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Abstract

Warm-up transformation is an important preprocess for shortcut fusion. In this paper,
we formalize the warm-up transformation by proposing several general and powerful
calculation rules that can be directly implemented with help of higher-order pattern
matching. The newly proposed warm-up transformation cannot only deal with pro-
grams that existing methods may fail, but also suitable for efficient implementation.

1 INTRODUCTION

Constructing programs from components, i.e., modules, is an important technique
in designing large software. Dividing problems into small modules realizes local-
ization of problems. Consequently, programs are easy to maintain. If each module
is maintained as a versatile component, reusability is improved. The problem is,
however, in its inefficiency due to unnecessary intermediate data structures passed
between modules. Improvement of performance can be achieved if these interme-
diate data structures are removed by automatic analysis and automatic transforma-
tion.

Fusion(a.k.a. Deforestation) [Wad90] is a technique of elimination of inter-
mediate data structures. Descendent from it, Gill et al. [GLP93] proposesshort-
cut fusion, which is a single, local transformation rule, to ease the implementa-
tion [PTH01]. The precondition of shortcut fusion assumes the producer function
to be expressed in terms ofbuild.

If we could prepare all the functions in terms offoldr andbuild, shortcut fusion
could remove intermediate data structures automatically. Functional programmer
usually describes program as recursive definitions, sincefoldr form andbuild form
are less natural than recursive definitions. Therefore, the problem is how to derive
foldr form andbuild form from a recursive definition. There is an approach to au-
tomatically derive thefoldr form [SF93, HIT96]. Therefore, the problem is settled
down into the derivation ofbuild form from a recursive function.

Warm fusion [LS95] accompanies shortcut fusion with a preprocess (hereafter
we call it warm-up transformation). It transforms recursive functions into func-
tions in terms ofbuild automatically. The technique has been implemented with
the Stratego language [JV00], which is based on term rewriting framework. The



implementation of warm fusion, however, appears to be complex. There is another
approach which derives thebuild form through type inference [Chi99, Chi00]. This
approach is easier to implement and is able to transform more list producing func-
tions into thebuild form than Launchbury and Sheard’s approach [LS95]. But, the
implementation of this approach is still complicated.

In this paper, we formalize the warm-up transformation by proposing several
general and powerful calculation rules that can be directly implemented with help
of higher-order pattern matching. The newly proposed warm-up transformation
cannot only deal with programs that existing methods may fail, but also suitable
for efficient implementation.

2 WARM-UP TRANSFORMATION

In this section, we formalize the warm-up transformation in the calculational form.
Throughout the paper, we use Haskell notation [Bir98].

The warm-up transformation is to transform recursive programs into constructor-
abstraction form (e.g.build). Consider, for example, the familiarmap function,
which applies a function to each element of a list.

map f [] = []
map f (x : xs) = f x : map f xs

This function produces two constructors(:) and[]. To abstract these constructors,
we introduce functionbuild:

build g = g (:) []

where functiong builds up a list with the two data constructors of list. The result
of the warm-up transformation of functionmapis

map f= λxs. build (λc n. foldr (c◦ f ) n xs)

Here, functionfoldr (⊕) e is a useful Haskell function, which essentially replaces
constructors(:) and[] in a given list with(⊕) ande respectively.

foldr (⊕) e [] = e
foldr (⊕) e (x : xs) = x⊕ foldr (⊕) e xs

The warm-up transformation is followed by the well-known optimization tech-
nique,shortcut fusion, defined as follows1.

Lemma 1 (Shortcut fusion [GLP93]).

foldr k z(build g) = g k z

1Strictly speaking, we need certain type restriction ong.



Instead of producing list by passing(:) and[] to g and then replacing list construc-
tors(:) and[] with k andz respectively, we do not produce any list constructor but
directly passk andz to functiong.

To see how the shortcut deforestation rule works, consider the following pro-
gram:

sum(map f xs)

wheresumis a function of computing summation of a given list:

sum = foldr (+) 0

In GHC, at the compile time, the shortcut fusion rule is applied in the following
way by term rewriting with the simple traversing strategy.

sum(map f xs)
= { Inline sumandmap}
foldr (+) 0 (build (λc n. foldr (c◦ f ) n xs))

= { Shortcut Fusion}
foldr ((+)◦ f ) 0 xs

While the function compositionsum◦map f is inefficient due to the intermedi-
ate data structure passed frommap to sum, the result function does not have any
intermediate data structure.

It may be surprising that any recursion can be trivially transformed into the
build form. Given any functionf , both producing and consuming lists, can be
rewritten as

λxs. build (λc n. foldr c n ( f (foldr (:) [] xs)))

However, this introduces an intermediate data structure passing fromf to foldr c n.
If we can fusefoldr c n, f , andfoldr (:) [], we may optimize the code. This can be
applied by the following lemma.

Lemma 2 (Promotion).

f z = e
f (x¯xs) = x⊕ f xs

f ◦ foldr (¯) z= foldr (⊕) e

The promotion lemma gives the condition to fuse two functions. Functionf is
merged into functionfoldr and the result is alsofoldr form. If (¯) andzare(:) and
[], this is merely the definition of the inductive recursive function on list. Then, if
f is inductive recursive function and we can find(¯) ande satisfying the above
conditions, the warm-up transformation problem is settled down into the problem
to fuse

foldr c n◦ foldr (⊕) e.

The promotion lemma is applicable to the composition. But, since the left function
of the function composition is always functionfoldr c n, we can specialize the



theorem by using the fact. The theorem varies according to the form of the right
foldr; we call that the functionfoldr is the first-order if it takes three arguments,
and is the second-order if it takes the extra argument. We show the first-order case
in the next subsection and show the second-order case in the following subsection.

2.1 First-order Warm-up Transformation

When the rightfoldr takes three arguments, we can use the first-order warm-up
transformation theorem. Before stating and proving the theorem, we prepare the
calculation lemma for fusing twofoldr’s.

Lemma 3 (First-order Promotion of Two foldr’s).

λc n. foldr c n e = e′

λc n. foldr c n (x⊕xs) = x⊗λc n. foldr c n xs

λc n. foldr c n (foldr (⊕) e xs) = foldr (⊗) e′ xs

Proof. Instantiatef in Lemma 2 intoλxs c n. foldr c n xs. ¤
It is worth noting that in the second premise the twofoldrs can take differ-

ent arguments. A first-order function which takes a list and returns a list can be
transformed into thebuild form by the following theorem.

Theorem 4 (First-order Warm-up Transformation).

f [] = e
f (x : xs) = x⊕ f xs

λc n. foldr c n e = e′

λc n. foldr c n (x⊕xs) = x⊗λc n. foldr c n xs

f = λxs. build (foldr (⊗) e′ xs)

Proof. See Appendix A. ¤
The input functionf is transformed intobuild form; the new operators(⊗) and

e′ are produced by the preconditions. Functionfoldr in the argument ofbuild is
higher-order and takes extra two arguments which abstract constructors. We show
the application of this theorem to a function in the recursive definition.

Example 5 (reverse).Consider the following function to reverse a list:

reverse[] = []
reverse(x : xs) = reverse xs++[x]

wherexs++ys= build (λc n. foldr c (foldr c n ys) xs)

For simplicity, we assume(++) is already in thebuild form. By Theorem 4 with
these conditions, we obtain

λxs. build (foldr (λx p c′ n′. p c′ (c′ x n′)) (λc′ n′. n′) xs)



Remarkably, in the first argument offoldr, c′ is passed top without any compu-
tation. Thus, we can pass this operator directly to the argument offoldr, rather than
through the accumulation parameter. This transformation can be as an instantiation
of the promotion lemma.

Lemma 6 (Removing Accumulation Parameters).

e c = e′

(a⊕x) c = a⊗x c

foldr (⊕) e xs c= foldr (⊗) e′ xs

Proof. Instantiatef into λ f . f c of the promotion lemma results in this lemma.¤
The accumulation parameterc is removed andfoldr in the right hand side takes

the one smaller number of arguments than that in the left hand side.
Back to the example, the innerfoldr can be simplified by Lemma 6. We obtain

build form of functionreverse:

reverse= λxs. build (λc. foldr (λx p r. p (c x r)) id xs).

It is worth noting that this result can not be obtained by applying the promotion
lemma to

foldr c n◦ foldr (λx r. r ++[x]) [].

2.2 Second-order Warm-up Transformation

In the previous subsection, we have seen functionreversehas been warm-up trans-
formed by Theorem 4. On the other hand, the following linear time reverse function
can not be transformed.

lrev xs = lrev′ xs[]
lrev′ [] ys = ys
lrev′ (x : xs) ys = lrev′ xs(x : ys)

This is becauselrev′ has an accumulation parameter.
Hu et al. [HIT99] formulate systematic treatment of accumulations when func-

tion with accumulation is second-order catamorphisms, generalization offoldr.
They give calculation theorems for treating accumulations. We adapt their ac-
cumulation promotion theorems to warm-up transformation as the following two
lemmas in the sense that the both functions of the function composition is always
described in terms offoldr, and we make the patterns in the theorem more suitable
for higher-order matching.

There are two ways to make the promotion lemma second-order, instantiating
f as(foldr c n◦) and(◦foldr c n). First, we show the former.

Lemma 7 (Second-order Fusion of Twofoldr’s).

foldr c′ n′ ◦e = e′ c′ n′

foldr c′ n′ ◦ (a⊕ r) = (a⊗ (λc′′ n′′. foldr c′′ n′′ ◦ r)) c′ n′

foldr c n◦ foldr (⊕) e xs= foldr (⊗) e′ xs c n



This lemma is used to prove the following theorem.

Theorem 8 (Second-order Warm-up Transformation 1).

f [] = e
f (x : xs) = x⊕ f xs

foldr c′ n′ ◦e = e′ c′ n′

foldr c′ n′ ◦ (a⊕ r) = (a⊗ (λc′′ n′′. foldr c′′ n′′ ◦ r)) c′ n′

f = λxs ys. build (λc n. foldr (⊗) e′ xs c n ys)

The proof is done in a similar way as Theorem 4. As in Theorem 4, the input
function f is transformed intobuild form. In this case, the input function takes the
extra argument for accumulation, though.

We show the example that Chitil’s approach [Chi99] cannot derivebuild form.

Example 9.Consider computing reverse of the longest increasing prefix.

decxs = dec′ xs(−∞)
dec′ [] = []
dec′ (x : xs) y = if x > y then dec′ xs x++[x] else[]

For example,dec[1,3,5,4,2] returns[5,3,1]. Functiondec′ can be described as a
functionfoldr (⊕) eover a list where

e = λ . []
x⊕ p = λy. if x > y then p x++[x] else[]

This is a second orderfoldr in the sense that it takes a list to yield a second-order
function. Using these operators, we obtain

e′ c′ n′ = λ . n′

(x⊗ r) c′ n′ = λy. if x > y then r c′ (c′ x n′) x elsen′

By Theorem 8, we obtain

dec= λxs. build (λc n. foldr (λa r c n y. if a > y then r c (c a n) a elsen)
(λc n . n) xs c n(−∞))

Lemma 6 simplifies the arguments of functionfoldr, and finally we obtain

dec= λxs. build (λc n. foldr (λa r n y. if a > y then r (c a n) a elsen)
(λn . n) xs n(−∞))

Since at the each recursion the accumulation parametern is changed, we can not
apply Lemma 6 anymore.

As mentioned in the above, there is another instantiation of the promotion theo-
rem into the second-order promotion lemma; here, we instantiatef as(◦foldr c n).
We use the fusion lemma as the reverse direction in the sense that a singlefoldr is
decomposed into two functionsg andfoldr. The aim of this lemma is to sweep out
all the constructor abstraction variablesn andc into an accumulation parameter.



Lemma 10 (Pushing Computation into Accumulation Parameter).

e r = e′ (foldr c n r)
a⊕ (a2◦ foldr c′ n′) = (a⊗a2)◦ foldr (d2 c′ n′ a) (d1 c′ n′ a)

foldr (⊕) e xs= g◦ foldr c′′ n′′

where (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) xs
x® (xs1,(c′,n′)) = (x⊗xs1,(d2 c′ n′ x,d1 c′ n′ x))

Proof. See Appendix B. ¤
This lemma is used to prove the following theorem.

Theorem 11 (Second-order Warm-up Transformation 2).

f [] = e
f (x : xs) = x¯ f xs

foldr c n◦ (a¯ r) = a⊕ (foldr c n◦ r)
foldr c n◦e = e′ ◦ foldr c n

a⊕ (a2◦ foldr c n) = (a⊗a2)◦ foldr (d2 c n a) (d1 c n a)
f = λxs r. build (λc n. let (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) xs

x® (xs1,(c′,n′)) = (x⊗xs1,(d2 c′ n′ x,d1 c′ n′ x))
in g (foldr c′′ n′′ r))

Proof. See Appendix C.
This theorem can abstract constructors in the accumulation parameters. To

show it, we borrow the following example from [Voi02]. Warm fusion rewriting
rule in [LS95] without binding higher-order variables during term rewriting and
some trick, and type inference base warm-up transformation [Chi99] are not appli-
cable to the function.

Example 12 (Partition).Consider a function partitioning a given listxsaccording
to some predicatep.

part p xs = let f [] zs= zs
f (x : xs) zs= if p x then x : f xs zs

else f xs(zs++[x])
in f xs[]

For example,part even[1,2,3,4,5,6] returns[2,4,6,1,3,5]. We can apply Theo-
rem 11 to functionf . By higher-order matching, we have

e zs = zs
(x¯ r) zs = if p x then x : r zselser (zs++[x])



Then, we calculate

foldr c n◦ (x¯ r)
= { Definition of (¯) }
foldr c n◦ (λzs. if p x then x : r zselser (zs++[x]))

= { η-expansion and Definition of(¯) }
λzs. foldr c n (if p x then x : r zselser (zs++[x]))

= { Distributefoldr c nover if statement}
λzs. if p x then foldr c n (x : r zs) elsefoldr c n (r (zs++[x]))

= { Definition of foldr }
λzs. if p x then c x (foldr c n (r zs)) elsefoldr c n (r (zs++[x]))

Matching the result witha⊕ (foldr c n◦ r) gives

x⊕ r = λzs. if p x then c x (r zs) elser (zs++[x])

For the fourth precondition, we calculate

foldr c n◦e
= { Definition ofe}
foldr c n◦ (λzs. zs)

= { η-expansion and Definition of(◦) }
foldr c n

and obtain
e′ = λzs. zs

For the last precondition, we calculate

a⊕ (a2◦ foldr c n)
= { Definition of (⊕) }
λzs. if p a then c a (a2 (foldr c n zs)) elsea2 (foldr c n (zs++[a]))

= { Definition of (++) }
λzs. if p a then c a (a2 (foldr c n zs))

elsea2 (foldr c n (build (λc n. foldr c (foldr c n [a]) zs)))
= { Shortcut Fusion}
λzs. if p a then c a (a2 (foldr c n zs)) elsea2 (foldr c (foldr c n [a]) zs)

= { Definition of foldr }
λzs. if p a then c a (a2 (foldr c n zs)) elsea2 (foldr c (c a n) zs)

= { ? }
λzs. (if p a then c a◦a2 elsea2) (foldr c (if p a then n elsec a n) zs)

Matching the result with(a⊗a2)◦ foldr (d2 c n a) (d1 c n a) returns

a⊗a2 = if p a then c a◦a2 elsea2

d1 c n a = if p a then n elsec a n
d2 c n a = c



By Theorem 11, we finally obtain

part p xs= build (λc n. let (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) xs
x® (xs1,(c′,n′)) = (if p a then c′ a◦a2 elsea2,

(c′, if p x then n′ elsec′ x n′))
in g n′′)

At the every recursion offoldr, valuec (c′ or c′′) is not changed. Therefore, we can
hoist this. At the moment, we can not formalize such hoisting in the calculational
form. Using this human insight and hand calculation, we obtain

part p xs= build (λc n. let (g,n′′) = foldr (®) (e′,n) xs
x® (xs1,n′) = (if p a then c a◦a2 elsea2,

if p x then n′ elsec′ x n′)
in g n′′)

It is worth noting that this function traverses the input listxsonly once.

3 CONCLUSION

We specify the warm-up transformation in calculation rules. We show that we can
derive functions in thebuild form which the existing methods may fail to derive.
These rules can be directly programmed as it is formalized owing to the expressive
power of higher-order matching.

Warm-up transformation in calculation rules can be synthesized on the same
formalism as fusion, tupling, accumulation, and parallelization described in calcu-
lation rules. We can write such transformations in the same way. We have imple-
mented all the calculation rules in this paper by the Yicho system2 [YHT05], and
succeeded to test all the example exceptpart. For functionpart, the splitting the
if statement (the? calculation) and the last transformation are not yet specified by
calculation rules.
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A FIRST-ORDER WARM-UP TRANSFORMATION

Proof. As seen before, any functionf which takes a list and produces a list can be
trivially transformed into

λxs. build (λc n. foldr c n ( f (foldr (:) [] xs)))

The promotion lemma and the precondition transforms it into

λxs. build (λc n. foldr c n (foldr (⊕) e xs))

By Lemma 3 and precondition, we finally obtain

f = λxs. build (λc n. foldr (⊗) e′ xs c n)

¤



B PUSHING COMPUTATION INTO ACCUMULATION PARAMETER

Proof. We prove by induction overxs. We omit the proof of base case. The calcu-
lation of inductive case is

lhs
= foldr (⊕) e (x : xs)
= x⊕ foldr (⊕) e xs
= { Induction Hypothesis}
x⊕ (g◦ foldr c′′ n′′)
where (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) xs

= (x⊗g)◦ foldr (d2 c′′ n′′ x) (d1 c′′ n′′ x)
wherex® (g,(c′′,n′′)) = x® foldr (®) (e′,(c,n)) xs

= (x⊗g)◦ foldr (d2 c′′ n′′ x) (d1 c′′ n′′ x)
where (x⊗g,(d2 c′′ n′′ x,d1 c′′ n′′ x)) = x® foldr (®) (e′,(c,n)) xs

= g◦ foldr c′′ n′′

where (g,(c′′,n′′)) = x® foldr (®) (e′,(c,n)) xs
= g◦ foldr c′′ n′′

where (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) (x : xs)
= rhs

¤

C SECOND-ORDER WARM-UP TRANSFORMATION 2

Proof. Since the functionf is described as

f [] = e
f (x : xs) = x¯ f xs

we obtain
f = foldr (¯) e (1)

By the equation
foldr c n◦ (a¯ r) = a⊕ (foldr c n◦ r)

and the higher-order promotion lemma gives

foldr c n◦ foldr (¯) e xs= foldr (⊕) (foldr c n◦e) xs (2)

By the equations

e = e′ ◦ foldr c n
a⊕ (a2◦ foldr c n) = (a⊗a2)◦ foldr (d2 c n a) (d1 c n a)

and Lemma 10 gives

foldr (⊕) (foldr c n◦e) xs= g◦ foldr c′′ n′′

where (g,(c′′,n′′)) = foldr (®) (e′,(c,n)) xs
(3)

Equations (1-3) gives the conclusion of the theorem. ¤


