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Abstract

Warm-up transformation is an important preprocess for shortcut fusion. In this paper,
we formalize the warm-up transformation by proposing several general and powerful
calculation rules that can be directly implemented with help of higher-order pattern
matching. The newly proposed warm-up transformation cannot only deal with pro-
grams that existing methods may fail, but also suitable for efficient implementation.

1 INTRODUCTION

Constructing programs from components, i.e., modules, is an important technique
in designing large software. Dividing problems into small modules realizes local-
ization of problems. Consequently, programs are easy to maintain. If each module
is maintained as a versatile component, reusability is improved. The problem is,
however, in its inefficiency due to unnecessary intermediate data structures passed
between modules. Improvement of performance can be achieved if these interme-
diate data structures are removed by automatic analysis and automatic transforma-
tion.

Fusion(a.k.a. Deforestation [Wad90] is a technique of elimination of inter-
mediate data structures. Descendent from it, Gill et al. [GLP93] prosisms
cut fusion which is a single, local transformation rule, to ease the implementa-
tion [PTHO1]. The precondition of shortcut fusion assumes the producer function
to be expressed in terms biild.

If we could prepare all the functions in termsfofdr andbuild, shortcut fusion
could remove intermediate data structures automatically. Functional programmer
usually describes program as recursive definitions, dmlde form andbuild form
are less natural than recursive definitions. Therefore, the problem is how to derive
foldr form andbuild form from a recursive definition. There is an approach to au-
tomatically derive thdoldr form [SF93, HIT96]. Therefore, the problem is settled
down into the derivation dbuild form from a recursive function.

Warm fusion [LS95] accompanies shortcut fusion with a preprocess (hereafter
we call it warm-up transformation). It transforms recursive functions into func-
tions in terms ofbuild automatically. The technique has been implemented with
the Stratego language [JVO00], which is based on term rewriting framework. The



implementation of warm fusion, however, appears to be complex. There is another
approach which derives thoiild form through type inference [Chi99, Chi00]. This
approach is easier to implement and is able to transform more list producing func-
tions into thebuild form than Launchbury and Sheard’s approach [LS95]. But, the
implementation of this approach is still complicated.

In this paper, we formalize the warm-up transformation by proposing several
general and powerful calculation rules that can be directly implemented with help
of higher-order pattern matching. The newly proposed warm-up transformation
cannot only deal with programs that existing methods may fail, but also suitable
for efficient implementation.

2 WARM-UP TRANSFORMATION

In this section, we formalize the warm-up transformation in the calculational form.
Throughout the paper, we use Haskell notation [Bir98].

The warm-up transformation is to transform recursive programs into constructor-
abstraction form (e.gbuild). Consider, for example, the familianap function,
which applies a function to each element of a list.

map f|] = |
map f(x:xs) = fx:map fxs

This function produces two constructdr$ and[]. To abstract these constructors,
we introduce functioruild:

buildg=g (:) [

where functiong builds up a list with the two data constructors of list. The result
of the warm-up transformation of functionapis

map f= Axs build (Ac n. foldr (co f) n x9

Here, functionfoldr () eis a useful Haskell function, which essentially replaces
constructorg:) and[] in a given list with(&) ande respectively.

foldr (@) e] = e
foldr (@) e (x:xs) = x@foldr (®) e xs

The warm-up transformation is followed by the well-known optimization tech-
nique,shortcut fusiondefined as follows

Lemmal (Shortcut fusion [GLP93]).

foldrk z(buildg) =gk z

LStrictly speaking, we need certain type restrictiorgon



Instead of producing list by passiig and|] to g and then replacing list construc-
tors (:) and[] with k andz respectively, we do not produce any list constructor but
directly passc andzto functiong.
To see how the shortcut deforestation rule works, consider the following pro-
gram:
sum(map f xs)

wheresumis a function of computing summation of a given list:
sum = foldr (+)0

In GHC, at the compile time, the shortcut fusion rule is applied in the following
way by term rewriting with the simple traversing strategy.

sum(map f x3
= {Inline sumandmap}

foldr (+) O (build (Ac n. foldr (co f) n x9)
= { Shortcut Fusior}

foldr ((+)o f) Oxs

While the function compositiosumo map fis inefficient due to the intermedi-
ate data structure passed fromapto sum the result function does not have any
intermediate data structure.

It may be surprising that any recursion can be trivially transformed into the
build form. Given any functionf, both producing and consuming lists, can be
rewritten as

Axs build (Ac n. foldr c n (f (foldr (:) [] x9)))

However, this introduces an intermediate data structure passingfftorfoldr c n.
If we can fuseoldr c n, f, andfoldr (:) [], we may optimize the code. This can be
applied by the following lemma.

Lemma 2 (Promotion).
fz = e
f (xoxs) = xdfxs
f ofoldr (®) z=foldr (d) e

The promotion lemma gives the condition to fuse two functions. Fundtids
merged into functioffoldr and the result is alsildr form. If (©) andzare(:) and
[], this is merely the definition of the inductive recursive function on list. Then, if
f is inductive recursive function and we can fife) ande satisfying the above
conditions, the warm-up transformation problem is settled down into the problem
to fuse

foldr c nofoldr (@) e.

The promotion lemma is applicable to the composition. But, since the left function
of the function composition is always functidaldr ¢ n, we can specialize the



theorem by using the fact. The theorem varies according to the form of the right
foldr; we call that the functiorfoldr is the first-order if it takes three arguments,
and is the second-order if it takes the extra argument. We show the first-order case
in the next subsection and show the second-order case in the following subsection.

2.1 First-order Warm-up Transformation

When the rightfoldr takes three arguments, we can use the first-order warm-up
transformation theorem. Before stating and proving the theorem, we prepare the
calculation lemma for fusing twiwldr’s.

Lemma 3 (First-order Promotion of Two foldr’s).

Acn.foldrcne = ¢
Acn foldrcn(x@xs) = x®Acn. foldrcnxs

Ac n. foldr ¢ n (foldr () e x9 = foldr (®) € xs

Proof. Instantiatef in Lemma 2 intaAxs c n foldr ¢ n xs O

It is worth noting that in the second premise the titdrs can take differ-
ent arguments. A first-order function which takes a list and returns a list can be
transformed into théuild form by the following theorem.

Theorem 4 (First-order Warm-up Transformation).

fl] = e
f(x:xg) = x@&fxs
Acn foldrcne = ¢
Acn foldrecn(x@xs) = x®Acn. foldrcnxs

f = Axs build (foldr (®) € xs)

Proof. See Appendix A. O

The input functionf is transformed intduild form; the new operatorss) and
€ are produced by the preconditions. Functfohldr in the argument obuild is
higher-order and takes extra two arguments which abstract constructors. We show
the application of this theorem to a function in the recursive definition.

Example 5 (reversefonsider the following function to reverse a list:

reverse]] =
reverse(x:xs) = reverse Xs+ [X|
where xs++ys= build (Ac n. foldr ¢ (foldr ¢ n yg xs)

For simplicity, we assumé+-) is already in thebuild form. By Theorem 4 with
these conditions, we obtain

Axs build (foldr Ax pdn'. pd (¢ xn)) (A n'. n') xs)



Remarkably, in the first argumentfoidr, ¢’ is passed t@ without any compu-
tation. Thus, we can pass this operator directly to the argumdaoldf rather than
through the accumulation parameter. This transformation can be as an instantiation
of the promotion lemma.

Lemma 6 (Removing Accumulation Parameters).
ec = ¢
(a®x)c = a®xc
foldr (&) e xs c=foldr (®) € xs

Proof. Instantiatef into Af. f c of the promotion lemma results in this lemmial
The accumulation parameteis removed andoldr in the right hand side takes
the one smaller number of arguments than that in the left hand side.
Back to the example, the inntaldr can be simplified by Lemma 6. We obtain
build form of functionreverse

reverse= Axs build (Ac. foldr (Ax pr. p (c xr)) id xs).

It is worth noting that this result can not be obtained by applying the promotion
lemma to
foldr ¢ nofoldr (Ax r. r ++[x]) [].

2.2 Second-order Warm-up Transformation

In the previous subsection, we have seen funaewersehas been warm-up trans-
formed by Theorem 4. On the other hand, the following linear time reverse function
can not be transformed.

Irev xs = lrev xs|]
Irev' [] ys = ys
Irev (x:x9)ys = lIreV xs(x:ys)

This is becauskeVv has an accumulation parameter.

Hu et al. [HIT99] formulate systematic treatment of accumulations when func-
tion with accumulation is second-order catamorphisms, generalizatiéoldyf
They give calculation theorems for treating accumulations. We adapt their ac-
cumulation promotion theorems to warm-up transformation as the following two
lemmas in the sense that the both functions of the function composition is always
described in terms dbldr, and we make the patterns in the theorem more suitable
for higher-order matching.

There are two ways to make the promotion lemma second-order, instantiating
f as(foldr ¢ no) and(ofoldr ¢ n). First, we show the former.

Lemma 7 (Second-order Fusion of Twdoldr’s).

foldrd noe = €cdn
foldrd no(a®r) = (a® (A’ n”.foldrc” n"or))c'
foldr c nofoldr () e xs= foldr (®) € xscn




This lemma is used to prove the following theorem.
Theorem 8 (Second-order Warm-up Transformation 1).
fl] = e
f(xixg) = x@fxs
foldrcd Woe = €cdn
foldrd no(a®r) = (a® (A’ n’. foldrc’ n"or))c n/
f = Axs ys build (Ac n. foldr (®) € xs cny$

The proof is done in a similar way as Theorem 4. As in Theorem 4, the input
function f is transformed intdouild form. In this case, the input function takes the
extra argument for accumulation, though.

We show the example that Chitil’s approach [Chi99] cannot ddrivkd form.

Example 9.Consider computing reverse of the longest increasing prefix.

decxs = ded xs(—m)
dec [] - =
dec (x:xs)y = if x>ythended xs x++ [x] else]]

For exampledec|1,3,5,4, 2] returns[5, 3, 1]. Functionded can be described as a
functionfoldr (&) e over a list where

e = A
X&p = Ay.if x>ythen p x++ x| else]]

This is a second orddoldr in the sense that it takes a list to yield a second-order
function. Using these operators, we obtain

e€cn = A
(x@r)ycdn = Ay.if x>ythenrc (c x ) xelsen’

By Theorem 8, we obtain

dec= Axs build (Ac n. foldr (Aarcny if a>ythenrc (can) aelsen)
(Acn_.n)xscn(—))

Lemma 6 simplifies the arguments of functifahdr, and finally we obtain

dec= Axs build (Ac n. foldr (Aarny.if a>ythenr (c an) aelsen)
(An _. n) Xs n(—o))

Since at the each recursion the accumulation paramasechanged, we can not
apply Lemma 6 anymore.

As mentioned in the above, there is another instantiation of the promotion theo-
rem into the second-order promotion lemma,; here, we instarftiasgofoldr c n).
We use the fusion lemma as the reverse direction in the sense that afsidgle
decomposed into two functiomsandfoldr. The aim of this lemma is to sweep out
all the constructor abstraction variableandc into an accumulation parameter.



Lemma 10 (Pushing Computation into Accumulation Parameter).

er = € (foldrcnr)
ad (agofoldrd n’) = (a®ap)ofoldr(d,c' n"a) (dyc' n' a)
foldr () e xs= gofoldr ¢’ n”
where (g, (c”,n")) = foldr () (¢,(c,n)) xs
X0 (xs1, (C,1)) = (x@xs1,(d2 ¢ 1 x,dy € 1 X))

Proof. See Appendix B. a
This lemma is used to prove the following theorem.

Theorem 11 (Second-order Warm-up Transformation 2).

fl] = e
f(x:x9) = xofxs
foldrcno(a®r) = a@(foldrcnor)
foldrcnoe = €ofoldrcn

a® (agofoldr c n) (a®ap)ofoldr (dzcna) (dicna)
f =Axs r build (Ac n. let (g, (c”,n")) = foldr () (€,(c,n)) xs
X0 (xs, (c,n')) = (x@xsy,(d2 ¢ 1 x,d1 €' 1 X))
in g (foldrc” n” r))

—~

Proof. See Appendix C.

This theorem can abstract constructors in the accumulation parameters. To
show it, we borrow the following example from [Voi02]. Warm fusion rewriting
rule in [LS95] without binding higher-order variables during term rewriting and
some trick, and type inference base warm-up transformation [Chi99] are not appli-
cable to the function.

Example 12 (Partition)Consider a function partitioning a given ligs according
to some predicatep.

part pxs= let f [| zs=1zs
f (x:xs) zs=if pxthenx: f xs zs
elsef xs(zs++[x])
in f xs|]

For examplepart even[1,2,3,4,5,6] returns|2,4,6,1,3,5]. We can apply Theo-
rem 11 to functionf. By higher-order matching, we have

ezs = zs
(xor) zs if pxthenx:r zselser (zs++[x])



Then, we calculate

foldr c no (x@r)
= { Definition of (®) }
foldr c no (Azs if p xthenx:r zselser (zs++1x]))
= { n-expansion and Definition d¢f>) }
Azs foldr ¢ n (if p xthenx: r zselser (zs++[x]))
= { Distributefoldr ¢ nover if statement
Azs if p xthenfoldr c n(x:r zs) elsefoldr c n(r (zs++[X]))
= { Definition offoldr }
Azs if p xthenc x (foldr ¢ n(r zs)) elsefoldr ¢ n(r (zs++[x]))

Matching the result witta (foldr ¢ nor) gives
X@®r =Azs if pxthenc x(r zs) elser (zs++ X))
For the fourth precondition, we calculate

foldrcnoe

= { Definition ofe }
foldr ¢ no (Azs z9

= { n-expansion and Definition db) }
foldrcn

and obtain
€ = \zs zs

For the last precondition, we calculate

a® (apofoldrcn)
= { Definition of (@) }

Azs if pathenc a(az (foldr c n z9) elsea, (foldr ¢ n(zs++[a]))
= { Definition of (++) }

Azs if pathenca(ay (foldrcnzg)

elseay (foldr ¢ n (build (Ac n. foldr ¢ (foldr c n[a)) z9)))

= { Shortcut Fusior}

Azs if pathenc a(az (foldr c n zg) elsea, (foldr ¢ (foldr c n[a]) z9
= { Definition offoldr }

Azs if pathenc a(az (foldr c n z9) elsea, (foldr ¢ (c a n) zs)
= {x}

Azs (if pathenc aocay elseay) (foldr c (if p athennelsec an) z9
Matching the result witfa® ay) o foldr (d2 ¢ n @) (d; ¢ n @) returns

aRa, = Iif pathencaoayelsea,
dicna = if pathennelsecan
dcna = c



By Theorem 11, we finally obtain

part p xs= build (Ac n. let (g, (c”,n”)) = foldr (©) (€,(c,n)) xs
X@ (xs1,(c,n')) = (if pathenc aoay elseay,
(c,if pxthenn' elsec x '))
ingn’)

At the every recursion dbldr, valuec (¢’ or ¢”) is not changed. Therefore, we can
hoist this. At the moment, we can not formalize such hoisting in the calculational
form. Using this human insight and hand calculation, we obtain

part p xs= build (Ac n. let (g,n”) = foldr (©) (€,n) xs
X@ (xs,n’) = (if pathenc aca, elseay,
if pxthenn' elsec’ x )
ingn’)

It is worth noting that this function traverses the input isbnly once.

3 CONCLUSION

We specify the warm-up transformation in calculation rules. We show that we can
derive functions in théuild form which the existing methods may fail to derive.
These rules can be directly programmed as it is formalized owing to the expressive
power of higher-order matching.

Warm-up transformation in calculation rules can be synthesized on the same
formalism as fusion, tupling, accumulation, and parallelization described in calcu-
lation rules. We can write such transformations in the same way. We have imple-
mented all the calculation rules in this paper by the Yicho sy${afHT05], and
succeeded to test all the example exgegtt. For functionpart, the splitting the
if statement (the calculation) and the last transformation are not yet specified by
calculation rules.
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A FIRST-ORDER WARM-UP TRANSFORMATION

Proof. As seen before, any functionwhich takes a list and produces a list can be
trivially transformed into

Axs build (Ac n. foldr c n (f (foldr (:) [] xs)))

The promotion lemma and the precondition transforms it into

Axs build (Ac n. foldr ¢ n (foldr () e x9)

By Lemma 3 and precondition, we finally obtain

f = Axs build (Ac n. foldr () € xscn



B PUSHING COMPUTATION INTO ACCUMULATION PARAMETER

Proof. We prove by induction ovexs We omit the proof of base case. The calcu-
lation of inductive case is

lhs
= foldr (®) e (x: xs)
=x@foldr (@) e xs
= {Induction Hypothesi$
X& (gofoldr ¢’ n”)
where (g, (c”,n")) =foldr () (€, (c,n)) xs
= (x®4q)ofoldr (dy ¢’ n"” x) (dy ¢’ n” x)
wherexo (g, (c”,n")) = xofoldr (@) (¢,(c,n)) xs
= (x®4q)ofoldr (dz ¢’ n"” x) (dy ¢’ n” x)
where (x®g, (dz ¢’ n” x,d; ¢’ n” x)) =xofoldr (@) (€,(c,n)) xs

=gofoldr ¢’ n”
where (g, (c’,n")) =xofoldr () (¢, (c,n)) xs
=gofoldr ¢’ n”
where (g, (c”,n")) =foldr () (€, (c,n)) (x: xs)
=rhs
O
C SECOND-ORDER WARM-UP TRANSFORMATION 2
Proof. Since the functiorf is described as
f = e
f(x:xs) = xofxs
we obtain
f =foldr (®) e (1)
By the equation
foldr c no(a®r) =aa (foldr c nor)
and the higher-order promotion lemma gives
foldr ¢ nofoldr (®) e xs= foldr (¢) (foldr c noe) xs (2)

By the equations

e = €ofoldrcn
a® (apofoldr c n) (a®ap)ofoldr (dcna) (dicna

and Lemma 10 gives

foldr (&) (foldr c noe) xs= gofoldr ¢’ n” 3)
where (g, (c”,n”)) =foldr (2) (¢, (c,n)) xs

Equations (1-3) gives the conclusion of the theorem. O



