 1.7 39.6

index.bix (16.6) 2.6 46.2

lectures.bix (14.1) 2.3 41.7

links.bix (14.1) 2.2 27.1

p_career.bix (13.7) 2.8 51.7

publications.bix (13.8) 3.8 66.2

123

466 K. Nakano et al.

Table 1 continued
Web site (size of Bi-X programs Size of generated Percentage of shared
XML data, kB) (size, kB) HTML (kB) information (%)

Enterprise about.bix (11.5) 2.0 47.8

(9.3) contact.bix (12.2) 2.1 48.6

event.bix (12.3) 2.0 41.0

index.bix (13.9) 2.2 48.5

privacy.bix (11.6) 3.6 71.0

products.bix (11.9) 3.8 72.2

recruit.bix (12.1) 1.7 36.7

works.bix (11.5) 2.5 58.6

Family hobby.bix (13.3) 1.5 47.3

(3.9) index.bix (13.8) 2.2 55.9

links.bix (13.7) 1.7 53.9

other.bix (12.9) 1.3 44.7

photo.bix (12.4) 2.7 70.5

profile.bix (14.3) 2.2 60.6

a single transformation in this language to specify a bidirec-
tional transformation like that in the Bi-X language. However,
if one wants to employ it as a back-end of the Vu-X system, it
would be nice to have an editor that allows us to write a pro-
gram in WYSIWYG style as is done by the HTML-embedded
Bi-X editor and Bi-X code builder.

6.2 Issues on the Vu-X system

There is still room for improvement in the current Vu-X sys-
tem, which are realized by our experiments. Let us discuss
several issues to be solved for practical and convenient use.

6.2.1 Maintaining multiple XML data

The current Vu-X system assumes that database for a Web
site is represented by a single XML data. However, users
may want to construct their Web sites using multiple XML
data to share a part of their contents with other Web sites.
We need to support management of such distributed XML
data in terms of bidirectional transformation. Fortunately, the
Bi-X language provides the <input> construct to support the
multiple inputs. What we need for this issue is to rearrange
the database management system and provide an interface
for the Bi-X function manage multiple XML data for a single
Web site in the Vu-X system.

XML data distribution leads another benefit for our sys-
tem. Backward transformation by the Bi-X processor replaces
the whole XML data with updated XML data. If the data is
separated into multiple XML data, it is updated more effi-
ciently.

6.2.2 Sharing a part of transformation programs

The current Vu-X system assumes that a Web page is gener-
ated by a single Bi-X program. However, users may want to
share a part of the Bi-X program with other Web page to unify
the layout of Web pages in their Web sites. Fortunately, the
Bi-X language provides the <?import?> instruction to load
other Bi-X programs. What we need for this issue is to rear-
range the database management system for Bi-X programs
and the Bi-X code builder.

6.2.3 Access control for security and updatability

The current Vu-X system has just a simple security mecha-
nism which certifies through a password whether an user is
permitted to edit or not. However, users may want to give
different permissions for different editors. We need to intro-
duce an access control mechanism to designate permissions.
It will be helpful for multiple users to simultaneously update
the same Web site without conflict. We may have to combine
existing access control mechanisms for XML data [6,8,22,
25,27] with bidirectional transformation.

Access control mechanism is required for not only secu-
rity but also updatability. In the content updating mode of
the Vu-X system, it is not possible for users to edit an ele-
ment which is generated by the Bi-X program independent of
XML data. For example, consider a fragment of a Bi-X pro-
gram, <xconst><h2>Abstract</h2></xconst> in Fig. 6,
which generates an h2 element by its forward transforma-
tion without information in the XML data. Though a small
editing window for the text is popped up when users click
this element in the content updating mode, backward trans-
formation fails to reflect any modification to the XML data

123

Consistent Web site updating based on bidirectional transformation 467

because there is no corresponding text. It would be nice to
statically detect such invalid modification and visually show
its impossibility, e.g., by graying out the part. It may be nicer
for the Vu-X system to suggest to users that the modification
can be done in the code editing mode if possible.

6.2.4 Visualizing side effects

The current Vu-X system cannot display which part will be
changed and synchronized before updating. Though auto-
matic synchronization provided by the Vu-X system is very
useful for users, sometimes they may want to know which
part will be synchronized. It is possible to find parts which
are changed by a modification through applying backward
and forward transformation. We need to consider a nice view
for visualizing the positions to be changed. It is difficult to
show all of them because such side effects may not always
happen at the same Web page under editing.

7 Related work

There are dozens of WYSIWYG HTML editors, such as
Adobe Dreamweaver [1], Microsoft Expression Web [10],
and Aptana Studio [3]. Most of these, however, require spe-
cial software to be installed to employ them. Though some of
them runs on the Web browser the WYSIWYG HTML editor,
e.g., Namo Web Editor Control [24], they still provide a tool
for editing HTML sources one by one. Since they do not take
dependencies between multiple HTML sources into account,
the Web site maintainer has to consider their consistency,
which is in sharp contrast to transformation-based Web site
construction. Although the WYSIWYG HTML editor pro-
vided by the Vu-X system is less powerful than existing ones
in the sense that only modifications that can be reflected back
to the XML data are allowed, our approach can be applied to
these by integrating them with bidirectional transformation
based Web site construction as discussed in Sect. 6.

The Web site construction based on bidirectional transfor-
mation may remind readers Web content management sys-
tems (Web CMS), such as Wiki and Weblog software, which
allows their contents to be updated on the Web browser with
no or little knowledge of database management or layout
descriptions. If users want to change the layout of their Web
site, they will choose one of provided templates in the Web
CMS. In the Vu-X system, a similar Web site construction can
be accomplished by providing Bi-X programs as templates.
Users who are familiar to HTML can customize templates in
code editing mode of the Vu-X system. Furthermore, users
who acquire a programming skill of Bi-X or XQuery lan-
guage can freely change the layout as they like. A major
advantage of the Vu-X system is that template developers
write a program only in one-direction from the database to

HTML sources. On the other hand, the existing Web CMS
generally requires the developers to take care of how modi-
fication on the view is reflected to the database.

Our design of the Vu-X system based on bidirectional
transformation was greatly inspired by pioneering work [7,
13] on data synchronization based on bidirectional transfor-
mation, which originated from work on view updating [5,9,
14,15,19] in the database community, where modifications
to view could be reflected back to the original database. We
borrowed this technique to enable Web site maintenance with
one significant extension: editing operations can not only
modify the view but also the transformation code, which has
not been exploited before.

8 Conclusion

This paper has proposed a novel approach to Web site con-
struction based on bidirectional transformation and presented
an implementation of a practical updating system called
Vu-X, which can keep the content of Web sites consistent
by updating Web pages in WYSIWYG style on Web brows-
ers. Since the Vu-X system employs the Bi-X bidirectional
transformation language, it suffices to only specify forward
transformation and the corresponding backward transforma-
tion is automatically derived. Furthermore, the Vu-X system
provides a WYSIWYG tool to enable Bi-X programs to be
easily constructed.

Even though the Vu-X system facilitates consistent Web
site updating, it would require much effort to introduce it to
existing Web sites, because we have to restructure their con-
tents in XML format and prepare Bi-X programs from scratch
to benefit from the Vu-X system. We intend to develop in
future work a “switchover” assistant tool for existing Web
sites which is constructed without the Vu-X system.

A current shortcut way is to prepare XML database and
XQuery programs for existing Web sites and employ
XQuery-to-BiX tool [20] as we did for our experiment
(Sect. 5).

Acknowledgments We would like to thank the staff members of Dong
Wu Information System Co. Ltd. who mainly implemented the Vu-X
system following our design decisions. We are also grateful to Dongxi
Liu, Yasushi Hayashi, Kento Emoto, Kazutaka Matsuda and Akimasa
Morihata for their cooperation in earlier implementation of the Vu-X
system and Hideya Iwasaki for his constructive comments on this paper.
We are indebted to anonymous reviewers for insightful comments.

References

1. Adobe Dreamweaver CS4. http://www.adobe.com/products/
dreamweaver/

2. Apache Tomcat. http://tomcat.apache.org/
3. Aptana Studio. http://www.aptana.com/studio/

123

http://www.adobe.com/products/dreamweaver/
http://www.adobe.com/products/dreamweaver/
http://tomcat.apache.org/
http://www.aptana.com/studio/

468 K. Nakano et al.

4. Atzeni, P., Mecca, G., Merialdo, P.: To weave the Web. In: Pro-
ceedings of the 23rd International Conference on Very Large Data
Bases (VLDB), pp. 206–215 (1997)

5. Bancilhon, F., Spyratos, N.: Update semantics of relational
views. ACM Trans. Datab. Syst. 6(4), 557–575 (1981)

6. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and
enforcing access control policies for XML document sources.
World Wide Web J. 33, 139–151 (2000)

7. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt,
A.: Boomerang: resourceful lenses for string data. In: Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pp. 407–419. ACM Press,
New York (2008)

8. Damiani, E. De Capitani di Vimercati, S., Paraboschi, S.,
Samarati, P.: A fine-grained access control system for XML doc-
uments. ACM Trans. Inf. Syst. Secur. 52, 169–202, ACM Press,
New York (2002)

9. Dayal, U., Bernstein, P.A.: On the correct translation of update
operations on relational views. ACM Trans. Datab. Syst. 7(3),
381–416 (1982)

10. Microsoft Expression Web. http://expression.microsoft.com/
11. Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y., Suciu,

D.: Overview of strudel—a Web-site management system. Netw.
Inf. Syst. J. 1(1), 115–140 (1998)

12. Fernandez, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative
specification of Web sites with Strudel. VLDB J. 9(1), 38–55 (2000)

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt,
A.: Combinators for bi-directional tree transformations: a linguistic
approach to the view update problem. In: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pp. 233–246. ACM Press, New York
(2005)

14. Gottlob, G., Paolini, P., Zicari, R.: Properties and update seman-
tics of consistent views. ACM Trans. Datab. Syst. 13(4), 486–524
(1988)

15. Hegner S.J.: Foundations of canonical update support for closed
database views. In: Proceedings of the 3rd International Confer-
ence on Database Theory (ICDT), pp. 422–436. Springer, Berlin
(1990)

16. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for devel-
oping structured documents based on bidirectional transforma-
tions. In: Proceedings of the 2004 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), pp. 178–189. ACM Press, New York (2004)

17. Lämmel, R.: Coupled software transformations (extended
abstract). In: 1st International Workshop on Software Evolution
Transformations, pp. 31–35 (2004)

18. Lau, T., Staczek, J.: A contextual inquiry-based critique of the stru-
del Web site maintenance system. Technical Report TR-99-01-01,
Department of Computer Science and Engineering, University of
Washington (1999)

19. Lechtenbörger, J., Vossen, G.: On the computation of relational
view complements. ACM Trans. Datab. Syst. 28(2), 175–208
(2003)

20. Liu, D., Hu, Z., Takeichi, M.:Bidirectional interpretation of XQue-
ry. In: Proceedings of the 2007 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), pp. 21–30 (2007)

21. Meertens, L.: Designing constraint maintainers for user interaction.
http://www.cwi.nl/~lambert/ (1998)

22. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control
using static analysis. In: Proceedings of the 10th ACM Confer-
ence on Computer and Communications Security (CCS), pp. 73–84
(2003)

23. Nakano, K., Hu, Z., Takeichi, M.: Consistent Web site updating
based on bidirectional transformation In: Proceedings of the 10th
IEEE International Symposium on Web Site Evolution (WSE),
pp. 45–54 (2008)

24. Namo Web Editor Control. http://www.namo.com/products/
webeditorcontrol.php

25. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based
access control model for XML databases. In: Proceedings of the
14th ACM International Conference on Information and Knowl-
edge Management (CIKM), pp. 115–122 (2005)

26. XSL transformations (XSLT) version 2.0. http://www.w3c.org/TR/
xslt20/, 2006

27. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Com-
pressed accessibility map: efficient access control for XML. In:
Proceedings of the 28th International Conference on Very Large
Data Bases (VLDB), pp. 478–489 (2002)

123

http://expression.microsoft.com/
http://www.cwi.nl/~lambert/
http://www.namo.com/products/webeditorcontrol.php
http://www.namo.com/products/webeditorcontrol.php
http://www.w3c.org/TR/xslt20/
http://www.w3c.org/TR/xslt20/

	Consistent Web site updating based on bidirectional transformation
	Abstract
	1 Introduction
	2 Overview of Vu-X system
	2.1 Web site updating through the Vu-X system
	2.2 Features of the Vu-X system

	3 Bidirectional transformation and Bi-X language
	3.1 Bidirectional transformation
	3.2 Bi-X: Bidirectional transformation language

	4 Vu-X: web site updating system
	4.1 Architecture of Vu-X system
	4.2 Content updating
	4.3 Code editing

	5 Experiment on web site construction
	6 Discussion
	6.1 Possible extension of the Vu-X system
	6.2 Issues on the Vu-X system

	7 Related work
	8 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

